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Synopsis
Quantitative parameter maps offer valuable information about various tissue attributes, which are early markers for many
neurological disorders. However the long acquisition time of the associated image time series puts a restriction on the achievable
spatial resolution. In this work, we introduce a novel framework, which exploits the exponential nature of the time profiles at
every pixel and spatial smoothness of the exponential parameters to recover the images from highly under-sampled
measurements. Our preliminary results clearly demonstrate the potential of the proposed algorithm.

Purpose
The estimation of exponential parameters (e.g frequency, relaxation parameters) from time series data is a key problem in
several MRI applications including parameter mapping, spectroscopic imaging, field mapping, and fat water imaging. The
acquisition of multiple images at different settings (e.g. TE, TR, spin-lock duration) is associated with increased scan time, which
often restricts the achievable spatial resolution. A common approach to overcome these problems is to acquire under sampled
data and regularize the reconstruction using appropriate priors (e.g sparsity low rank etc.).  However, most of the current
regularization priors do not exploit the exponential behavior of the time-series and the spatial smoothness of the parameters.
The main focus of this work is to introduce a novel annihilation filter formulation, which directly exploits the exponential
structure of the time series and the spatial smoothness of the exponential parameters.

Methods
Our work is centered on the linear predictability of a 1-D exponential time-series. This implies that a linear combination of
damped/undamped exponentials can be linearly predicted/annihilated by the convolution with a 1-D filter, whose degree is equal
to the number of exponentials at that pixel . We model the temporal signal at each voxel location  as

In  mapping applications, the exponential parameters , where  is the time between two image frames

and  is the relaxation parameter of the  tissue component. Such a signal can be linearly predicted/annihilated by the

convolution with a 1-D filter . The exponential parameters often vary smoothly in space; we exploit

this fact by constraining the filter coefficients to be spatially band-limited. This results in the following 3-D convolution relation:

where  is the 3-D convolution operator,  and  are the k-t space coefficients of the image time-series  and
the annihilation filter  respectively. The extent of the filter  along the spatial frequency and temporal dimension
controls the spatial smoothness of the filters and the exponential parameters respectively. The above annihilation relations can
be compactly represented in a matrix form as , where  is a block Toeplitz matrix and  is the vectorized filter
coefficients. See figure (1) for the construction of the Toeplitz matrix. The annihilation relation implies that the matrix  is
low-rank. Hence, we formulate the recovery of  from undersampled Fourier measurements as the following structured low rank

matrix recovery problem in the Fourier domain:

where  are the 2-D Fourier coefficients of the volume ,  represents the
undersampled measurements,  is a linear operator that encodes the coil sensitivity
and the Fourier undersampling matrices and  is a regularization parameter. To solve
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the above equation, we employ an Iterative Reweighted Least Squares (IRLS) based
algorithm .

We demonstrate the algorithm on the recovery of both single channel (coil
compressed) and multi-channel data from under-sampled Fourier measurements. For
this purpose, a fully sampled 2-D dataset was acquired using a turbo spin echo
sequence and the following scan parameters were used: Matrix size - 128x128, Coils =
12, FOV: 22x22 cm , TR = 2500 ms and slice thickness = 5mm. The  weighted images
were obtained for 12 equispaced echo times ranging from 10 to 120ms. Post image
recovery, the  maps were estimated by fitting a mono-exponential model to each
voxel.

Results
Figure (2) compares the proposed approach with the k-t Low Rank algorithm  (k-t SLR without the sparsity) on the recovery of
single channel data from 30  uniform random measurements. In figure (3), we compare the two methods on the recovery of
multi-channel data from 12-fold (3-fold variable density + 4-fold 22 Cartesian) undersampled measurements. In both cases, We
observe that the reconstructions from the proposed scheme have lower errors (see caption for details). In figure (4), we study the
impact of the filter sizes on the quality of the reconstructions. We observe that the errors in the reconstructions are reduced
when the spatial support of the filter is decreased, which clearly demonstrates the benefit of exploiting spatial smoothness of the
exponential parameters.

Conclusion
We introduced a novel annihilation filter framework to recover the  weighted MR images from under-sampled Fourier
measurements. The reconstructions and the  maps from the proposed approach have fewer errors compared to the low rank
method. Also, the benefit of exploiting the spatial smoothness of the exponential parameters was demonstrated through the use
of smaller filters, which helped improve the reconstruction quality.
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figure (1): Construction of the Toeplitz matrix : The rows of the matrix correspond to the cube shaped neighborhoods of the
Fourier samples. The size of the cube is equal to the size of the filter. The missing entries of the matrix are estimated by
exploiting its low rank structure. The smoothness of the exponential maps and the number of exponentials can be controlled by
the size of the cubes.

figure (2): Comparison of the proposed method with k-t Low rank on the recovery of single channel data from 30 percent uniform
random measurements. For the proposed approach, we chose a filter of size 122x122x2 and a Schatten  = 0.6 was chosen for
both the methods. The improvements offered by the proposed scheme can be easily appreciated from the estimated  error
images in (a) and the  maps in (b).

figure (3): Comparison of the proposed method with  low rank on the recovery of multi-channel data at an acceleration of
12. For the proposed approach, we chose a filter of size 114x114x10 and a Schatten  = 0.7 was chosen for both the methods. We
observe that the reconstructions from the proposed method have fewer errors, which can be appreciated from the error maps of
the  weighted images in (a) as well with the noise-like artifacts in the  maps in (b).

figure (4): Comparison of reconstructions from 8-fold undersampled data using 118x118x10 (filter1) and 128x128x10 (filter2)
respectively: The errors in the reconstructions using filter1 are reduced clearly demonstrating the advantage of having a smaller
support for the filter.
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