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ABSTRACT
We introduce a fast structured low-rank matrix completion al-
gorithm with low memory & computational demand to re-
cover the dynamic MRI data from undersampled measure-
ments. The 3-D dataset is modeled as a piecewise smooth
signal, whose discontinuities are localized to the zero sets of
a bandlimited function. We show that a structured matrix cor-
responding to convolution with the Fourier coefficients of the
signal derivatives is highly low-rank. This property enables us
to recover the signal from undersampled measurements. The
application of this scheme in dynamic MRI shows significant
improvement over state of the art methods.

Index Terms— dynamic MRI, structured low rank,
smoothness regularization.

1. INTRODUCTION

Obtaining high spatial & temporal resolution is challenging in
dynamic MRI, mainly due to the slow nature of acquisition. A
common approach to speed up the acquisition is to acquire un-
dersampled Fourier data and to regularize the recovery prob-
lem using appropriate priors. Common regularization penal-
ties include `1 sparsity prior in the Fourier/wavelet domain
and smoothness priors (e.g. total variation regularization).

Recently, structured low rank matrix priors are emerging
as powerful alternatives for classical `1 regularization [1–4].
For example, we have modeled a 2-D image as a piecewise
smooth signal, whose partial derivatives are localized to zero-
crossings of a band limited trigonometric polynomial [3, 4];
this work is inspired by [5]. We have shown that such a signal
can be annihilated by a large set of finite impulse response
filters in the Fourier domain. These annihilation relations im-
ply that a matrix with convolutional structure derived from
the uniform Fourier samples of the signal is low-rank. We
have exploited this property to recover the image from uni-
form [6] and non-uniform samples [7]. Since these methods
can exploit the additional structure in many multidimensional
problems (e.g. smoothness of the edges), on top of sparsity,
they are demonstrated to yield better reconstruction perfor-
mance than classical total variation methods. These methods
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are generalization of classical 1-D FRI methods [8, 9] to the
multidimensional setting with non-uniform sampling.

Despite improved performance, structured low rank meth-
ods suffer from high memory demand and computational
complexity, both resulting from the lifting of the original
2-D problem to a dense high-dimensional structured matrix.
Since the dimension of the matrix is atleast two to three or-
ders of magnitude greater than the size of the original data,
it results in computationally expensive algorithms. Vari-
ous methods have been explored to make the computational
complexity manageable. For example, greedy multi-scale
approximations to sequentially recover the image [1] and
factorization of the matrix to two low-dimensional matrices
have been explored [1, 2]. Despite these approximations, it
is still challenging to extend the above scheme to three di-
mensions and beyond. Current methods recover 2-D slices
of the 3D datasets independently [1], which is suboptimal
and requires Cartesian undersampling; this approach is not as
efficient as more general non-Cartesian acquisition schemes.
Another challenge with most of the current methods is that
they are only designed for one derivative operator. [1, 2].
When multiple derivative operators are desired (e.g. direc-
tional derivatives), the problems are solved in a sequential
fashion; the data recovered using one weighting is then used
to recover the image with the other weighting.

Recently, we have introduced a fast and memory efficient
structured low-rank matrix recovery algorithm called Generic
Iteratively Reweighted Annihilating Filter (GIRAF) [10].
This approach works in the unlifted domain & exploits the
convolutional structure of the structured matrix using Fast
Fourier Transforms (FFT), which quite significantly reduces
the computational complexity and memory demand of the
algorithm. In addition, the algorithm is also general enough
to handle arbitrary number of k-space weightings at the same
time. In this paper, we extend the GIRAF algorithm to re-
cover signals that can be modeled as piecewise smooth func-
tions in three dimensions. We demonstrate the improvement
offered by this algorithm on breath held cine data over spatio-
temporal total variation (TV) & temporal Fourier sparsity
regularized reconstruction schemes.



2. THEORY

Consider the general class of piecewise smooth functions g of
degree n in d dimensions:

g(r) =

N∑
i=1

gi(r)χΩi
(r), ∀r = (x, y) ∈ [0, 1]d, (1)

where χΩi
is a characteristic function of the region Ωi and

gi are smooth polynomial functions of degree at most n. We
assume that the edge set ∂Ω =

⋃N
i=1 ∂Ωi coincides with the

zero level sets of a d dimensional bandlimited function:

µ(r) =
∑
k∈∆

c[k]ej2π〈k,r〉, ∀r = (x, y) ∈ [0, 1]d (2)

where c[k] ∈ C are the Fourier coefficients of µ and ∆ is any
finite subset of Z2. We have shown that such signals satisfy(

∂n1
x1
. . . ∂nd

xd
g
)
· φ = 0; ∀ n1 + . . . nd = n+ 1, (3)

where φ = µ · η is any function bandlimited to Λ1 ⊇ ∆,
with a factor µ. The above conditions (3) translates into a
convolution relation in the Fourier domain.(

(jω1)n1 . . . (jωd)
nd ĝ

)
? c = 0; ∀ n1 + . . .+nd = n+ 1

(4)
We consider the recovery of the the Fourier coefficients on a
rectangular region Γ ⊂ Zd. When n = 0 in (3), we obtain
a piecewise constant signal model with conditions similar to
the assumptions in classical total variation regularization. The
annihilation relations in this case can be compactly written in
matrix form as

T (ĝ)h =

T1(ĝ)
...

Td(ĝ)

h = 0 (5)

Here, Ti(ĝ) ∈ C|Λ2|×|Λ1| is a Toeplitz/Hankel matrix whose
entries are derived from jωiĝ; Ti(ĝ)h corresponds to the con-
volution of jωiĝ with h. Here, h

F↔ φ is a d dimensional
filter, supported in Λ1. We have shown that the dimension of
the space of filters h that satisfy (5) is given by the size of the
set Λ1|∆ — the valid shifts of the set ∆ within Λ1. Λ2 ∈ Γ
indicates the set of indices over which the convolutions be-
tween the samples of ĝ and h are valid. See Fig. 1 for an
illustration of the structure of the lifted matrix T (ĝ). Since
the annihilation conditions are satisfied for filters h that live
in a large subspace, we can conclude that T (ĝ) is low rank.
We use this property to recover ĝ from non-uniform samples.

3. PROPOSED FORMULATION

3.1. Measurement Model

Let G̃ ∈ CP×T denote the Casoratti matrix structure of the
dynamic MRI dataset, where each column G̃i represents a

Fig. 1: Illustration of the lifted matrix T (G): The rows of the
matrix are cube shape neighborhoods of the weighted Fourier
samples corresponding to the partial derivatives. We use the
structure of the low-rank matrix to recover it from few mea-
surements as in (9).

vectorized image at a time point ti. We consider the recovery
of the 3-D discrete Fourier coefficients of G̃, denoted by G.
The Fourier measurements b can be modeled as:

b = SFtG + η; (6)

where S and η are the sampling matrix and zero mean white
Gaussian noise vector respectively. Ft is the 1-D discrete in-
verse Fourier transform (DFT) matrix along the time direc-
tion. (6) can be compactly written as

b = A(G) + η (7)

where A is the measurement operator.

3.2. Problem formulation

We assume that the time series of MR images can be mod-
eled as three dimensional piecewise constant functions and
consider its recovery from few Fourier measurements. We
formulate the problem in the Fourier domain and pose the re-
covery of G as the solution to the following structured low
rank matrix completion problem.

min
G

rank[T (G)] s.t b = A(G) + η (8)

Here G is the data to be recovered. T (G) ∈ CM×N is a
structured Toeplitz matrix in the lifted domain. Since (8) is
NP hard, we relax the rank function with a Schatten p(0 ≤
p ≤ 1) norm:

G? = arg min
G
‖T (G)‖p +

λ

2
‖A(G)− b‖22 (9)

where λ is a regularization parameter. Here, ‖X‖p is the
Schatten p norm, defined as ‖X‖p := 1

pTr[(X∗X)
p
2 ] =

1
p

∑
i σ

p
i , where σi are the singular values of X. p = 1 results

in a convex nuclear norm penalty and when (0 ≤ p < 1),



Fig. 2: Illustration of the direct evaluation of T (G)∗T (G)
that does not require the lifting. This direct computation, as
well as the update step (14) that does not require the lifted
matrix, results in the fast and memory efficient algorithm for
(9).

the Schatten norm is non-convex. When p → 0, ‖X‖0 :=∑
i log σi.
Note that we lift the original problem involving a 3-D sig-

nal to a large matrix T (G), whose number of rows is around
three times the total number of pixels in the 3-D volume. The
number of columns is equal to the size of the filter. The ex-
plicit use of such a matrix requires a lot of memory for storage
and also increases the computational complexity of the prob-
lem. Even for a data set of dimension 128 × 128 × 15 and
filter size of 21 × 21 × 3, the memory demand is 1323 times
the memory needed to store the original signal, which makes
the application of the scheme to even modest sized datasets
intractable.

4. OPTIMIZATION ALGORITHM

We use an iterative re-weighted least squares (IRLS) algo-
rithm [11] to solve (9), which relies on the property ‖X‖p =

‖XH
1
2 ‖2F , where H = (X∗X)

p
2−1. Setting X = T (G),

we obtain the iterative algorithm that alternates between the
following steps:

Hn = [T (Gn−1)∗T (Gn−1) + εnI]
p
2−1 (10)

Gn = arg min
G
‖T (G)H

1
2
n‖2F +

λ

2
‖A(G)− b‖22 (11)

where εn → 0 is added to stabilize the inverse. We now show
how the above steps can be modified to avoid the explicit eval-
uation and storage of the large lifted matrix T (G).

4.1. Update of Gn

Denoting H = [h1, ..,hN ], we rewrite (11) as

G∗ = arg min
G

1

2

N∑
i=1

‖T (G)hi‖2F +
λ

2
‖A(G)− b‖22 (12)

By exploiting the structure of T (G) and from the commuta-
tive property of convolution we have,

T (G)hi = PΛ2(Q(G)∗hi) = PΛ2(hi∗Q(G)) = PCiQ(G)
(13)

Here, ∗ denotes 3-D convolution. Q is a linear operator spec-
ified by Q =

[
Q∗x,Q∗y, αQ∗z

]∗
. Here, Q(G) represents ele-

ment wise multiplication of G by Fourier derivatives j2πkx,
j2πky and j2πkz where k = (kx, ky, kz). Ci represents the
3-D linear convolution by hi. PΛ2

is the projection of the con-
volution onto a valid k space index set Λ2 and is represented
by the matrix P.

We approximate Ci by a 3-D circular convolution by hi,
which is valid if the convolution grid is sufficiently large. This
allows us to evaluate Ci as FDiF

∗, where F is the 3-D DFT
matrix and Di is a diagonal matrix corresponding to the 3-
D inverse DFT of hi. We also assume P∗P ≈ I, which is
valid if the projection set Λ2 is large compared to the filter
size. Substituting (13) in (12) and then taking the gradient,
we obtainQ∗F

(
N∑
i=1

D∗iDi

)
︸ ︷︷ ︸

D(µ)

F∗Q+ λ A∗A


︸ ︷︷ ︸

R

G = λ A∗b (14)

where D(µ) is a diagonal matrix with entries

µ(r) =

N∑
i=1

|µi(r)|2, ∀(r) ∈ [0, 1]3 (15)

Here, µi(r) is a trigonometric polynomial corresponding to
the inverse fourier transform of hi. With these approxima-
tions, forming matrix vector products with R only requires 2
FFT’s after precomputing µ .

4.2. Updating µ(r) using (10)

Using the convoution relation mentioned in (13), the correla-
tion matrix R = T (G)∗T (G) can be computed as

R ≈ PΛ1
[C(Q(G))∗C(Q(G))]P∗Λ1

(16)

where PΛ1 is the projection onto the set Λ1, C is applied
to each block of Q(G) and represents circular convolution.
By expressing C in terms of the DFT matrix F, we can sim-
plify (16) further and obtain R ≈ PΛ1

[FDF∗]P ∗Λ1
where

D is a diagonal matrix whose entries correspond to |∇|2 :=(
|∂G̃∂x |

2 + |∂G̃∂y |
2 + |∂G̃∂z |

2
)

. Hence the entries of R are ob-

tained from the Fourier coefficients of |∇|2; specifically ev-
ery row of R is obtained by vectorizing a brick shaped region
of size equal to the dimensions of the filter from the black
cuboid region of dimension twice the size of the filter. See
Fig. 2 which depicts the construction of R.

Next the weight matrix H can be efficiently computed
from the eigen decomposition of R. Let (V,Λ) be the eigen
decomposition of T (G)∗T (G), where V is the orthogonal



Fig. 3: Comparison of the proposed scheme (single weighting and multiple weighting) with temporal Fourier Sparsity and
Spatio-temporal TV methods at an acceleration factor of four (top row) and seven (bottom Row).

basis of eigen vectors vi and Λ is a diagonal matrix contain-
ing the eigen values λi. Substituting the eigen decomposition
in (10) and simplifying further we obtain,

H = [V(Λ + εI)V∗]
p
2−1 = V(Λ + εI)

p
2−1V∗.

Hence, one choice of the matrix square root H
1
2 is

H
1
2 = V(Λ + εI)

p
4−

1
2 = [α

1
2
1 v1, . . . , α

1
2

NvN ].

where αi = (λi + ε)
p
2−1. The spatial domain trigonometric

polynomial µi and vi are related as µi = α
1
2

i γi(r) where γi(r)
is the inverse fourier transform of the eigen vector vi. Hence
using this relation, the SOS polynomial is updated as

µ(r) =

N∑
i=1

αi|γi(r)|2, ∀(r) ∈ [0, 1]3 (17)

which can be efficiently computed using N FFT’s. Note that
the weights αi are only high for vectors vi close to the null
space.

5. EXPERIMENTS AND RESULTS

In Fig 3 , we compare the recovery of the proposed method
(single weighting and multiple weighting) with the spatio-
temporal TV (S-TV) and temporal Fourier Sparsity (FS) reg-
ularized reconstruction methods on a Breath Held Cine Data
of dimension (224×256×16×5) (coil compressed) at an ac-
celeration factor of four and seven respectively. The data was

acquired using a SSFP sequence using the following parame-
ters: TE/TR= 2.0/4.1 ms and flip angle=45◦. For the proposed
method, a filter size of (21×21×3) was used in the recovery.
Q is defined as

√
(jωx)2 + (jωy)2 + (αjωz)

2 for the
proposed method with single kspace weighting. As this is
an isotropic operator, at an acceleration factor of seven, it
results in a recovery with some edges blurred, compared
to the proposed method with multiple weightings and TV.
The reconstructions from the proposed method with multiple
weightings are more accurate with a lot of details faithfully
captured. Specifically, the errors corresponding to it are scat-
tered as opposed to being concentrated along the edges, which
is the case with TV and Fourier sparsity based methods.

6. CONCLUSION

We introduced a fast & memory efficient algorithm to recover
piecewise smooth three dimensional signals from few of their
measurements. The algorithm is similar in concept to iter-
ative reweighted algorithm for total variation regularization,
with the exception that the weights are derived using a novel
Fourier domain strategy involving singular value decomposi-
tion. The ability of the scheme to additionally regularize the
smoothness of the edges enables it to provide improved re-
sults over total variation regularization. The comparison of
the proposed scheme against state of the art methods in the
context of cine MRI demonstrates its ability to provide more
accurate reconstructions with better edge details.
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