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ABSTRACT

We propose a structured low rank matrix completion algo-
rithm to recover a time series of images consisting of linear
combination of exponential parameters at every pixel, from
undersampled Fourier measurements. The spatial smoothness
of these parameters is exploited along with the exponential
structure of the time series at every pixel, to derive an annihi-
lation relation in the k − t domain. This annihilation relation
translates into a structured low rank matrix formed from the
k−t samples. We demonstrate the algorithm in the parameter
mapping setting and show significant improvement over state
of the art methods.

Index Terms— structured low rank, Toeplitz, smoothness
penalty, parameter mapping.

1. INTRODUCTION

The recovery of linear combination of damped exponentials
from few of their measurements is a classical problem in sig-
nal processing, starting with the seminal work of Prony [1].
Early work, which focused on uniform sampling, relied on
the existence of a filter that annihilates the uniform measure-
ments. Recently, several researchers have extended this idea
to the non-uniform sampling setting, which is a more efficient
measurement strategy. These methods pose the estimation as
the completion of a structured matrix (e.g Hankel or Toeplitz),
whose entries are the signal samples, from few of its measure-
ments. Specifically, the annihilation filters are the null space
vectors of the Toeplitz matrix, or equivalently the matrix is
low-rank.

The above exponential estimation problem is of high
significance in several medical imaging applications, includ-
ing MR spectroscopic imaging and MR parameter mapping.
These methods perform a pixel-by-pixel estimation of the
exponential parameters (e.g. frequencies, decay rate, ampli-
tudes) from an image time series. The parameters provide
valuable clues about the abnormal metabolic activity and
tissue micro-structural changes, which are early markers for
neurological disorders. The parameters often vary smoothly
in space since they depend on the underlying tissue mi-
crostructure. Unfortunately, the acquisition of the image time
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series at high spatial resolution results in prohibitively long
scan time. A common approach to accelerate the acquisition
is to acquire under sampled data, followed by reconstruction
using low rank and sparsity priors.

We introduce a novel formulation that directly exploits
the exponential structure of the time series and the spatial
smoothness of the exponential parameters. Specifically, we
couple the time series estimation problems at all the pix-
els into a single annihilation relation, involving a spatially
smooth annihilation filter. This approach exploits the spatial
smoothness naturally; we do not require additional spatial
regularization priors. The annihilation relations translate to a
low-rank penalty on a Toeplitz matrix, whose entries are the
k − t space samples of the time series.

A challenge with the above formulation is the large size of
the Toeplitz matrix. The direct implementation of the struc-
tured low-rank problem will be prohibitive for high resolution
applications. We generalize our generic iteratively reweighted
annihilating filter (GIRAF) framework, originally introduced
for piecewise smooth images [2], to accelerate the computa-
tions. In particular, we use an iterative reweighted formu-
lation, where we exploit the Toeplitz structure of the ma-
trix to avoid its direct computation and storage. The GIRAF
scheme approximates the linear convolutions resulting from
the Toeplitz multiplications with circular convolutions, which
allowed their evaluation using Fast Fourier Transform (FFT).
These approximations were enabled by the fast decay of the
image Fourier coefficients towards the edges of the observed
region. Unfortunately, this approach breaks down in our set-
ting since we rely on annihilation relations in k − t space,
where the signal has considerable intensity at the first image.
Hence, we modify the GIRAF steps using a hybrid circular-
linear convolution strategy. These generalizations provide a
fast algorithm that can be readily applied to large-scale ex-
ponential estimation problems. Our validations using MRI
data clearly demonstrate the benefits offered by the proposed
algorithm, which can simultaneously exploit the exponential
structure and the spatial smoothness of the parameters.

This work has similarities to recent works on structured
low-rank priors for the estimation of piecewise smooth sig-
nals and exponential signals. For example, [3] exploited the
smoothness of the kx − t signal using a low-rank prior on a
wavelet transform weighted Hankel matrix. This work does



not exploit the exponential structure of the signal. In addition,
the recovery of each ky − t slice is decoupled into a separate
problem to keep the computational complexity reasonable [3].
This decoupled approach is less constrained and cannot han-
dle efficient 2-D sampling patterns; Cartesian patterns with
fully sampled kx lines were considered in [3]. In [4], the lin-
ear predictability of the time series at each pixel is exploited
individually. Since this decoupled strategy is less constrained,
the authors rely on additional low-rank and wavelet sparsity
regularization penalties; the optimization of several regular-
ization parameters is also challenging. While the piecewise
smoothness and sparsity has also been exploited by several
researchers using the structured low-rank setting [5] [6], [7]
they do not exploit the exponential signal structure.

2. PROBLEM FORMULATION

We focus on the recovery of a 3-D volume ρ, consisting of
a linear combination of damped exponentials at every pixel,
from noisy and undersampled measurements denoted by b.
We will now introduce the annihilation relations, and the re-
sulting structured low-rank priors.

2.1. Annihilation of spatially smooth exponentials

We model the temporal signal at the spatial location r =
(x, y) ∈ Z2 as :

ρ[r, n] =

L∑
i=1

αi(r) βi(r)n. (1)

Note that the temporal signal ρ[r, n] is a linear combination of
L exponentials, αi(r) ∈ C are the amplitudes and βi(r) ∈ C
are the exponential parameters that are dependent on the phys-
iological process. For example, in T2 mapping applications,
the exponential parameters βi = exp

(
−∆T
T2,i(r)

)
, where ∆T is

the time between two image frames and T2,i is the relaxation
parameter of the ith tissue component (e.g. gray matter, CSF,
white matter) at the voxel indexed by r.

It is well known that the exponential signal in (1), corre-
sponding to a specific spatial location r, can be annihilated by
a filter h[r, n] [1]:∑

k∈θ

ρ[r, n− k] h[r, k] = 0 = µ[r, n], ∀r. (2)

where (2) represents a 1-D convolution and θ is a valid index
set. The coefficients of h[r, n] at r are specified by h[r, z] =∏L
i=1(1 − βi(r)z−1). Computing the 2-D Fourier transform

(along the spatial dimension, denoted by r) of (2), we obtain

ρ̂[k, n]⊗ c[k, n] = 0. (3)

Here, ρ̂[k, n] are the spatial (2-D) Fourier coefficients of the
measurements ρ[r, n] and ⊗ denotes 3D convolution. Simi-
larly, c[k, n] denotes the spatial (2-D) Fourier coefficients of

h[r, n]. We assume that the parameters βi(r) describing the
physiological process are bandlimited functions of the spatial
variable r; this implies that c[k, n] is a 3D FIR filter. In partic-
ular, the extent of the filter c[k, n] in the spatial frequency (k)
dimension controls the spatial smoothness of the filter h[r, n],
while its extent in the temporal dimension (n) depends on the
number of exponentials in the model (1). We express (3) in a
matrix form as

T (ρ̂) c = Qc = 0 (4)

where T is a linear operator that maps a 3D volume x to a
lifted matrix T (x) ∈ CM×N . Here the lifted matrix has a
multi-fold Toeplitz structure, such that Qc corresponds to the
3-D convolution between ρ̂[k, n] and the FIR filter c[k, n].
The number of columns of the matrix T (ρ̂) is equal to the
assumed support of the filter. Likewise, if the measurements
ρ̂[k, n] are restricted to a cube shaped volume in (k, n), the
rows correspond to the valid convolutions.

In practice, the support of the filter c[k, n] is unknown.
Let us assume that (3) is satisfied by a minimal filter c[k, n]
of support ∆ ⊂ Z3. In this case, we observe that

ρ̂[k, n]⊗ d[k, n] = 0, (5)

where d = c ⊗ e and e[k, n] is any FIR filter. Note that the
support of d, denoted by Θ is larger than ∆; i.e, ∆ ⊂ Θ.
Hence, if we over-estimate the support of the filter c, there
will be many linearly independent annihilating filters in the
nullspace of T (ρ̂) , or equivalently T (ρ̂) is low rank.

To avoid oversmoothing of the parameter maps, we
choose the spatial support of the 3D filter c to be large.
This implies that the lifted matrix Q is rectangular (more
columns than rows) in the parameter mapping setting.

2.2. Recovery using structured low-rank matrix priors

In this paper, we focus on the recovery of T2 weighted MR
images from their undersampled multichannel encoded mea-
surements, denoted by

b = A(ρ̂) + η, (6)

where A is a linear operator representing Fourier under sam-
pling and multiplication of coil sensitivities with ρ̂. We pose
the recovery of the signal (1) as the structured low rank matrix
recovery problem:

ρ̂? = arg min
ρ̂
‖T (ρ̂)‖p +

λ

2
‖A(ρ̂)− b‖22 (7)

where λ is a regularization parameter and ‖X‖p is the
Schatten p norm, defined as ‖X‖p := 1

pTr[(X∗X)
p
2 ] =

1
pTr[(XX∗)

p
2 ] = 1

p

∑
i σ

p
i ; σi are the singular values of X.

Here, T (ρ̂) denotes the structured multifold Toeplitz matrix,
whose entries are the samples of ρ̂; ρ̂ corresponds to the 2-D
Fourier coefficients of ρ.



Fig. 1: Construction of the Toeplitz matrix T (ρ̂): The rows
of the matrix correspond to the cube shaped neighborhoods
of the Fourier samples. The missing entries of the matrix are
estimated by exploiting its low rank structure.

3. OPTIMIZATION ALGORITHM

We rely on the iterative re-weighted least squares (IRLS)
based algorithm to solve (7). The basic idea is to use the
identity ‖Y‖p = ‖H 1

2 Y‖2F , where H = (YY∗)
p
2−1. We

use an alternating minimization algorithm, which alternates
between the following two sub-problems, to solve (7):

Hn = [T (ρ̂n−1)T (ρ̂n−1)∗︸ ︷︷ ︸
R

+εnI]
p
2−1 (8)

ρ̂n = arg min
ρ̂

1

2
‖H

1
2
nT (ρ̂)‖2F +

λ

2
‖A(ρ̂)− b‖22 (9)

where εn → 0 is added to stabilize the inverse. We will now
focus on an efficient implementation of the subproblems.

3.1. Least squares-Update

Let the rows of H
1
2 be denoted by

[
(h(1))T , . . . , (h(M))T

]T
.

Substituting for H
1
2 in (9), we obtain

ρ̂∗ = arg min
ρ̂

1

2

M∑
i=1

‖h(i)T (ρ̂)‖22 +
λ

2
‖A(ρ̂)− b‖22 (10)

Note that the term h(i)T (ρ̂) is the linear convolution between
the 3-D sequences h(i) and ρ̂. In the GIRAF algorithm [2], we
relied on the approximation of the linear convolution by cir-
cular convolutions to accelerate its computations using FFT.
We exploited the fast decay of the Fourier coefficients in GI-
RAF, which made the approximations valid. Here we rely on
the annihilation relations in the k − t domain, where the sig-
nal does not decay rapidly in the temporal dimension. Hence
we use a hybrid approach that consists of performing linear
convolutions along time and circular convolutions along the
spatial dimension.

Let h(i) and ρ̂ consist of Nt and T frames respectively
and let k denote T −Nt + 1. Let each frame of the filter h(i)

be of dimension N1×N2. Now (h(i)T (ρ̂)) can be simplified
as,

h(i)T (ρ̂) =
(
h

(i)
Nt

. . . h
(i)
1

) T(ρ̂k) . . . T(ρ̂1)
...

...
...

T(ρ̂k+Nt−1) · · · T(ρ̂Nt)


(11)

In the above equation, T(ρ̂j) represents a Toeplitz matrix
formed from ρ̂j ; the product h

(i)
i T(ρ̂j) corresponds to the

2-D convolution between the ith frame of the filter h(i) and
jth frame of ρ̂. We safely approximate each of the 2-D con-
volutions by circular convolutions as in GIRAF and compute
them efficiently using Fast Fourier transforms.

3.2. Weight-Update

We consider the Gram matrix R in (8) that has the following
structure:  R1,1 R1,2 . . . R1,Nt

...
... · · ·

...
RNt,1 RNt,2 · · · RNt,Nt

 (12)

with Nt column and row partitions and Ri,j is a matrix block
of dimension N1N2 × N1N2. We obtain the general expres-
sion for the matrix block Rp,q as.

Rp,q =

k∑
i=1

T(ρ̂p+i−1)T(ρ̂q+i−1)∗ (13)

We observe that the Toeplitz matrix T(ρ̂i) can be ex-
pressed as T(ρ̂i) = P∗ΛCirc(ρ̂i)PΓ, where PΓ ∈ CL×PQ
is a matrix that restricts the convolution onto a valid index
set represented by Γ, Circ(ρ̂i) ∈ CL×L is a circulant matrix
formed from ρ̂i and P∗Λ ∈ CN1N2×L is a matrix representing
zero-padding outside the filter support Λ; here P,Q are the
spatial dimensions of ρ̂. Now T(ρ̂i)T(ρ̂j)

∗ can be simplified
as

Pi,j = P∗Λ Circ(ρ̂i)Circ(ρ̂j)
∗︸ ︷︷ ︸

Circ(g)

PΛ (14)

where the entries of Circ(g) are generated from the array g
given by F(FH(ρ̂i)◦ conj(FH(ρ̂j))), conj denotes the conju-
gate operation and ◦ denotes point-wise multiplication.

We evaluate the weight matrix H as

H = [U(Λ + εI)U∗]
p
2−1 = U(Λ + εI)

p
2−1U∗,

where UΛU∗ is the eigen decomposition of R. Hence, one
choice of the matrix square root H

1
2 is (Λ + εI)

p
4−

1
2 U∗.

4. EXPERIMENTS

A fully sampled axial 2-D dataset was acquired on a Siemens
3T Trio scanner using 12 coils and a turbo spin echo sequence.
The following scan parameters were used in the acquisition:
Matrix size:128×128, FOV: 22×22 cm2, TR = 2500 ms and
slice thickness = 5 mm. The T2 weighted images were ob-
tained for 12 equispaced echo (TE) times ranging from 10 to
120 ms. Post reconstruction, the T2 maps were obtained by
fitting a mono-exponential model to each voxel.

We first study the effect of the filter size (dimensions of
the block Toeplitz matrix) on the SNR of the images recov-
ered from 8-fold undersampled multichannel Fourier data in



Fig. 2: Comparison of the proposed method with k − t low
rank on the recovery of single channel data from 30 percent
uniform random measurements. The improvements offered
by the proposed scheme can be easily appreciated from the
estimated T2 error images in (a) and the T2 estimates in (b).

Table. 1. We observe that the spatial dimensions of the fil-
ter have the largest influence on the SNR, as seen from Table.
1.(b). Specifically, we observe that filters with smaller support
provides improved results, which demonstrates the benefit of
exploiting spatial smoothness; a filter with size 128×128×10
fails to exploit smoothness. We also observe from the Ta-
ble.1.(a) the benefit of using temporal annihilation relations.
Specifically, we obtain a 0.5 dB improvement over the filter
with size 122x122x1, which only exploits joint sparsity, by
increasing the length of the filter along time.

In Fig. 2, we compare the proposed approach with k − t
low rank algorithm on the recovery of single coil (coil com-
pressed) T2 weighted data from 30% uniform random mea-
surements. We chose a filter of size 122 × 122 × 2 and a
Schatten p = 0.6. We observe that the proposed scheme pro-
vides lower errors (see caption for details).

In Fig. 3, we compare the two methods on the recovery
of multi-channel T2 weighted data from 12-fold (3-fold vari-
able density + 4-fold 2×2 Cartesian) undersampled data. We
chose a filter of size 114 × 114 × 10 and a Schatten p = 0.7
for the proposed scheme (see caption for details).

Table 1: Effect of filter size on SNR of T2 weighted images.

(a) Varying temporal dimension

filter size SNR (dB)
122x122x11 31.80
122x122x10 32.1
122x122x7 32
122x122x2 31.84
122x122x1 31.56

(b) Varying spatial dimensions

filter size SNR (dB)
128x128x10 29.9
122x122x10 32.1
118x118x10 32.44
116x116x10 32.49
114x114x10 32.54

5. CONCLUSION

We introduced a novel structured low rank algorithm to re-
cover a 3-D volume consisting of a linear combination of
exponentials, from undersampled Fourier measurements. A
convolution relation was obtained between the k − t Fourier

Fig. 3: Comparison of the proposed method with k − t low
rank on the recovery of multi channel data at an acceleration
of 12. We observe that the reconstructions from the proposed
method have fewer errors, which can be appreciated from the
error maps of the T2 weighted images in (a) as well with the
noise-like artifacts in the T2 maps in (b).

samples and a 3-D FIR filter by exploiting the exponential
structure of the time series at every pixel and the smoothness
of the parameters. To speed up the computations, a hybrid ap-
proach was employed which consisted of performing circular
and linear convolutions along the spatial and temporal dimen-
sions respectively. The algorithm was applied in the context
of MR parameter mapping and the reconstructed images and
maps were sharper and had fewer errors than those obtained
from state of the art methods.
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