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ABSTRACT

We introduce a fast iterative non-local shrinkage algorithm
to recover MRI data from undersampled Fourier measure-
ments. This approach is enabled by the reformulation of cur-
rent non-local schemes as an alternating algorithm to mini-
mize a global criterion. The proposed algorithm alternates
between a non-local shrinkage step and a quadratic subprob-
lem. The resulting algorithm is observed to be considerably
faster than current alternating non-local algorithms. We use
efficient continuation strategies to minimize local minima is-
sues. The comparisons of the proposed scheme with state-of-
the-art regularization schemes show a considerable reduction
in alias artifacts and preservation of edges.

Index Terms— MRI, non-local means, shrinkage, com-
pressed sensing, denoising.

1. INTRODUCTION

Non-local means (NLM) is a class of denoising methods
which exploits the similarity between patches in an image to
suppress noise [1, 2]. These methods recover the denoised
image as a weighted linear combination of all the pixels in
the noisy image. The weights between any two pixels are
estimated from the noisy image as the measure of similarity
between their patch neighborhoods. One of the difficulties
in applying this scheme to MRI recovery from undersam-
pled data is the dependence of the criterion on pre-specified
weights; the use of the weights estimated from aliased im-
ages often preserve the alias patterns rather than suppressing
them. Some authors have shown that alternating between the
denoising and weight-estimation step improves the quality
of the images in deblurring applications [3], but often had
limited success in heavily undersampled Fourier inversion
problems.

This alternating scheme for NLM has been recently
shown to be equivalent to a majorize-minimize (MM) al-
gorithm to optimize a regularized global cost function, where
the regularization term is the sum of unweighted robust dis-
tances between image patches [4, 5, 6]. The formulation as
the optimization of a global criterion enabled us to devise
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efficient continuation strategies to overcome the local minima
problems; this enabled the application of the algorithm to MR
image recovery from heavily under sampled measurements
in a previous work of ours [4]. The main challenge asso-
ciated with this implementation is the high computational
complexity of the alternating minimization algorithm.

In this work we introduce a novel iterative algorithm to
directly minimize the robust non-local criterion. This ap-
proach is based on a quadratic majorization of the patch based
penalty term. Unlike the majorization used in our previous
work, the weights of the quadratic terms are identical for all
patch pairs, but now involves a new auxiliary variable. The
proposed algorithm alternates between two main steps: (a)
non-local shrinkage, and (b) a quadratic optimization prob-
lem. We re-express the quadratic penalty involving the sum
of patch differences as one involving sum of pixel differences,
which enables us to solve for the quadratic sub-problem an-
alytically. Each step of the iterative shrinkage algorithm is
fundamentally different from classical non-local schemes that
solve an weighted quadratic optimization at each step. We
show that compared to the classical non-local schemes, our
proposed scheme converges approximately ten times faster.
Our comparisons in the results section against local total vari-
ation (TV) regularization and a recent patch dictionary learn-
ing algorithm [7] demonstrate the considerable benefits of us-
ing non-local regularization.

2. PROPOSED ALGORITHM

2.1. Unified Non-Local Formulation

The iterative algorithm that alternates between classical non-
local image recovery [8] and the re-estimation of weights was
shown in [4] to be a majorize-minimize algorithm to solve for

f=arg min |Af —bl* + AG(F), (1)

c(f)

where f € C¥ is a vector obtained by the concatenating the
rows in a 2-D image f(x),x € Z? A € CM*VN is a ma-
trix that models the measurement process; and b € CM is
the vector of measurements. While the first term in the cost
function enforces data fidelity in k-space, the second term en-
forces sparsity. The regularization functional G(f) is specified



by:
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Here, ¢ is an appropriately chosen potential function and Px
is a patch extraction operator which extracts an image patch
centered at the spatial location x from the image f:

Py(f) = f(x+p),

where B denotes the indices in the patch. In this paper, we
focus on potential functions of the form

v(g) = ¢ (lgl), )

where ¢ : RT — R is an appropriately chosen distance met-
ric and [|g[* = 3¢5 [9(p)[?. Based on our extensive com-
parisons (not shown here), we choose ¢ as the thresholded ¢7,
0 < p <1, metric:
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However, the framework presented in this paper is general
enough to work for other potential functions.

2.2. Majorization of the Penalty Term

The above problem is often solved using the iterative reweighed
algorithm [4, 6]. However, in this work we consider an alter-
nate majorization of the cost function C in (1) as:
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Here f3 is a parameter that controls the quality of the majoriza-
tion; as § — oo the majorization approaches the original cost
in (1). Additionally, v is a function that depends on ¢ and
B such that ¢p — ¢ as § — o0, and {sx q} are auxiliarly
variables. We use an alternating minimization algorithm to
optimize (6). Specifically, we alternate between the determi-
nation of the optimal variables {sx q }, assuming f to be fixed
and the determination of the optimal f, assuming {sx q } to be
fixed.

2.3. The s Sub-Problem: solve for s, 4, assuming f fixed

If the variable f is assumed to be a constant, the determina-
tion of each of the auxiliary variables sy  corresponding to
different values of x and y can be treated independently:

Sx,q = Isnin gHPX(f) — Pxyq(f) - Sx’q”2 +9P(sx,q) (1)

X,

It can be shown that Sx  is given as a shrinkage for all penal-
ties of interest

/S\X#l = [PX(f) - Px+q(f)] v (HPX(f) - Px+q(f)||) , (8

where v : RT — R7T is a function that is dependent on the
distance metric ¢. In particular, when ¢ is the thresholded ¢
metric (5), we have

0 if t| < g1/ (=2
v(ty=q 1—gltr=2 if YA < < T (9)
1 else.

2.4. The f Sub-Problem: solve for f, assuming sy  fixed
In this step, we assume the auxiliary variables sy 4 to be fixed.
Hence, the minimization of (6) simplifies to:
: 2 AB 2
min | Af—bl|"+—~ Y IP(E) = Parq(f) —sxall? (10)
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It can be shown that the above penalty can be re-expressed in
terms of pixel differences as

A
minHAf—b||2+—ﬁ > IIDgf — hg*. (11)
f 2
qQEN
Here, Dg is the finite difference operator
(Dgf)(x) = f(x) — f(x + q). (12)

The images hq(x),q € N, are obtained by shrinking the
finite difference terms Dgf:

hy = (Dgf) e vy, (13)
where e denotes the entrywise multiplication of the vectors,
and the pixel shrinkage weights vq for a specified spatial lo-
cation x are obtained by the sum of the shrinkage weights for
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Fig. 1: Comparison of the convergence of the iterative reweighted
non-local algorithm and the proposed iterative non-local shrinkage
algorithm. The plots indicate the evolution of the cost function spec-
ified by (1) and the signal to noise ratio (SNR) as a function of the
computational time.



(a) Sampling pattern

(b) Original

(c) DLMRI, SNR=12.96

(d) TV, SNR=15.02 (e) NLS, SNR=18.52

Fig. 2: Comparison of the recovery schemes in the presence of noise. We consider the recovery of a 256 x 256 MRI ankle image from its
Cartesian Fourier sampling pattern (shown in (e)), contaminated by zero-mean complex Gaussian noise with standard deviation o = 10. The
top row shows the original and reconstructed images, while the error images scaled by a factor of five are shown in the bottom row. This is
a challenging case due to the high 1-D undersampling factors and noise. We observe that the NLS scheme provides the best reconstructions

with minimal aliasing artifacts.

the nearby patch pairs
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The solution of (11) satisfies
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Note that under appropriate boundary conditions Dg Dy is

diagonalizable in the Fourier domain. When the operator

AHA is also diagonalizable in the Fourier domain, as is the

case in Cartesian MRI, we may solve (15) exactly with one
FFT and one IFFT.

2.5. Continuation Strategy to Improve Convergence

The solution of the proposed scheme corresponds to that of
the original problem only when the parameter 3 — co. How-
ever, it is known that high values of 3 result in poor conver-
gence. Hence we use a continuation strategy to improve the
convergence rate, where we initialize 5 with a small value
Bo and iteratively increase it to a high value according to
Bi+1 = ¢ B; with 1 < ¢ < 2 constant. With each update
of 3 we run the above proposed alternating scheme to conver-
gence, and then warm-start the next iteration with the previ-
ously obtained solution. We also use continuation to truncate
distance metric (5) in which we start with a large threshold
T and gradually decrease it until it attains a small value; this
means that we are not concerned with the distant patches that
are likely to be dissimilar.

3. RESULTS

3.1. Convergence Rate

We first compare the proposed scheme with our previous it-
erative reweighted non-local algorithm [4]. We consider the

recovery of a 256256 MR brain image using a five-fold un-
dersampled random sampling pattern. The regularization pa-
rameters of both algorithms were set to A = 10™%; this pa-
rameter was chosen to obtain the best possible reconstruction
by comparing with the original image. The convergence plots
of the algorithm as a function of the CPU time are shown
in Fig. 1. We observe that both the algorithms converge to
almost the same result. However, the non-local shrinkage
algorithm converges around ten times faster than the itera-
tive reweighted scheme. The reconstructions demonstrate the
quality improvement offered by the proposed scheme for a
specified computation time. One of the reasons for the faster
convergence of the proposed algorithm can be attributed to the
fast inversion of the quadratic sub-problems. The condition
number of the quadratic subproblem in iterative reweighting
[4] grows with iterations, resulting in slow convergence of the
CG algorithms that were used to solve it.

3.2. Comparisons With State-of-the-Art Algorithms
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(a) PSNR vs. Acceleration (b) SNR vs. Acceleration

Fig. 4: Performance of the recovery schemes at different accelera-
tions. We used a 512 x 512 MRI brain image, sampled using a ran-
dom sampling operator at different acceleration factors (R = 2.5, 4,
6, 8, 10 and 20). The measurements were contaminated with com-
plex white Gaussian noise of o = 10.2. The SNR of the reconstruc-
tions obtained using the three algorithms are plotted. These results
show that the NLS scheme is capable of providing better reconstruc-
tions at a range of accelerations.



(a) Sampling pattern

(b) Original

(c) DLMRI, SNR=17.46 dB

(d) TV, SNR=17.43 dB (e) NLS, SNR=18.46 dB

Fig. 3: Comparison of the recovery schemes in the presence of noise. We consider the recovery of a 256 x 256 original MRI brain image
from its radial trajectory with 40 spokes, contaminated by Gaussian noise with standard deviation o = 18.8. The error images are magnified
by a scale of 5-fold for the best visibility. This is a challenging case due to the high undersampling factor and high measurement noise. We

observe that the NLS scheme provides the best overall reconstructions.

We compare our proposed non-local shrinkage (NLS)
scheme with local TV regularization (TV) and a dictionary
learning scheme (DLMRI) [7]. The latter scheme was re-
ported to provide considerably better reconstructions than the
sparse recovery combining wavelet and TV regularization
[9]. A key difference with the results reported in [7] is that
we used the complex version of the code distributed by the
authors. This was required to make the comparisons fair to
TV and our scheme, both of which do not use this constraint.

In Fig. 2 we show the reconstructions of an ankle image
from its four-fold Cartesian undersampled k-space measure-
ments, corrupted with zero-mean complex Gaussian noise
with ¢ = 10. We observe that the NLS scheme provides bet-
ter reconstructions than the other schemes. Specifically, the

Image | DLMRI TV | NLS
SNR PSNR | SNR PSNR | SNR PSNR
Brainl | 13.55 22.82 | 1481 24.67 | 1829 2845
Brain2 | 1438 2474 | 16.10 27.12 | 18.63 29.83
Brain3 | 13.10 26.82 | 16.19 30.37 | 19.73 33.80
Ankle | 12.96 25.00 | 15.02 27.64 | 1852 3113
Spine | 16.33 2657 | 18.38 29.29 | 2049 31.57
Willis’ | 14.56  26.35 | 16.08 28.53 | 18.14 30.45
Brainl | 12.59 21.87 [ 11.84 2127 [ 1235 21.81
Brain2 | 17.46 27.83 | 1743 28.14 | 18.46 29.54
Brain3 | 14.13  27.85 | 1698 31.00 | 18.00 3197
Ankle | 15.80 27.85 | 16.17 28.57 | 16.81 29.57
Spine | 18.54 2877 | 19.86 30.50 | 20.30  30.82
Willis® | 14.18 2597 | 1455 26.69 | 15.61 27.69

Table 1: Quantitative comparison of the recovery schemes in the
presence of noise. The top part shows the SNR of the reconstruc-
tions obtained from 4-fold Cartesian undersampled data, contami-
nated by zero-mean complex Gaussian noise with ¢ = 10. The
bottom part shows the SNR of the reconstructions from radial under
sampled data with 40 spokes, contaminated by zero-mean complex
Gaussian noise with ¢ = 18.8. The quantitative results show that
the proposed iterative NLS scheme provides consistently better re-
constructions for the above cases.

TV scheme results in patchy artifacts, and the DLMRI results
in blurring and loss of details close to the heel. By contrast,
the degradation in performance of the NLS is comparatively
small. The quantitative comparisons of the algorithms on this
setting using different images are shown in the top section of
Table 1.

The reconstructions of a 256 x 256 brain image from its ra-
dial samples acquired with an 40 spoke trajectory are shown
in Fig. 3. The measurements are corrupted with zero mean
complex Gaussian noise of 0 = 18.8. All methods result in
loss of subtle image features since the acceleration factor and
the noise level are high; but we observe that the NLS scheme
provides better recovery than the competing methods. The
quantitative results in this setting for various MR images are
shown in the bottom section of Table 1. We observe that the
SNR improvement offered by NLS over the other methods are
not as high as in the previous case, mainly due to the consid-
erable noise in the data and the high acceleration.

We also study the performance of the recovery schemes
as a function of acceleration in the presence of noise in Fig.
4. We used a 512 x 512 MRI brain image, sampled using
a random sampling operator at different acceleration factors
(R = 2.5, 4,6, 8, 10 and 20). The measurements were con-
taminated with complex white Gaussian noise of ¢ = 10.2.
The PSNR and SNR as a function of acceleration are plotted
in Fig. 4, where we compare our method against DLMRI and
TV. We observe that the proposed scheme provides a consis-
tent improvement in the presence of noise.

4. CONCLUSION

We introduced a fast iterative algorithm for MRI recovery us-
ing non-local means. The proposed algorithm alternates be-
tween a non-local shrinkage step and a quadratic subprob-
lem, both of which are solved analytically and efficiently. The
resulting algorithm is considerably faster than classical non-
local methods that alternate between weight estimation and
non-local regularization. Our scheme compares favorably to
other state-of-the-art MRI recovery schemes in terms of the
quality of the recovered images.
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