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Abstract— Recent work on blind compressed sensing (BCS)
has shown that exploiting sparsity in dictionaries that are learnt
directly from the data at hand can outperform compressed
sensing (CS) that uses fixed dictionaries. A challenge with
BCS however is the large computational complexity during
its optimization, which limits its practical use in several MRI
applications. In this paper, we propose a novel optimization
algorithm that utilize variable splitting strategies to significantly
improve the convergence speed of the BCS optimization. The
splitting allows us to efficiently decouple the sparse coefficient,
and dictionary update steps from the data fidelity term, result-
ing in subproblems that take closed form analytical solutions,
which otherwise require slower iterative conjugate gradient
algorithms. Through experiments on multi coil parametric MRI
data, we demonstrate the superior performance of BCS, while
achieving convergence speed up factors of over 15 fold over the
previously proposed implementation of the BCS algorithm.

I. INTRODUCTION

Over the recent years, compressed sensing (CS) schemes
have shown considerable potential to accelerate MRI acqui-
sition. CS exploits sparse representation of data in a known
dictionary bases. For instance, wavelet bases in [1] and
temporal Fourier bases in [2] have been used in static and
dynamic MRI applications. A challenge in using such pre-
determined dictionaries often lies with the misfit between
the representation and the data; many coefficients are often
required for an accurate representation. For instance, in free
breathing perfusion MRI, many temporal Fourier bases are
required to represent the temporal dynamics of the data,
thereby restricting the maximum achievable acceleration
factor.

Recently, several researchers have proposed to jointly
estimate the sparse representations and the dictionaries from
the under sampled data at hand. Dictionaries containing
atoms of one-dimensional non-orthogonal temporal bases [3],
two-dimensional spatial patches [4], or three-dimensional
spatio-temporal cubes [5], [6] have been proposed for dy-
namic and static applications. These schemes termed as blind
compressed sensing (BCS) have shown considerable promise
over conventional CS schemes in several MRI applications
such as dynamic contrast enhanced MRI [3], cardiac cine
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MRI [5], [6], functional lung [7], parametric MRI, and high
resolution static MRI [4].

The BCS scheme is formulated as a constrained optimiza-
tion problem consisting of linear combination of data fidelity
l2 norm, and a sparsity promoting norm on the coefficients
subject to a Frobenius norm constraint on the dictionary. The
single coil BCS algorithmic implementation in [3] relies on
iterations between quadratic update steps of the coefficient
and dictionary update steps. These steps were solved using
slow iterative conjugate gradient algorithms due to the com-
plexity in constructing the inverses of the matrices resulting
from the data fidelity. The large computational complexity
encountered during the optimization pose a challenge in
dealing with large practical datasets such as multi-coil and
three-dimensional applications.

In this work, we propose to employ variable splitting
strategies [8] to efficiently decouple the coefficient update
and dictionary update steps from the data fidelity term.
Through the decoupling, we develop a computational effi-
cient algorithm that efficiently cycles between different steps
that have analytical closed form solutions. We demonstrate
through experiments on multi coil parametric MRI data, the
proposed algorithm obtains a significant speed up factor of
ten fold over the previous implementation.

II. BACKGROUND

A. BCS Model representation

In parametric imaging, the k-space corresponds to several
images acquired at different values of encoding parameters
(such as echo time, spin lock time, flip angle) denoted by p.
We model the multi-coil undersampled measurement as:

b(k, p) = SFC︸ ︷︷ ︸
A

[γ(x, p)] + n(k, p), (1)

where b(k, p) represents the concatenated vector of the k−p
measurements from all the coils. γ(x, p); (x = (x1, y1))
denote the underlying images pertaining to different con-
trasts; n is additive noise. A is the operator that models coil
sensitivity C and Fourier encoding F on a specified k − p
sampling trajectory S. The dataset is represented as M ×N
Casoriti matrix [9] ΓM×N

ΓM×N =

 γ(r1, c1) . γ(r1, cN )
. . .
. . .

γ(rM , c1) . γ(rM , cN )

 (2)

where M is the number of voxels in the image and N is the
number of encoding parameters.



B. Image reconstruction

We model Γ as a product of spatial coefficients UM×R
and dictionary VR×N . The joint recovery of U, V is
formulated as a constrained optimization problem:

arg min
U,V

‖A(UV)− b‖2F + λ‖U‖`p︸ ︷︷ ︸
C(U,V)

s. t. ‖V‖2F < 1. (3)

The first term ensures data consistency. The second term
promotes sparsity on the spatial coefficients by using a non-
convex `p; p < 1 semi-norm prior on U. A unit Frobenius
norm is imposed on the dictionary V making the recovery
problem well posed.

C. Algorithm 1: Without using variable splitting

We majorize an approximation of the `p penalty on U in
Eq. (3) as ‖U‖`p ≈ minL

β
2 ‖U− L‖2 + ‖L‖`p , where L is

an auxiliary variable. This approximation becomes exact as
β →∞. We use augmented Lagrangian optimization scheme
to enforce the constraint V = Q, where Q is the auxiliary
variable for V. Thus, the optimization problem is given by

{U∗,V∗} = arg min
U,V

min
Q,L
‖A(UV)− b‖2F +

βλ

2
‖U− L‖2F

+λ‖L‖`p s. t. ‖Q‖2F < 1,V = Q
(4)

We use an alternating strategy to solve for the variables
U,V,Q and L. The L and Q subproblems are solved
analytically. Eq. 4 is quadratic in U and V. Iterative methods
like conjugate gradient are required to solve these subprob-
lems due to the enormous size of A. In addition, for the
majorization to well approximate the `p penalty, β needs to
be a high value. At higher values of β, the condition number
of these subproblems is significantly high resulting in slow
convergence as many iterations of CG are required.

III. PROPOSED ALGORITHM : USING VARIABLE
SPLITTING

To improve convergence speed, Ramani and Fessler pro-
posed the use of the technique of variable splitting to decou-
ple the effect of coil sensitivities C and the regularization [8].
We introduce a novel optimization algortihm using variable
splitting technique to accelerate the convergence of Eq.
4. First, we decouple the data fidelity term from sparse
coefficients U and dictionary V by introducing a constraint
X = UV where X is the auxiliary variable for UV. The
optimization problem is of the form

arg min
U,V,X

‖SFCX− b‖2F + λ‖U‖`p s. t. X = UV, ‖V‖2F < 1

(5)
We further decouple the coil sensitivities from X by intro-
ducing another constraint Z=CX where Z is the auxiliary
variable. The constrained optimization problem can be writ-
ten as

arg min
U,V,X,Z

‖SFZ− b‖2F + λ‖U‖lp s.t. X = UV,

‖V‖2F < 1,Z = CX
(6)

We majorize an approximation of the `p penalty on U in
(3) as ‖U‖`p ≈ minL

β
2 ‖U − L‖2 + ‖L‖`p , where L is an

auxiliary variable. We enforce the constraints in Eq. 6 by
using an augmented Lagrangian (AL) framework [?]. The
associated AL function is written as

L(U,V,L,Q,X,Z) = ‖SFZ− b‖2F +
βX
2
‖X−UV‖2F

+Λ′X(X−UV) + λ‖L‖`p +
λβU

2
‖U− L‖2F

+
βV
2
‖V −Q‖2F + Λ′V (V −Q)

+
βZ
2
‖Z−CX‖2F + Λ′Z(Z−CX) s. t. ‖Q‖2F < 1

(7)

Here Q is the auxiliary variable for V, ΛX ,ΛV and ΛZ are
the Lagrange multipliers. βX , βV , βU and βZ are the penalty
parameters. We use an alternating strategy to solve for the
variables U,V,Q,L,X and Z. All of these subproblems are
solved analytically as described below, by minimizing the Eq.
7 with respect to these variables one at a time assuming the
other variables to be fixed.
L subproblem: Ignoring all the terms independent of L, Eq.
7 can be written as

arg min
L

λβU
2
‖U− L‖2F + λ‖L‖`p (8)

The L subproblem is solved using shrinkage rule as

Ln+1 =
U

|Un|

(
|Un| −

1

β
|Un|p−1

)
+

(9)

where ‘+’ represents the soft thresholding operator defined
as (τ)+ = max{0, τ} and βU is the penalty parameter.
U subproblem: The minimization of Eq. 7 with respect to U
results in a quadratic subproblem which has an closed form
solution given by

arg min
U

βX
2
‖X−UV‖2F + Λ′X(X−UV) +

λβU
2
‖U− L‖2F

(10)
The quadratic subproblem can be solved analytically as
shown below.

Un+1 = (βXnXnV′n + ΛXV′n + λβULn+1)H−1
U (11)

HU = βXVnV′n + λβUI (12)

Q subproblem: The Q subproblem is obtained by minimiz-
ing Eq. 7 with respect to Q

arg min
Q

βV
2
‖V −Q‖2F + Λ′V (V −Q) s. t. ‖Q‖2F < 1 (13)

The above problem is solved using a projection scheme as
specified in Eq. 14. If Frobenius norm of Q is less than unity,
we set Q = V, else we scale V to have a unit Frobenius
norm

Qn+1 =

{
Vn ‖Vn‖2F 6 1
1

‖Vn‖F
Vn else (14)

Note that Qn is obtained by scaling Vn so that the Frobenius
norm is unity.
V subproblem: The V subproblem is a quadratic subproblem
as shown below.

arg min
V

βX
2
‖X−UV‖2F + Λ′X(X−UV)

+
βV
2
‖V −Q‖2F + Λ′V (V −Q)

(15)



Minimization of the above equation with respect to V yields
the following closed form solution

Vn+1 = H−1
V (βXU′n+1Xn + U′n+1ΛX + βV Qn+1 −ΛV )

(16)
HV = (βXU′n+1Un+1 + βV I) (17)

X subproblem: Dropping all the terms independent of X we
get

arg min
X

βX
2
‖X−UV‖2F + Λ′X(X−UV)

+
βZ
2
‖Z−CX‖2F + Λ′Z(Z−CX)

(18)

The closed form solution to the above minimization problem
is given by

Xn+1 = H−1
X (βXUn+1Vn+1 −ΛX + βZC′Zn + C′ΛZ)

(19)
HX = βXI + βZC′C (20)

Z subproblem: Writing the Eq. 7 with respect to Z (ignoring
constants independent of Z) we get,

arg min
Z

‖SFZ− b‖2F +
βZ
2
‖Z−CX‖2F + Λ′Z(Z−CX)

(21)
This problem is a Fourier domain replacement problem
which can be solved analytically as shown below.

Zn+1 = F′
[(

S +
βZ
2
I

)−1

F

(
βZ
2
CXn+1 −

ΛZ

2
+ F′Sb

)]
(22)

We update all the Lagrange multipliers using a steepest
ascent method at each iteration as shown below.

ΛV (n+1) = ΛV n + βV (Vn+1 −Qn+1) (23)
ΛX(n+1) = ΛXn + βX (Xn+1 −Un+1Vn+1) (24)

ΛZ(n+1) = ΛZn + βZ (Zn+1 −Cn+1X) (25)

The optimization algorithm in Eq. 6 is solved by cycling
between the above subproblems. The matrix HU and HV are
R×R and can be easily inverted. Since C′C is a diagonal,
HX matrix is also diagonal and is therefore easily inverted.
Splitting the k-space and coil sensitivities (F and C compo-
nents) from UV in the data fidelity term has led to separate
matrix inverses involving F′F and C′C which are easier
to compute. Since, all the steps can be solved analytically,
the convergence is much faster than conventional iterative
conjugate gradient steps. Although βX and βZ parameters do
not affect the final solution, they can affect the convergence
rate. These parameters were chosen empirically. Since we
use the augmented Lagrangian framework for enforcing the
constraint on the dictionary, it is not necessary for βV to tend
to ∞ for the constraint to hold, allowing faster convergence.
The quality of reconstruction is affected by βU parameters
as the non-convex penalty is enforced using majorization.
As discussed earlier, the majorization is only exact when
βU → ∞. We initialize βU to a small value and gradually
increment it when the cost in Eq. 3 stagnates to a threshold
level of 10−2.

The pseudo-code of the algorithm is shown below.

Algorithm III.1: FASTBCS(S,F,C,b, λ)

Input : b, βX > 0, βZ > 0, βU > 0
while |Cn − Cn−1| > 10−5 Cn

do



InitializeβV > 0
while |V −Q|2 > 10−5

do



UpdateL :← Eq.[9]
UpdateU :← Eq.[11]
UpdateQ :← Eq.[14]
UpdateV :← Eq.[16]
UpdateZ :← Eq.[22]
UpdateX :← Eq.[19]
UpdateΛV :← Eq.[23]
UpdateΛX :← Eq.[24]
UpdateΛZ :← Eq.[25]
βV = 5 ∗ βV

if |Cn − Cn−1| < 10−2 Cn
then

{
βU = 50 ∗ βU

return (U,V)

IV. EXPERIMENTAL EVALUATION

To study the convergence rate of both the algorithms,
we acquired a single slice fully sampled 2D dataset on a
Siemens 3T Trio scanner using a turbo spin echo (TSE)
sequence with turbo factor (TF) of 8, matrix size = 128x128,
FOV= 22x22cm2, TR=2500ms, slice thickness =5mm, B1

spin lock frequency=400Hz, bandwidth= 130Hz/pixel, and
echo spacing of 12.2ms. A 12-channel phased array coil was
used. T1ρ preparation pulse [10] and T2 preparation pulse
[11] were used prior to readout. The data was collected for 12
equispaced spin lock times (TSLs) and 12 equispaced echo
times (TEs) values, both ranging from 10 ms to 120 ms. This
provided a total of 24 parametric measurements. The dataset
was undersampled using a Cartesian hybrid sampling pattern
(acceleration of 1.5 using pseudo-random variable density
sampling and an acceleration factor of 4 from uniform
sampling pattern) giving a net acceleration of 6. The coil
sensitivity maps were obtained using Walsh method for coil
map estimation [12]. Both the algorithms were implemented
in MATLAB on a quad core linux machine.

We compare the performance and convergence speed of
both the algorithms using a Mean square error (MSE) metric
given by

MSE =

(
‖Γrecon − Γorig‖2F

‖Γorig‖2F

)
. (26)

The regularization parameter λ of both the algorithms was
chosen such that the error between reconstructions and the
fully sampled data given by MSE was minimized. Compar-
isons were done for the optimal λ value of 0.05.

The reconstruction error vs CPU time is shown in Fig.
1(a). It is observed that proposed algorithm converges to
almost the same solution in just 3 min. This is also demon-
strated by the reconstructed images and T1ρ parameter maps
shown in Fig. 2. Every time, when the β in Eq. 4 is incre-
mented, the condition number of the U subproblem increases



Fig. 1. Convergence plots: Reconstruction error vs CPU time and the cost
vs CPU time plots are shown in a) and b) respectively. It is observed that
proposed algorithm converges to same solution in about 2.5 min where as
the Algorithm 1 takes roughly 41 min to converge. Note the threshold in
both algorithms was set to 10−6

Fig. 2. Qualitative results: The first row shows reconstructed images using
Direct ifft, Algorithm 1 and the Proposed algorithm in a-c. The second row
shows T1ρ parameter maps for Algorithm 1 and proposed Algorithm. It is
seen that proposed algorithm converges 10 times faster without degradation
in quality as compared to the Algorithm 1.

and the CG algorithm needs many iterations to converge
thus increasing the reconstruction time considerably. This
behavior can be seen in Fig. 1(b). In contrast the proposed
algorithm takes much lesser time as it solves the subproblems
analytically. The proposed algorithm converges in about 146
secs (≈ 2.5 min) while the Algorithm 1 takes about 2500
secs (≈ 41 min) resulting in 16 fold acceleration without
degradation in image quality.

V. CONCLUSION

In this work, we have introduced a novel variable splitting
based algorithm to improve the convergence rate of blind
compressed sensing MRI reconstruction. We have derived

analytical closed form update rules by splitting data fidelity
term from the dictionary and the coefficients terms. These
analytical rules lead to simpler subproblems which were
solved by fast operations. Through experiments on multi-coil
parametric MRI data, we have observed the new optimization
algorithm to provide a speed up factor of about 16 fold
in comparison to our previous BCS implementation. The
speed up factors provided show potential in handling large
scale datasets such those in multi-coil multidimensional MRI
applications.
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