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Abstract—We consider the spark of submatrices of 2D-DFT
matrices obtained by removing certain rows and relate it to the
spark of associated 1D-DFT submatrices. A matrix has spark m
if its smallest number of linearly dependent columns equals m. To
recover an arbitrary k-sparse vector, the spark of an observation
matrix must exceed 2k. We consider how to choose the rows of
the 2D-DFT matrix so that it is full spark, i.e. its spark equals one
more than its row dimension. We consider submatrices resulting
from two sets of sampling patterns in frequency space: On a
straight line and on a rectangular grid. We show that in the
latter case full spark is rarely obtainable, though vectors with
certain sparsity patterns can still be recovered. In the former case
we provide a necessary and sufficient condition for full spark,
and show that lines with integer slopes cannot attain it.

Index Terms—Coprime sensing, full spark, compressed sens-
ing, two dimensional, Fourier Sampling

I. INTRODUCTION

This paper derives conditions under which submatrices of a
two dimensional DFT matrix, obtained by picking a subset of
its rows, have full spark. The spark of a matrix A ∈ Cn×m is
the smallest number of its columns that are linearly dependent.
Such a matrix A has full spark if spark(A) = n + 1.
The application rests in the recovery of sparse signals from
their under-sampled linear measurements. Referred to as com-
pressed sensing (CS), this approach has many applications,
including MRI [2]–[4] and synthetic aperture radar [5]–[7].

In the general CS setting, the measurement process is
modeled as

y = Ax,

where x ∈ Cm is the sparse signal vector to be recovered from
the observations y ∈ Cn. We say that a vector x is k-sparse
if it has at most k nonzero elements.

The observation matrix A, is generally fat i.e. n < m. The
condition spark(A) > 2k, ensures that the unique recovery
of a k-sparse x is possible from y. [8], [9]. Violation of this
condition implies there are at least two distinct k-spark vectors
z and x such that Ax = Az. The seminal work of Candes
and Tao and its extensions show that further restrictions on A
permit the recovery of x through convex `1 optimization [8],
[10], [11].

As the acquisition of each measurement comes with a
penalty (e.g. acquisition time in MRI), it is beneficial to
recover x with as few measurements as possible. Thus it
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is desirable that one design a measurement matrix A with
the highest possible spark. Computing the spark of a large
matrix is clearly intractable. Thus early work on assessing the
spark of a matrix relied on certain lower bounds involving
the notion of mutual coherence between the columns of A,
[8], [12]–[15]. As explained in Section II and Section III, in
many imaging applications like MRI and synthetic aperture
radar, the observation matrices are certain rows of 2-D DFT
matrices, [18]. This paper provides some initial results on the
spark of such submatrices.

We note that the study of the spark of even 1-D DFT
matrices is embryonic. Most advanced results are in [16] and in
our own work in [17]. Motivated by developments in coprime
sampling, [1], [17] in particular ties full spark submatrices of
N ×N , 1-D DFT matrices to certain coprimeness conditions.
We demonstrate in this paper that the spark of submatrices
of 2-D DFT matrices obtained by certain specific types of
sampling in frequency space (known as k-space) are related
to the spark of associated 1-D DFT matrices. The sampling
patterns considered are (i) on a line in k-space and (ii) on a
rectangular grid.

Section III defines the sampling patterns we consider. Sec-
tion IV recounts the results of [16] and a generalization of a
result from [17]. Section V characterizes lines on k-space that
result in full spark. One important conclusion is that while
lines with rational slopes may lead to full spark observation
matrices, lines with integer slopes never do. Section VI
considers rectangular grids and shows that unless all rows of
the 2-D DFT matrix are retained, full spark is impossible.
It however, shows that such a matrix is still useful for the
recovery of vectors with certain sparsity patterns. Section VII
is the conclusion.

II. BACKGROUND

The acquisition scheme in imaging schemes (e.g MRI,
synthetic aperture radar) can be modeled as the 2-D Fourier
samples of the continuous domain support limited object [18]:

ρ̂[i] =

∫
Ω

f(r) exp
(
−j2πk>i r

)
dr; ki ∈ R2; i = 1, .., N.

(II.1)
Here, Ω ⊆ [0, 1] × [0, 1] is the support of the object and
ki is the ith frequency point at which the acquisition is
performed. The acquisition time is directly proportional to
the total number of Fourier samples, specified by N . Since
the recovery of a continuous domain signal f(r) from finite
measurements is ill-posed, a common practice in MRI is
to model the continuous 2-D signal using a shift invariant



representation [18]

f(r) =
∑
m

c[m] ϕ
( r

N
−m

)
. (II.2)

Here, ϕ are the voxel basis functions and N is the sampling
step. Note that higher values of N translate to higher resolution
image models. Substituting the model in (II.1), one obtains,
for suitable ϕ̂(ki), [18]

ρ̂[i] =
∑
m

cm

∫
Ω

ϕ
( r

N
−m

)
exp

(
−j2πk>i r

)
dr;

ki ∈ R2; i = 1, .., N

= ϕ̂(ki)
∑
m

cm exp
(
−j2πk>i m

)
;

ki ∈ R2; i = 1, .., N

If the voxel basis functions are sinc functions, ϕ̂(ki) = 1
within the bandwidth and is zero otherwise. If other models
(e.g spline functions are used), the magnitude of ϕ̂(ki) and
ρ̂[i] will decrease rapidly with increasing k.

In MR imaging applications, the acquisition of the uniform
Fourier samples on lines in k-space is efficient. Specifically,
the frequency encoding gradients along x and y directions are
kept constant, while reading out the data at uniform intervals;
the slope of the line is controlled by the ratio of the frequency
encoding gradients [18]. This allows us to acquire a line of k-
space data in a single excitation. Phase encoding gradients can
be used to shift the line from the origin. If Cartesian sampling
is used, the data is acquired on equispaced lines in k-space;
N excitations are required to Nyquist sample the image. An
alternative is radial sampling [18], where the slope of the lines
are varied from excitation to excitation.

III. NOTATION AND PRELIMINARIES

We define WN to be the N × N 1-D, DFT matrix with
row and column indices taking values from the set ZN =
{0, 1, · · · , N − 1}. The il-th element of WN is e

j2πil
N . On

the other hand, the 2-D DFT matrix has rows and columns
indexed by 2-vectors k and n. There is one row per vector k,
and one column per vector n. Throughout we assume that

n ∈ Z2
N , (III.1)

i.e. it has precisely N2 columns. For a given k, the corre-
sponding row of the DFT-matrix will be denoted

W (2)(k,n) = exp

{
j

2πk>n

N

}
,n ∈ Z2

N . (III.2)

The conventional 2-D DFT matrix [20] assumes that k ∈ Z2
N ,

i.e. under (III.2) the matrix is in CN2×N2

.
We are interested in the spark of a 2-D DFT matrices that

have more columns than rows. The following special cases are
of interest here.

• A rectangular subgrid: For some subsets Si ⊂ ZN and

D = diag {d1, d2}, di ∈ Z+

W (2)(k,n) = exp

{
j

2πk>Dn

N

}
,k ∈ S1×S2, n ∈ Z2

N .

(III.3)
Here Z+ is the set of positive integers. We will denote
the matrix thus formed W (2)(S,D).

• A line with rational slope: Under (III.2), and L and M
integers k = [k1, k2]> are on a line:

K(L,M,S) = {k|Lk1 −Mk2 = 0, k1 ∈ S ⊂ ZN}
(III.4)

We will denote matrix thus formed by
W (2)(K(L,M,S)). Evidently K(L,M,S) has a
slope L/M in k-space.

Unlike the rectangular subgrid where each element of k
takes integer values, in (III.4) the second element of k may
be rational. Sampling in k-space along a line such as (III.4)
is quite common in MRI applications.

Define:

wN (l) =
[
1 e

j2πl
N · · · e

j2πl(N−1)
N

]
. (III.5)

Define e1 = [1, 0]> and e2 = [0, 1]>. Then for suitable
permutation matrices P i ∈ RN2×N2

the row W (2)(k,n) in
(III.2) is expressible as

W (2)(k,n) = wN (k>e2)⊗wN (k>e1)P 1

= wN (k>e1)⊗wN (k>e2)P 2

Define WN (S) to comprise the submatrix of WN formed by
the rows indexed by S ∈ ZN . Then evidently, (III.6) leads to
the following expression: For permutation matrices P i,Qi,

W (2)(S,D) = P 1WN (d1S)⊗WN (d2S)Q1

= P 2WN (d2S)⊗WN (d1S)Q2.(III.6)

Here for a scalar d, if S = {s1, · · · , sn} then dS =
{ds1, · · · , dsn}.

IV. SPARK OF SUBMATRICES OF WN

We observe that even the results on the spark of submatrices
WN (S) defined in the previous section are few, [16], [17].
Here we recount a few that are used in later sections. We also
provide a new result that to our knowledge is new.

Suppose for some i and l, S = {i, i+ 1, · · · , i+ l− 1} i.e.
S contains consecutive elements of ZN . Define

zn = ej
2πn
N (IV.1)

Then the matrix comprising any l columns of WN (S), in-
dexed by the integers i1, · · · , il can be expressed as

1 1 · · · 1
zi1 zi2 · · · zil
...

...
...

...
zl−1
i1

zl−1
i2

· · · zl−1
il

 diag {zii1 , z
i
i2 , · · · , z

i
il
}.

and being a product of a Vandermonde and a nonsingular
diagonal matrix, is thus nosingular for distinct zin . Conse-



quently, such a WN (S) has full spark. Examples where non-
consecutive rows cause spark to be lost can be found in [16]
and [17]. An exception is provided by a classical result that
can be traced back to Chebotarëv, (see [19]).

Theorem 4.1: Suppose N is prime. Then for all S ⊂ ZN ,
WN (S) has full spark.

The results of [16] below provide a way to generate addi-
tional sets S̄, beyond those comprising consecutive integers,
for which WN (S̄) has full spark.

Theorem 4.2: Suppose for some S ⊂ ZN , WN (S) has full
spark. Then so does:
(i) WN ((S + i) mod N) for all i ∈ ZN .

(ii) WN (MS) for all M that is coprime with N .
(iii) WN (ZN \ S,N).

We next provide Theorem 4.3 that generalizes a result in
[17]. It requires the following Lemma from [20].

Lemma 4.1: Consider integers 1 ≤M < N , M and N not
coprime. Then there exists 1 ≤ n < N such that N divides
Mn.

Using this lemma we now prove the following theorem.
Theorem 4.3: For integer 1 < M < N , S ∈ ZN , with

|S| > 1 suppose W (S) has full spark. Then WN (MS) has
full spark if and only if M and N are coprime. Otherwise
spark(WN (MS)) = 2.

Proof: Sufficiency follows from Theorem 4.2. Now sup-
pose M and N are not coprime. Then from Lemma 4.1 there
is an 1 ≤ n < N such that N divides Mn. Then the column
of W (MS) indexed by n is a vector of ones. Further the first
column is also a vector of ones. The result follows.

The corresponding result in [17] assumes that S contains
consecutive integers.

V. SPARK ON A LINE WITH RATIONAL SLOPE

We now consider the special case when the k-space samples
lie on a line with possible noninteger slopes. Specifically, with
K(L,M,S) as in (III.4) and L and M integers we consider
submatrices whose rows are indexed by k ∈ K(L,M,S) and
n ∈ Z2

N . Observe that with k = [k1, k2]>, under (III.4) one
has:

W (2)(k,n) = exp

(
j

2πk1

NM
(Mn1 + Ln2)

)
= exp

(
j

2πk1[M,L]n

NM

)
. (V.1)

For the moment we make the following simplifying assump-
tion, which we will relax later.

Assumption 5.1: The integers M and L in (V.1) are co-
prime.

Under this assumption we have the following lemma.
Lemma 5.1: Suppose under Assumption 5.1 and k = 1,

there exist distinct ni ∈ Z2
N such that:

k[M,L]n1 mod MN = k[M,L]n2 mod MN (V.2)

Then:

(i) M < N , and
(ii) (V.2) holds for all k ∈ Z.
Further, if M < N then there exist distinct ni ∈ Z2

N such
that (V.2) holds for k = 1.

Proof: Suppose (V.2) holds with k = 1. Then there exists
an integer r ∈ ZMN , and qi ∈ Z such that for i ∈ {1, 2}

[M,L]ni = qiMN + r. (V.3)

Call nij the j-th element of ni. Then (V.3) we have:

M(n11 − n21) + L(n12 − n22) = (q1 − q2)MN.

First suppose that n12 = n22. As n1 6= n2 this must mean that
N divides |n11−n21|. As |n11−n21| < N this is impossible.
Thus n12 6= n22. Further,

M [(q1 − q2)N + n21 − n11] = L(n12 − n22).

As M and L are coprime this means that M divides |n12−n22|
implying (i). Further, under (V.2), for all k ∈ Z and i ∈ {1, 2},

k[L,M ]ni = kqiMN + kr,

i.e.
k[L,M ]ni mod NM = kr mod NM

and (ii) holds. Finally, suppose M < N . Then the set{
[L,M ]n mod NM

∣∣n ∈ Z2
N

}
has at most NM elements, though Z2

N has N2 elements. As
MN < N2, there must be two distinct ni ∈ Z2

N such that
(V.2) holds for k = 1.

The next lemma establishes a sufficient condition for a full
spark W (2)(k(L,M,S)).

Lemma 5.2: Suppose Assumption 5.1 holds, M ≥ N and
for some N > l ≥ 2, S = Zl. Then W (2)(K(L,M,S)) has
full spark. Further if M < N , then W (2)(K(L,M,S)) has
spark 2.

Proof: The column indexed by ni ∈ Z2
N is

[1, xi, · · ·xl−1
i ]>

where
xi = exp

(
j

2π[M,L]ni

NM

)
. (V.4)

Thus, the Vandermonde structure ensures full spark unless for
distinct ni ∈ Z2

N , (V.2) holds. Lemma 5.1 shows that this
is false if M ≥ N . On the other hand if M < N there
exist distinct n1,n2 ∈ Z2

N such that x1 = x2 in (V.4) and
W (2)(K(L,M,S)) has spark 2.

In fact using, Theorem 4.2 and 4.3 a stronger result can be
obtained.

Theorem 5.1: Suppose for some integer N , the set S is such
that WMN (S) has full spark and Assumption 5.1 holds. Then
for given integer p, W (2)(K(L,M, pS)) has full spark iff p
and MN are coprime and M ≥ N .

Proof: The proof follows by considerations in the proof
of Lemma 5.2, Theorem 4.2 and Theorem 4.3 and the fact
that W (2)(K(L,M, pS)) is a submatrix of and has the same



number of rows as WMN (pS).
In summary, this result has two features. First it translates

the spark condition for a 2-D DFT matrix in to one for a 1-D
DFT matrix. Second it demands that for a line of slope L/M
in k-space, with L and M coprime, M cannot be smaller than
N . This precludes integer slopes, or for that matter a 45o line.
Though of course one can sample on lines that are arbitrarily
close in their slope to any given line.

To understand how Assumption 5.1 can be relaxed suppose
M and L have greatest common divisor (gcd) p. Define

M̄ =
M

p
and L̄ =

L

p
(V.5)

Then M̄ and L̄ are coprime and

2πk1

NM
(Mn1 + Ln2) =

2πk1

NM̄
(M̄n1 + L̄n2).

Then all one needs to do is to replace M by M̄ in both Lemma
5.2 and Theorem 5.1.

VI. SPARK ON A RECTANGULAR SUBGRID

We now turn to the setting of rectangular sampling in k-
space and first provide a seemingly negative result. Later in the
section we show that in fact there are vectors with particular
sparsity patterns that can be recovered through rectangular
sampling.

First observe from (III.6), that to within permutations of
rows and columns the matrix in (III.3) is the Kronecker
product of submatrices of a 1-D DFT matrix. In general,
barring pathologies the rank of a Kronencker product exceeds
that of the factors. Theorem 6.1 below shows that this is not
the case for spark of Kronecker products.

Theorem 6.1: Suppose A ∈ CnA×mA and B ∈ CnB×mB .
Then the following hold.

(i) If nB < mB then,

spark(A⊗B) ≤ spark(B).

(ii) If nA < mA then,

spark(A⊗B) ≤ spark(A).

(iii) If nB < mB , and spark(A) ≥ spark(B)

spark(A⊗B) = spark(B).

Proof: To prove (i) suppose spark(B) = p ≤ nB .
Observe that the first block column of A⊗B is given bya11B

...
am1B

 .
Then there exists a p-sparse x 6= 0 such that Bx = 0. Thena11B

...
am1B

x = 0.

Thus (i) follows. The proof of (ii) follows from (i), the fact
that for any pair of permutation matrices P and Q

spark (P (A⊗B)Q) = spark (A⊗B)

and the fact that there exist permutation matrices P and Q
such that

P (A⊗B)Q = B ⊗A. (VI.1)

Now suppose spark(A) ≥ spark(B) = p ≤ nB . If p = 1
then B has a zero column and so does A⊗B. Thus indeed
spark(A ⊗B) = 1 = p. Now suppose p > 1 but spark(A ⊗
B) = q < p. Thus there exists a q-sparse vector x such that

(A⊗B)x = 0.

Then there exist M ≤ q, vectors xl 6= 0, l ∈ SM each at most
q-sparse, such that for all i ∈ SnA there holds:∑

l∈SM

ailBxl = 0. (VI.2)

Further as spark(B) > q, for all l ∈ SM , Bxl 6= 0 Thus there
exits a nonzero M -sparse vector y such that

Ay = 0.

Thus spark(A) ≤ M ≤ q < p = spark(B), establishing a
contradiction. Thus spark(A ⊗B) ≥ p. From (i) this means
that spark(A⊗B) = p.

Thus rectangular sampling in k-space does not offer benefits
in terms of impoved spark. In fact in light of Theorem 4.3
should either d1 or d2 in (III.6) share a common factor with
N , then spark of the 2-D DFT matrix will be just two.

Yet there are specialized settings where Kronecker products
carry increased benefits. Specifically, Kronecker products ex-
hibit certain advantages in recovery of vectors that are jointly
sparse. Thus consider

X =
[
x1 x2 · · · xm

]
∈ Cn×m. (VI.3)

We call the set of vectors xi jointly k-sparse if X has at most
k nonzero rows. Now, with A ∈ CnA×mA and B ∈ CnB×n,
consider the observations:

y = (A⊗B)vec(X), (VI.4)

where

vec(X) =


x1

x2

...
xm

 .
Observe vec(X) is mk-sparse. Thus, on the face of it unique
recovery of X from y requires:

spark(A⊗B) > 2mk. (VI.5)

Theorem 6.1 would then suggest the requirement,

min {spark(A), spark(B)} > 2mk. (VI.6)

We now argue that (VI.6) is in fact too conservative.



Indeed with

y =


y1

y2
...

ynA

 ,
(VI.4) reduces to:

yi = B

(
m∑
l=1

ailxl

)
, ∀i ∈ SnA . (VI.7)

As X can have at most k nonzero rows, for all i ∈ SnA ,
qi =

∑m
l=1 ailxl is k-sparse. Thus spark(B) > 2k suffices to

uniquely determine all the qi, and in the process determining
the joint support of the columns of X . Finally, spark(A) > m
suffices to extract the xi from the qi. Thus far smaller values
for spark(A) and spark(B) than that suggested by (VI.6)
suffices to resolve this joint sparsity problem.

VII. CONCLUSION

We have considered the spark of submatrices of 2-D DFT
matrices under two specific types of sampling in k-space.
In both cases we show that spark is related to the spark of
certain related 1-D DFT matrices. The first sampling pattern,
we consider involves a single line in k-space and provide
a necessary and sufficient conditions for full spark. One
interesting conclusion is that lines with integer slopes preclude
full spark. The second type of sampling is on rectangular grid.
We show that full spark is in general impossible in such a
setting. However, we also provide conditions under which such
matrices can recover jointly sparse vectors.

An open problem of substantial benefit to MRI is as follows:
Instead of sampling on a single line in k-space suppose we
sampled over several lines. How to extend the results of
Section V in such a setting? We are currently working towards
resolving this problem, possibly through the aid of Theorem
5.1.
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