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Abstract

Purpose: This paper focuses on developing a novel non-iterative fat water decomposition algorithm

more robust to fat water swaps and related ambiguities.

Methods: Field map estimation is reformulated as a constrained surface estimation problem to exploit

the spatial smoothness of the field, thus minimizing the ambiguities in the recovery. Specifically, the

differences in the field map induced frequency shift between adjacent voxels are constrained to be in a

finite range. The discretization of the above problem yields a graph optimization scheme, where each

node of the graph is only connected with few other nodes. Thanks to the low graph connectivity, the

problem is solved efficiently using a non-iterative graph cut algorithm. The global minimum of the

constrained optimization problem is guaranteed. The performance of the algorithm is compared with

that of state-of-the-art schemes. Quantitative comparisons are also made against reference data.

Results: The proposed algorithm is observed to yield more robust fat water estimates with fewer fat

water swaps and better quantitative results than other state-of-the-art algorithms in a range of challenging

applications.

Conclusion: The proposed algorithm is capable of considerably reducing the swaps in challenging fat

water decomposition problems. The experiments demonstrate the benefit of using explicit smoothness

constraints in field map estimation and solving the problem using a globally convergent graph-cut opti-

mization algorithm.

Key words: fat water decomposition, non-iterative, graph cut, optimal surface, minimum-cost

closed set
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INTRODUCTION

The separation of water and fat in MRI is an important problem, with several clinical applications (1–5).

While frequency selective excitation/saturation schemes are available (6–9), multi-echo Dixon-like schemes

have enjoyed a lot of attention in the past decade due to their ability to account for large B0 field inho-

mogeneity (10, 11). These methods acquire images at multiple echo-times and exploit the dependence of

temporal variations in magnetization on the unknown fat and water concentrations, fat water chemical shift,

magnetic field inhomogeneity induced frequency shift, and T ∗2 decay terms. The unknown parameters are

then estimated by fitting the signal model to the measured data.

Classical multi-echo methods rely on voxel-by-voxel fitting of the signal model to the measured data

(10–12). The voxel-by-voxel fitting approach suffers from the non-convexity of the associated maximum

likelihood criterion, which makes iterative algorithms such as Iterative decomposition of water and fat with

echo asymmetry and least-squares estimation (IDEAL) (12) sensitive to field map initializations. The esti-

mation is also made difficult by the presence of phase wraps in body regions with large field inhomogeneity

and ambiguities in voxels with only one metabolite (e.g. water-only voxels), which manifest as spurious

fat water swaps in the decompositions. Several extensions of the IDEAL algorithm such as region growing

(13), region merging (14), multi-resolution based methods (15), hybrid approaches (16), as well as multi-

seed region growing algorithms (17) are introduced to overcome these ambiguities by taking advantage of

the assumption of field map smoothness.

While the above methods work well most of the time, they may result in fat water swaps in challenging

applications such as lung scans with multiple unconnected regions and regions of low signal to noise ratio.

An alternative to the above implicit approaches to exploit field map smoothness is the global optimization

scheme that relies on an explicit smoothness penalty. In (18), the estimation of the field map at all voxels is

formulated as the minimization of a global criterion, which is the linear combination of the sum of the voxel-

independent criteria and a field map smoothness penalty, and solve it using an iterative graph cut algorithm.

Since the direct discretization of the problem results in a large graph, whose solution is computationally

infeasible, the authors rely on an iterative approach. Specifically, a one-layer graph is constructed at each

iteration; the vertices at each voxel correspond to the frequency value at the previous iteration and a new

guess (18). The global optimum of this one-layer graph problem is obtained using efficient s-t cut algorithms

(19–24). While this iterative approach is computationally efficient, the whole algorithm is not guaranteed to
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converge to the global minimum of the specified cost function.

The main focus of this paper is to introduce a novel non-iterative graph cut algorithm for fat water

decomposition. We formulate the recovery of the field map at all the image voxels as a constrained opti-

mization scheme. The proposed global criterion is the sum of the voxel-independent maximum likelihood

criteria. While this global optimization scheme is similar to that of Hernando et al.(18), the main difference

is the lack of smoothness penalty term in our global criterion. We instead rely on constraints to enforce

the smoothness of the field map. Specifically, the differences in field map between adjacent voxels are con-

strained in a small range. The discretization of this problem yields a graph optimization problem, where

each vertex of the graph is constrained to be connected with a small number of its neighbors. Thanks to the

reduced connectivity, the three-dimensional graph search problem can be directly solved using an optimal

surface segmentation algorithm (24) in a realistic run time. The non-iterative algorithm is guaranteed to con-

verge to the global minimum of the constrained optimization problem. We compare the proposed algorithm

against several state-of-the-art fat water decomposition algorithms available in the ISMRM fat water toolbox

on several challenging cases. These datasets are made available as part of the 2012 ISMRM Challenge. The

qualitative and quantitative comparisons demonstrate that the proposed scheme is capable of minimizing fat

water swaps in these challenging cases.

THEORY

Background

We now briefly review the mathematical formulation that is essential for the discussion in later sections. We

will also review the iterative graph cut algorithm of Hernando et al. (18) to highlight its differences from

the proposed scheme. In multi-echo water and fat decomposition, a sequence of images are collected with

different echo time (TE) shifts, t1, t2, . . . , tN . The signal at each individual voxel is described by the model

in (25):

s(r, tn) =

(
ρwater(r) + ρfat(r)

[
M∑
i=1

βi e
j2πδi tn

])
e−γ(r)tn , n = 1, . . ., N [1]

Here, ρwater(r) and ρfat(r) are complex-valued concentrations of water and fat, respectively. The fat signal

is modelled using an M peak model, where δi is the chemical shift between the ith fat peak and water,

measured in Hz, and βi > 0 is the relative weight of each peak. The relative weights add up to unity

4



(
∑
βi = 1). The parameters βi and δi are assumed to be known; the decomposition process involves the

estimation of the unknown concentrations ρfat, ρwater, as well as f(r) and T ∗2 (r) from the measured data.

The field inhomogeneity induced frequency shift and T ∗2 decay terms are consolidated in the parameter

γ(r) = [1/T ∗2 (r)− j2πf(r)]. Here, f(r) is the local frequency shift due to magnetic field inhomogeneity

at the spatial location r = (x, y), while T ∗2 (r) models the decay due to intra-voxel dephasing. The con-

solidation of the T ∗2 decays of fat and water into a single term is shown to reduce bias and improved noise

stability (18, 25). This model can be expressed in the matrix form as:


e−γ t1 e−γ t1

(∑M
i=1 βie

j2πδi t1
)

..

e−γ tn e−γ tn
(∑M

i=1 βie
j2πδi tn

)


︸ ︷︷ ︸
Aγ

ρwater
ρfat


︸ ︷︷ ︸

g

=


s[1]

..

s[N ]


︸ ︷︷ ︸

s

. [2]

The unknown parameters are obtained by minimizing the least-squares error between the model and the

measured data:

{ρwater, ρfat, γ} = arg min
ρwater,ρfat,γ

‖Aγg − s‖2. [3]

Since the above minimization is dependent on many parameters, the standard practice is to decouple them

using the VARPRO approach (26). Specifically, the criterion is minimized with respect to some of the

variables by assuming the others to be fixed, thus eliminating them from the optimization. Minimizing

the above cost function with respect to the concentrations, assuming γ to be fixed, we obtain the optimal

concentration estimates as gopt = (AT
γAγ)−1AT

γ s. Substituting the optimal concentrations back in [3], and

solving for γ, we obtain

γ(r) = arg min
γ
‖Aγ(AT

γAγ)−1AT
γ s(r)− s(r)‖2︸ ︷︷ ︸

C(r,γ)

[4]

One can again minimize the expression with respect to T ∗2 to obtain a cost function that is only dependent

on f :

f(r) = arg min
f

min
T ∗
2

C(r, γ)︸ ︷︷ ︸
D(r,f)

[5]
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Since the estimation of T ∗2 values does not suffer from ambiguities, an exhaustive search over possible T ∗2

values is used to obtain Dr from Cr (26).

In order to address the sensitivity of the voxel-by-voxel optimization strategy specified by [5] to multiple

feasible solutions and phase wrapping, Hernando et al. (18) formulated the joint recovery of the field

map at all the voxels as a smoothness regularized optimization scheme. The global criterion is the linear

combination of the sum of D(r, f) and a smoothness penalty (18):

f̂ = arg min
f(r)

∑
r

D(r, f(r))︸ ︷︷ ︸
data consistency term

+µ
∑
r

∑
s∈N (r)

wr,s |f(r)− f(s)|2

︸ ︷︷ ︸
smoothness regularization

. [6]

Here,N (r) is the local neighborhood of the voxel at location r and wr,s are pre-defined weights that specify

the relative importance of each difference term. The first term is the sum of the voxel-independent criteria

in [5], while the second term promotes field map smoothness. Hernando et al., convert the above continuous

problem to a discrete optimization scheme by restricting the field map to a set of discrete values.

The direct discrete minimization of [6] using a graph cut algorithm is computationally infeasible, since

it involves a large and fully connected graph. Hence, the authors solve it iteratively by solving a sequence

of binary decision problems at each iteration; these decision problems are solved efficiently using graph cut.

At the (n + 1)th iteration, they consider two possible solutions at each voxel: Γn+1(r) = {fn(r), gn(r)}.

Here, fn(r) is the optimal solution from the previous iteration, while gn(r) is chosen as fn(r)±β , where β

is a pre-specified constant, or picked randomly a set of local minimizers of D(f(r)). Each binary decision

problem is efficiently solved using graph cut and is guaranteed to converge to a global minimum. However,

the iterative algorithm is still not guaranteed to converge to the global minimum of the cost function. The

local minima effects sometimes manifest as fat water swaps in challenging datasets

Reformulation as a smoothness constrained surface estimation problem

We formulate the estimation of the field map f(r) as the constrained optimization scheme:

f̂ = arg min
f(r)

∑
r

D (r, f(r)) such that

|f(r + ex)− f(r)| ≤ F

|f(r + ey)− f(r)| ≤ F, [7]
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where ex = (1, 0) and ey = (0, 1) are the unit vectors in the x and y directions, respectively. Instead of

the smoothness penalty on the field map used in (18), we constrain the differences between field map values

at adjacent voxels to be less than F (Hz) to minimize the ambiguities. Decreasing the maximum step size

will result in a smoother field map. Note that [7] simplifies to a fully decoupled voxel-by-voxel search when

the restrictions are removed (i.e, F =∞). Since the above problem is non-convex, simple gradient descent

schemes are not guaranteed to converge to the global minimum of the criterion.

We discretize the problem by restricting the possible field map values at each location to a uniform grid

specified by f = n∆. Here n = −Nmax, ..., Nmax − 1 is the discrete index and ∆(Hz) is the grid spacing.

The discretization error can be controlled by setting ∆ sufficiently small. The discrete optimization scheme

is thus equivalent to fitting a smooth surface S to the 3-D discrete datasetD(r, f) (see Fig. 1.(a)); the height

of the surface at the spatial location r is f(r). The number of discrete points in the surface is equal toNxNy,

where the image is assumed to be of sizeNx×Ny. The summation in [7] is essentially the sum of the values

of the 3-D function D(r, f) along the surface. The function D(r, f) can be interpreted as the negative of

the likelihood that the surface passes through the point (r, f). The likelihood of the surface is obtained by

summing the likelihoods of the points on the surface. The constraints in [7] can be conveniently expressed

by representing the discrete dataset as a connected graph G(V,E) (Fig. 1.(b)), where V denotes the set of

vertices and E are the edges. Correspondingly, the size of the graph is Nx×Ny×Nf , where Nf = 2Nmax

is the number of layers in the graph (the number of discrete field map values). We have one vertex for each

discrete point (r, n), while the edges of the graph (denoted by E) are specified by the constraints in [7].

Specifically, an edge exists between the vertex (r, n) and (r′, n′) if and only if |n − n′| ≤ α, with α is the

smoothness constraint in the graph and r and r′ are neighbouring voxels; the four neighbors of the voxel r

are (r+ ex), (r− ex), (r+ ey), and (r− ey). If we let Rf denote the complete search range of the uniform

grid (Hz), then F = α ∆, ∆ = Rf/Nf . It can be seen that a graph surface S is a subset of V if only if it

satisfies the constraints in [7]. This enables us to rewrite [7] as

Ŝ = arg min
S⊂G

∑
v∈V (S)

D (v)

︸ ︷︷ ︸
E(S)

. [8]

In the above equation, V (S) are the vertices of the surface. Note that each vertex is a point in 3-D: v =

(r, f). In the next subsection, we introduce the graph cut algorithm to solve [8].
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Optimal surface estimation using graph cut algorithm

In (27), Wu and Chen have shown that the optimal surface estimation problem can be transformed to the

detection of a minimum-cost closed set in a transformed graph. A closed setA in a directed graph is a subset

of graph vertices such that there is no edge from a vertex in A to a vertex in its complement Ac (Fig. 2.(a)).

The cost of the closed set A is defined as the total sum of the costs of all vertices in A. The transformation

of the original problem to minimum-cost closed set enables us to solve [8] using efficient polynomial time

s-t cut schemes (28, 29). This approach is akin to transformation of a surface integral to a volume integral

using Gauss theorem in the context of parametric snakes (30).

The key step in the graph transformation is the identification of a closed set B(S), which has a one-to-

one mapping with a surface S. For a feasible surface S, we define B(S) as the set of all the vertices of G

that are on or below S. It can be observed that for any feasible surface S in G, the bottom-most neighbors

of every vertex in B(S) are also contained within B(S). The bottom-most neighbour of a vertex v ∈ V is

the vertex in the neighboring column with the smallest f -coordinate, which can co-exist with v on a feasible

surface (See Fig. 2.(b)). We also transform the cost of each vertex in the graph G (denoted by D′):

D′(r, n) =


D(r, n) if n = −Nmax

D(r, n)−D(r, (n− 1)) else.
[9]

Note thatD′(r, n) is essentially the derivative ofD(r, n) along the frequency direction, with the appropriate

boundary conditions. We can recover the value of D from D′ as D(r, n) =
∑n

l=−Nmax
D′(r, n). Using this

property (27), we can rewrite the surface sum
∑

v∈V (T )D (v) in [8] as

E(S) =
∑

(x,y,n)∈B(S)

D′(x, y, f) [10]

Thus, instead of finding the optimal surface S∗ directly, we seek the closed set B(S∗) with the minimum

cost E(S∗), which uniquely defines the surface S∗ . The algorithm to solve [10] proceeds by creating a

directed vertex-weighted graph G′(V ′, E′) from G(V,E) (27). The vertices v′(x, y, f) ∈ G′ has a one-to-

one correspondence with the vertices v(x, y, f) in G. Arcs (directed edges) are added to G′ to make sure

that each closed set in G′ includes all the vertices associated to the corresponding surface vertices plus all

the “lower” vertices in G. This is done by adding two types of arcs: intracolumn arcs and intercolumn arcs.
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The intracolumn arcs ensure that all vertices below a given vertex (within one column) are also included in

the closed set. The intercolumn arcs ensure that the smoothness constraints are satisfied. As an example in

Fig. 2.(c), we will consider the added arcs for one vertex v′. It will be associated with two intracolumn arcs:

one directed towards the vertex immediately below it in the column and one from the vertex immediately

above it. Two intercolumn arcs will also exist for each neighbouring column in the x-direction (y-direction):

one directed to the bottom-most neighbour of v′ on the neighbouring column and one from the vertex on the

neighbouring column whose bottom-most neighbour on the column of v′ is vertex v′. We do not show the

boundary conditions to avoid cluttering the exposition of the key ideas. An outline of the algorithm is also

described in the pseudo-code below.

�

�

�

�

Algorithm : GRAPH SURFACE SEARCH FOR OPTIMAL FIELD MAP (D(x, y, f))

1. Construct 3D graph G(x, y, f) and assign costs D(x, y, f) to each node

2. Transform the surface estimation problem to closed set estimation: G→ G′

a. Transform cost at each node to D′(x, y, f) using [9]

b. Build intra- and inter-column edges

3. Solve for the optimal closed set using minimum s-t cut algorithm

4. Recover the optimal surface S∗ and refine the solution

Once the optimal surface is determined using maximum flow/s-t cut algorithm on the transformed graph

G′, the solutions are refined by searching on a finer grid in the range [f(r) − ∆, f(r) + ∆] (see Fig. 3).

This search minimizes the effect of discretization. Since the search is constrained in the specified frequency

range, the search is computationally inexpensive and the solution is still guaranteed to satisfy the constraints

in [7]. We also determine the optimal R∗2 for each frequency value by an exhaustive search.

METHODS

Implementation details

We use a six peak fat model, where the location of the peaks, denoted by δi in [1] correspond to 3.8 ppm,

3.4ppm, 2.6 ppm, 1.93 ppm, 0.39 ppm, -0.6 ppm for all the experiments. The relative weights of these peaks,

9



denoted by βi in [1] are 0.0870, 0.693, 0.1280, 0.0040, 0.0390, 0.0480, respectively. These parameters are

adopted from (25).

We use a discrete search procedure to determine D(r, f) from C(r, γ) according to [5]. This approach

similar to the one followed in (18). Specifically, for each value of f , we search over Nr discrete values

of R∗2 in the range 0 s−1 to 500 s−1. This search process introduces minimal biases since the criterion

is considerably smoother along the R∗2 dimension. We set the field map search range Rf to be [-8 ppm,

8 ppm]. Our experiments show that this search range is large enough to account for the range of field

maps. The criterion specified is computed on a voxel-by-voxel basis. The optimal field map surface is then

obtained by running the graph cut algorithm on the discretized problem. The discrete field map derived using

the above algorithm is refined to minimize the effect of discretization. The refinement process involves an

exhaustive search in the frequency range [f(r)−∆, f(r)+∆] and theR∗2 range. The range is discretized with

approximately a 1 Hz spacing and exhaustively searched to obtain the minimum. The same rule applies to

the refinement of R∗2 . Finally, the fat and water volumes are estimated by solving gopt = (AT
γAγ)−1AT

γ s;

the fat volume fraction is then obtained from the derived concentrations. Since the proposed scheme is

currently only implemented in 2-D, each of the slices in multi-slice datasets are processed separately. See

Fig. 3 for the data flow in the proposed scheme.

Metric used for the comparisons

We use the same metric as in 2012 ISMRM Challenge to evaluate the performance of the proposed algorithm

as well as other state-of-the-art algorithms. Specifically, the performance of the algorithm is specified by

the score

Score =

∑Nvoxels
i=0 (|FF(i)− FFref(i)| < 0.1) ∗ P (i)∑Nvoxels

i=0 P (i)
× 100%, [11]

where FF is the fat fraction obtained from the specific algorithm and FFref is the reference fat fraction.

The fat fraction is defined as the ratio of fat intensity to the sum of fat and water intensities. In the above

equation, P is the mask, and Nvoxels is the total number of voxels. The multiplication factor is to obtain

the scores in percent.

The decompositions obtained by the proposed scheme were also evaluated by an expert radiologist

(JDN) on a four point scale. The scales were chosen as (1): too many fat water swaps & not diagnostic

quality, (2): few swaps & may be clinically misleading, (3): few swaps, but not clinically misleading, (4):
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no swaps & good quality.

Optimization of parameters

As mentioned in theory section, the proposed algorithm is dependent on three parameters:

1. Nf , the number of layers used in the graph optimization,

2. Nr, the number of discrete values of R∗2, prior to graph optimization, and

3. α, the smoothness constraint assumed in the graph optimization; F = α ∗Rf/Nf .

We determine the optimal parameters by running the proposed algorithm with different parameter choices

and comparing the scores of the resulting decompositions with the reference fat water ratios on the first four

datasets.

Comparison of algorithms

We compare the proposed scheme with the implementations of the current algorithms available in the

ISMRM fat water toolbox. Specifically, comparisons are performed between the proposed method and

four state-of-the-art fat water algorithms: Iterative Graph Cut Algorithm (IGCA) in (18), Safest-first Region

Growing Algorithm (SRGA) in (17), Golden Section Search Algorithm (GSSA) in (13), and Hierarchial

IDEAL of Multiresolution Field map (HIMF) algorithm in (15). We assumed the default parameters pro-

vided in the toolbox for all the comparisons.

Datasets used for the experiments

Seventeen multi-echo datasets used in this study are distributed as part of 2012 ISMRM Challenge. The

multi-slice coil-combined datasets correspond to different anatomical regions and were acquired on differ-

ent institutions and different field strengths (1.5 and 3T). See Table 1 for details of these datasets. The

reference fat-fractions and the masks corresponding to the image regions, where the fat fractions are com-

pared, were downloaded from 2012 ISMRM Challenge website. The reference fat fractions were derived

from larger number of echoes (typically 12-16 echoes) using the iterative graph cut algorithm (18). The

masks were generated by thresholding the raw images, followed by manual segmentation and binary mor-

phological operations to exclude isolated voxels and to erode edges which are likely to be partial volume
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voxels. These masks were checked by an expert for validity. The number of echoes that are used for the

proposed decomposition and comparison with other methods varied between the datasets, as shown by the

second row in Table 1. All datasets were processed on a desktop computer with 3.2GHz Intel Xeon CPU

and 23.6GB RAM.

RESULTS

We study the effect of the parameters Nf and Nr in Fig. 4.(a) and the effect of the smoothness constraint in

Fig. 4.(c). We observe that the scores vary in a small range when α ≤ 3. The performance degrades when

α > 3. This is expected since the algorithm becomes similar to voxel-independent schemes with increasing

α. Since the optimal performance is obtained at this value, we set α = 3 in all the experiments. Specifically,

the average scores from the first four datasets are obtained for different values of Nf and Nr, assuming

α = 3; the plot for different choices are shown in Fig. 4.(a). We observe that the algorithm is relatively

insensitive to the choice of Nr, while the optimal performance is achieved around Nf = 100. Therefore, as

we chose field map search range as [-8pm, 8pm], the grid spacing δ is approximately 10Hz for a field strength

of 1.5 T and 20Hz for 3 T. Note that the constraint on the field map gets stronger as we increase Nf since

F is inversely proportional to Nf . This explains why the scores drop slightly when Nf is increased beyond

100. Based on this study, we fixNf = 100 andNr = 20 in the rest of the paper. Note that the computational

complexity of the algorithm is dependent on Nf and Nr. The refinement is conducted in two steps: a) The

field map values in the range of [f(r) − ∆, f(r) + ∆] at each location are exhaustively searched with a 1

Hz resolution, assuming the R∗2 values from the first pass. b) Once the optimal frequency is determined, the

R∗2 values are similarly searched exhaustively with a 1 ms−1 resolution. We plot the average computation

time for the different choices in Fig. 4.(b). The average computation time for a 256x256 sized image is 90

seconds. These optimized parameters from the first four datasets are used for all the experiments.

The quantitative comparisons of the GOOSE algorithm against the leading algorithms in the fat water

toolbox (IGCA, SRGA, and HIMF schemes) are shown in Table 2. The GSSA algorithm often results in

higher errors and hence were excluded from the studies. The SRGA algorithm is designed for uniformly

spaced echoes and hence could not be run on dataset #3; the score is marked as N/A. The best score in

each case is shown in bold. It is observed that the proposed scheme provides better results in most of

the challenging cases. While it provides slightly lower scores in dataset #11 and dataset #14, the scores
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are very close to the best performing algorithm. The qualitative scores of the decompositions obtained by

the proposed algorithm by the expert radiologist (JDN) are also reported in the last row of Table 2. The

qualitative scores agreed with the quantitative scores overall. The main inconsistency was in the context

of dataset #9, where the quantitative scores were high. The low qualitative scores were mainly due to

the presence of small swaps in the trabecular bone regions with low signal intensity. None of the current

algorithms were capable of avoiding these small swaps from limited number of echoes.

The decomposition obtained from the five algorithms on a foot dataset (dataset #7) is shown in Fig. 5.

This is a rather challenging dataset due to the large range of field inhomogeneity. It is seen that IGCA,

GSSA, HIMF suffer from fat water swaps near the ankle. Similarly, GSSA and HIMF have more swaps

on both leg and toe region. The field maps derived by these algorithms (see bottom row) exhibit abrupt

variations indicating convergence to local minima. We observe that the SRGA algorithm, as well as the

proposed scheme, is capable of providing good estimates in this example. A noticeable difference in the

field map recovered by the proposed scheme is that it takes small values outside the anatomical region.

This can be attributed to the constrained formulation [7]. Specifically, the data-consistency term D(r, f) is

considerably smaller in amplitude in regions with low signal than regions with signal. Hence, many different

values of f may give the same cost. The constrained formulation will pick one solution among the possible

ones that satisfy the constraints. Due to the transformation [9], the solutions at these voxels often correspond

the first few nodes at these voxels.

Another example, corresponding to the head/neck and upper thorax dataset (dataset #2) is shown in

Fig. 6. This set is challenging due to the larger magnetic field inhomogeneity and multiple disconnected

regions. From Fig. 6, we observe that all algorithms, except the proposed method, suffers from multiple fat

water swaps in the region under neck. The failure of the SRGA scheme, which performed well in the other

datasets, may be due to the disconnected nature of the regions and the large dynamic range; these challenges

probably make the accurate seed placement in the region-growing algorithm difficult.

Fig. 7 shows the decomposition on an axial liver dataset (dataset #12). We observe that the existing

schemes result in swaps in all the three slices, while the proposed scheme correctly recovered the fat and

water in slices 1 & 3. The GOOSE algorithm also failed in slice 2, resulting in a swap. The main reason for

the failure of the GOOSE algorithm in this case is that the anatomical regions are disconnected; the algorithm

is not able to propagate the correct solution to the region of failure. This is a fundamental problem associated

with algorithms that exploit field map smoothness.
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Fig. 8 shows the fat water decomposition of two slices of a breast dataset (dataset #15). The IGCA

scheme resulted in large and obvious swaps, while the SRGA method resulted in subtle swaps, indicated

by arrows. The GOOSE scheme is capable of providing results that are in good agreement with the ground

truth in most regions. It resulted in a small swap in the middle, which is also indicated by arrows.

DISCUSSION & CONCLUSION

We introduced a novel fat water decomposition scheme, which we term as globally optimal surface estima-

tion (GOOSE) algorithm. The proposed algorithm uses explicit constraints to exploit the smoothness of the

field map, thus minimizing the ambiguities in maximum likelihood estimation. Specifically, the differences

in the field map between adjacent voxels are constrained to be within a small range (less than 25Hz). The

discretization of the criterion yields a problem that can be efficiently solved using graph cut optimization.

Thanks to the considerably reduced graph connectivity, the algorithm is guaranteed to yield the global min-

imum of the cost function in a short computation time. While the algorithm shares some similarities with

the global optimization scheme of Hernando et al. (18), the key difference is the constrained formulation.

The global optimality guarantees of the algorithm are seen to be beneficial in practical settings. We have

compared the proposed algorithm against some of the algorithms available in the ISMRM fat water toolbox.

Overall, the comparisons show that the proposed scheme yields fewer swaps and thus better fat water de-

compositions. The algorithm is also evaluated independently by the 2012 ISMRM challenge committee; the

decompositions using the GOOSE scheme resulted in scores that were only 0.04% lower than the winning

team (31), which combined the results of several decomposition schemes in the ISMRM fat water toolbox

using a perceptual quality metric (31) . While the proposed scheme may be improved by combining it with

other methods in a similar fashion, the resulting performance improvement is not expected to be significant.

A major limitation of the proposed implementation is that it is restricted to two dimensions. Currently,

the different slices in multi-slice datasets are processed independently without considering the field map

smoothness across slices. The extension of this algorithm to three dimensions can provide further improve-

ment in performance of the current two-dimensional method. Specifically, the smoothness of the field map

between the slices can enable us to resolve the ambiguities in datasets with disconnected regions. For ex-

ample, we anticipate that this extension will improve the performance in the context of dataset #12 (see Fig.

7). Specifically, the 2-D scheme recovers the first and third slices accurately, while the second slice had a
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swap due to the disconnected regions. This will be part of our future work.

We have adopted the fat water model in [1], which is relatively established in the fat water community.

Hence, our algorithm shares the benefits and drawbacks associated with the specific model. For example, the

proposed algorithm is dependent on the number of fat peaks and their relative strengths in the model. This

assumption considerably reduces the unknowns and offers a proportional reduction in variance. However,

it is likely to result in biases when the relative strengths differ from actual values. Similarly, we have

consolidated the decay parameters of fat and water into a single term. While the consolidation of the decay

terms of fat and water into a single T ∗2 term is shown to be beneficial (18, 25), this approach may introduce

biases in regions where this assumption is violated.
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Legends

Fig. 1: Illustration of the graph cut algorithm. (a) The residues specified by D(r, f) are discretized on a

uniform frequency grid n∆;n = −Nmax, ..., Nmax − 1. The discrete optimization is essentially a surface

detection problem on a graph with 2Nmax layers, where the residues at each vertex are the vertex costs.

Note that there are both local and global minimal costs in the graph. In this example the local minimal cost

at f1 are very close to the global minimal cost at f2, for which voxel-independent schemes mostly fail. (b)

Illustration of the constraints in graph-cut optimization. Each vertex on a specific voxel is connected with

(2α + 1) neighbors. For example, the vertex a at the spatial location (x, y) is only connected with b1, b2,

and b3 in the column corresponding to its neighbouring voxel (x + 1, y). Similarly, it is only connected

to (2α + 1) neighbors in the voxel (x, y + 1). S is the surface that intersects one voxel at each column

within the smoothness constraint. The objective of the graph cut optimization is to search for the surface

with minimal costs.

Fig. 2: Illustration of the concepts in graph-cut optimization. (a) Closed set: vertices a, b and c do not

form a closed set, because vertex d which is a successor of b and c is not in the set. Nonetheless, vertices

d, e and f form a closed set. (b) An example of bottom-most neighbour. Vertex a is on the surface, b is an

bottom-most neighbour of a. Similarly, c is a bottom-most neighbour of b. (c) The task of finding an opti-

mal surface S∗ is transformed into finding the minimum-cost closed set B(S∗) (indicated as gray vertices)

beneath S∗ in the directed graph G′.

Fig. 3: Information flow in the proposed method. The residue specified by D(r, f) in [5] is discretized

on a uniform grid. The global optimum of the proposed constrained optimization problem is obtained using

a globally optimal graph cut optimization to yield the initial field map and the initial R∗2 = 1/T ∗2 map.

This solution is refined using a finer discrete search around the initial results provided by the graph cut al-

gorithm. The refined field maps are used to estimate the fat water concentrations as gopt = (AT
γAγ)−1AT

γ s.

Fig. 4: Dependence of the solution on the parameters. In (a). The number of f grid points (Nf ) and

R∗2 points (Nr) are varied and the resulting average scores are plotted. We observe that the results are not

too sensitive to Nr, while the best scores are obtained for Nf ≈ 100. The average run times of the algo-
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rithms are shown in (b). For the optimal parameters, the average run time is approximately 90 seconds.

The effect of the smoothness constraints on the scores are shown in (c). Here, we assume Nf = 100 and

Nr = 20. We observe that the best results are obtained when α = 3 (i.e., 7 neighbors).

Fig. 5: Qualitative comparisons of the algorithms on a foot dataset (2012 Challenge dataset #7). Top

row: Fat; Second row: Water; Third: Field map. Fat water swaps are seen in IGCA, GSSA and HIMF

indicated by arrows. The proposed and SRGA scheme are seen to provide good decompositions, which is

also evident from the quantitative scores in Table 2 (also shown at the top left corner of each fat image).

Fig. 6: Qualitative comparisons on a head and neck dataset (2012 ISMRM Challenge dataset #2). Top

row: Fat; Second row: Water; Third: Field map. All of the algorithms except the GOOSE scheme result in

swaps between water and fat. Quantitative comparison can be seen from Table 2 (also shown at the top left

corner of each fat image).

Fig. 7: Comparison of the algorithms on 2012 ISMRM Challenge dataset #12. First column: Fat Frac-

tion (FF) map for reference from 2012 ISMRM Challenge committee; Second: FF from SRGA; Third: FF

from IGCA; Fourth: FF from GOOSE; Fifth: Field map from GOOSE. Each row corresponds to one slice

in the dataset. This is a challenging example due to the disconnected regions in the dataset. We observe that

all algorithms except the proposed one result in swaps in all the slices. The proposed scheme is capable of

recovering the fractions correctly in slices 1 & 3 (first and third row), while it results in a swap in the second

slice. Quantitative scores are shown at the top left corner of each FF map.

Fig. 8: Comparison of the algorithms on a breast dataset (2012 ISMRM Challenge dataset #15). First

row: Fat Fraction (FF) map for reference from 2012 ISMRM Challenge committee; Second: FF from

IGCA; Third: FF from SRGA; Fourth: FF from GOOSE; Fifth: Field map from GOOSE. Each column

corresponds to one slice in the dataset. IGCA results in large and obvious swaps. In contrast, the SRGA

scheme results in several subtle swaps pointed by arrows. The proposed scheme is seen to agree well with

the reference dataset, which is also evident from the quantitative comparisons in Table 2 (also shown at the

top left corner of each FF map).
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Table 1: Details of the datasets used in the validation. The rows correspond to # TE: number of echoes

used by the decomposition, MinTE: minimum TE value, MaxTE: maximum TE value, Field: field strength

of the magnet, the anatomical region, Size/x: the matrix size in x, Size/y: matrix size in y, and #Slices: total

number of slices in the dataset.

Table 2: Quantitative comparison of the proposed scheme against state-of-the-art algorithms and qualita-

tive evaluation by a radiologist. The first four rows of each algorithm GOOSE, IGCA, SRGA and HIMF

correspond to quantitative scores (in percent) for the 17 datasets. Best scores are indicated by bold letters.

The second row at each algorithm corresponds to the average qualitative score (out of four) assigned by the

radiologist. Note that SRGA works only on uniformly sampled dataset and dataset #3 is non-uniformed

sampled. Therefore no score is reported from SRGA for dataset #3.
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Figure 1: (a) Illustration of the graph cut algorithm. The residues specified by D(r, f) are discretized on a
uniform frequency grid n∆;n = −Nmax, ..., Nmax − 1. The discrete optimization is essentially a surface
detection problem on a graph with 2Nmax layers, where the residues at each vertex are the vertex costs.
Note that there are both local and global minimal costs in the graph. In this example the local minimal cost
at f1 are very close to the global minimal cost at f2, for which voxel-independent schemes mostly fail. (b)
Illustration of the constraints in graph-cut optimization. Each vertex on a specific voxel is connected with
(2α + 1) neighbors. For example, the vertex a at the spatial location (x, y) is only connected with b1, b2,
and b3 in the column corresponding to its neighbouring voxel (x + 1, y). Similarly, it is only connected
to (2α + 1) neighbors in the voxel (x, y + 1). S is the surface that intersects one voxel at each column
within the smoothness constraint. The objective of the graph cut optimization is to search for the surface
with minimal costs.

Figure 2: Illustration of the concepts in graph cut optimization. (a) Closed set: vertices a, b and c do not
form a closed set, because vertex d which is a successor of b and c is not in the set. Nonetheless, vertices
d, e and f form a closed set. (b) An example of bottom-most neighbour. Vertex a is on the surface, b
is an bottom-most neighbour of a. Similarly, c is a bottom-most neighbour of b. (c) The task of finding
an optimal surface S∗ is transformed into finding the minimum-cost closed set B(S∗) (indicated as gray
vertices) beneath S∗ in the directed graph G′.
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Figure 3: Information flow in the proposed method. The residue specified by D(r, f) in [5] is discretized
on a uniform grid. The global optimum of the proposed constrained optimization problem is obtained using
a globally optimal graph cut optimization to yield the initial field map and the initial R∗2 = 1/T ∗2 map. This
solution is refined using a finer discrete search around the initial results provided by the graph cut algorithm.
The refined field maps are used to estimate the fat water concentrations as gopt = (AT

γAγ)−1AT
γ s.

Figure 4: Dependence of the solution on the parameters. In (a), the number of f grid points (Nf ) and R∗2
points (Nr) are varied and the resulting average scores are plotted. It is observed that the results are not too
sensitive to Nr, while the best scores are obtained for Nf ≈ 100. The average run time of the algorithms
are shown in (b). For the parameters that yielded the maximum, the average run time is approximately
90 seconds. The effect of the smoothness constraints on the scores are shown in (c). Here, we assume
Nf = 100 and Nr = 20. We observe that the best results are obtained when α = 3 (i.e., 7 neighbors).
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Figure 5: Qualitative comparisons of the algorithms on a foot dataset (2012 Challenge dataset #7). Top row:
Fat; Second row: Water; Third: Field map. Fat water swaps are seen in IGCA, GSSA and HIMF indicated
by arrows. The proposed and SRGA scheme are seen to provide good decompositions, which is also evident
from the quantitative scores in Table 2 (also shown at the top left corner of each fat image).

Figure 6: Qualitative comparisons on a head and neck dataset (2012 ISMRM Challenge dataset #2). Top
row: Fat; Second row: Water; Third: Field map. All of the algorithms except the GOOSE scheme result in
swaps between water and fat. Quantitative comparison can be seen from Table 2 (also shown at the top left
corner of each fat image).
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Figure 7: Comparison of the algorithms on 2012 ISMRM Challenge dataset #12. First column: Fat Fraction (FF) map
for reference from 2012 ISMRM Challenge committee; Second: FF from SRGA; Third: FF from IGCA; Fourth: FF
from GOOSE; Fifth: Field map from GOOSE. Each row corresponds to one slice in the dataset. This is a challenging
example due to the disconnected regions in the dataset. We observe that all algorithms except the proposed one result
in swaps in all the slices. The proposed scheme is capable of recovering the fractions correctly in slices 1 & 3 (first
and third row), while it results in a swap in the second slice. Quantitative scores are shown at the top left corner of
each FF map.

Dataset 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

# TE 6 8 5 6 4 5 6 5 6 5 6 4 4 4 4 5 3

MinTE 1.4 1.2 1.4 1.4 1.6 1.6 1.9 1.4 1.7 1.3 1.2 1.7 1.2 1.4 2.9 2.9 2.9

MaxTE 9.2 10.6 10.6 9.7 18.8 13.1 17.4 12.6 15.4 7.2 11.2 11.0 4.2 8.3 12.5 15.7 9.3

Field 3T 3T 3T 3T 1.5T 1.5T 1.5T 1.5T 3T 3T 1.5T 1.5T 3T 1.5T 1.5T 1.5T 1.5T

Anatomy Knee H&N Foot Knee Calves Thigh Foot Liver Brain Wrist Liver Liver Thigh H&N Breast Spine Shldr

Size/x 192 225 256 192 122 122 250 224 251 192 256 157 256 256 256 160 101

Size/y 192 227 256 192 242 244 175 248 201 192 256 257 131 256 55 208 101

# Slices 4 2 2 4 5 5 5 3 3 4 5 3 4 4 5 3 4

Table 1: Details of the datasets used in the validation. The rows correspond to # TE: number of echoes used by the
decomposition, MinTE (ms): minimum TE value, MaxTE (ms): maximum TE value, Field: field strength of the
magnet, the anatomical region, Size/x: the matrix size in x, Size/y: matrix size in y, and #Slices: total number of slices
in the dataset.
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Figure 8: Comparison of the algorithms on a breast dataset (2012 ISMRM Challenge dataset #15). First
row: Fat Fraction (FF) map for reference from 2012 ISMRM Challenge committee; Second: FF from
IGCA; Third: FF from SRGA; Fourth: FF from GOOSE; Fifth: Field map from GOOSE. Each column
corresponds to one slice in the dataset. IGCA results in large and obvious swaps. In contrast, the SRGA
scheme results in several subtle swaps pointed by arrows. The proposed scheme is seen to agree well with
the reference dataset, which is also evident from the quantitative comparisons in Table 2 (also shown at the
top left corner of each FF map).

Method Mean 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

GOOSE 99.27 99.84 99.81 96.50 99.87 99.94 99.88 99.90 99.94 99.97 99.72 99.75 95.58 99.91 99.87 99.15 99.13 98.80
3.74 4 4 3.5 4 4 4 4 4 2 4 4 1 4 4 4 4 4

IGCA 91.85 99.46 68.29 95.97 99.71 91.00 99.88 95.36 81.58 91.78 99.68 99.91 81.28 94.18 87.71 81.79 98.84 94.64

2.25 4 1 4 4 2.5 4 1.5 1 1 3 4 1 1 1.2 1 3 1

SRGA 83.05 91.37 45.36 N/A 96.52 26.47 99.27 87.92 99.23 48.94 93.03 99.60 51.71 99.23 99.88 98.73 96.02 96.43

3.06 4 1 N/A 4 1 3.5 4 2.5 1 4 3.8 1 4 4 4 3.2 4
HIMF 69.72 97.49 56.38 42.01 98.07 63.47 99.55 46.03 64.14 58.99 93.79 99.14 51.23 90.41 17.86 58.67 85.44 62.52

2.09 4 1.5 1.2 4 4 2 4 2.1 1.8 1.5 4 1 1 1 1 2.5 1

Table 2: Quantitative comparison of the proposed scheme against state-of-the-art algorithms and qualitative evaluation
by a radiologist. The first row of each algorithm indicates quantitative scores (in percent) for the 17 datasets. The
second row of each algorithm indicates the average qualitative score (out of four) assigned by the radiologist. The best
scores for each dataset are marked in bold. Note that SRGA works only on uniformly sampled dataset and dataset #3
is non-uniformed sampled. Therefore no score is reported from SRGA for dataset #3.
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