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ABSTRACT

Deep learning methods are emerging as powerful alternatives
for compressed sensing MRI to recover images from highly
undersampled data. Unlike compressed sensing, the image
redundancies that are captured by these models are not well
understood. The lack of theoretical understanding also makes
it challenging to choose the sampling pattern that would yield
the best possible recovery. To overcome these challenges, we
propose to optimize the sampling patterns and the parame-
ters of the reconstruction block in a model-based deep learn-
ing framework. We show that the joint optimization by the
model-based strategy results in improved performance than
direct inversion CNN schemes due to better decoupling of the
effect of sampling and image properties. The quantitative and
qualitative results confirm the benefits of joint optimization
by the model-based scheme over the direct inversion strategy.

Index Terms— sampling, deep learning

1. INTRODUCTION

The slow acquisition rate is a primary limitation of mag-
netic resonance imaging (MRI) over other medical imaging
modalities. Image recovery from heavily under-sampled mea-
surements has witnessed extensive research in the past decade
that has enabled dramatic reductions in the scan time. The
quality of images recovered using computational algorithms
heavily depends on the specific image property (e.g., sparsity,
low-rank) as well as specific sampling pattern. The general
practice is to use variable-density sampling patterns with high
incoherence, based on the theoretical compressed sensing re-
sults. The optimization of the sampling patterns to recover
images with specific properties has been a long-standing
problem in MRI.

Several researchers have considered the optimization of
sampling patterns assuming different image constraints, in-
cluding known image support [1], parallel MR acquisition [2],
and transform-domain sparsity [3, 4]. These methods can be
broadly classified as reconstruction algorithm-dependent and
algorithm-independent. For instance, the approaches [1–4]
assume a specific image property and optimize the sampling
patterns to improve the diversity of measurements for that
class. The selection is independent of any specific image

reconstruction algorithm or its hyper-parameters. By con-
trast, [5, 6] considers the optimization of the sampling pat-
tern assuming specific reconstruction algorithms (e.g., TV or
wavelet sparsity) for a class of exemplar images. These al-
gorithms utilize a subset of discrete sampling locations us-
ing greedy or sparse optimization strategies so as to minimize
the reconstruction error using a specific algorithm. The main
challenge with these methods is the slow reconstruction al-
gorithm, which restricts the optimization of the pattern to a
large class of images. Further, these methods assume fixed
reconstruction algorithm and its hyper-parameters during the
optimization process.

Machine learning algorithms are now emerging as pow-
erful alternatives for compressed sensing. These methods
use learned-models instead of handcrafted priors such as
transform-domain sparsity to recover the images. The non-
linear convolutional neural networks (CNN) used in these
schemes are far more efficient in capturing the non-linear
redundancies that exist in images compared to the classical
priors. The reconstruction performance of machine-learned
models is not dependent on the incoherence of sampling
patterns, as hinted by early studies [7].

The study of the dependence of the optimal sampling pat-
tern on a specific network architecture is hence a key prob-
lem in deep learning based image recovery. Since the specific
image property exploited by CNN approaches is not well un-
derstood, it is difficult to adapt the algorithm-independent op-
timization strategies (e.g., [1–4]) to this setting. At the same
time, the fast reconstruction offered by machine learning al-
gorithms makes it possible to extend the algorithm-dependent
strategies (e.g., [6]) to a large class of images. Further, the
learnable nature of the reconstruction algorithms can adapt
its parameters to the sampling pattern.

The main focus of this work is to optimize for the sam-
pling pattern jointly with the deep learned reconstruction
algorithm to obtain the best performance over a class of im-
ages. The joint optimization strategy is expected to provide
improved performance compared to the classical pseudo-
random patterns as well as optimization strategies that learn
the sampling pattern while assuming the algorithm and its
hyperparameters to be fixed. Since the joint optimization
problem is non-convex, it may be challenging to achieve the
global minimum of the cost function. While the ability of



stochastic gradient descent to achieve good performance in
CNN training is reported, its use in the proposed setting is
not studied. We study the utility of the proposed strategy with
both direct inversion [8–10] and model-based methods [7,11].

The CNN based direct inversion schemes [8, 9] require
fine-tuning according to a specific sampling pattern. The
strong coupling between CNN parameters and the sampling
pattern can make the optimization task more challenging. By
contrast, model-based schemes use the information of the
sampling pattern within the reconstruction algorithm, thus
decoupling the CNN block from changes in sampling pattern.
This improved decoupling between the parameters in model-
based approaches is expected to offer improved performance.
This work focuses on the single-channel MRI acquisition
setting for simplicity while the future work will consider its
extension to multichannel setting.

2. METHOD

2.1. Image Formation & Reconstruction

We consider the recovery of the complex image x ∈ CM×N

from its possibly non-Cartesian Fourier samples:

b[i] =
∑

m∈Z2

x[m]e−jk
T
i m + n[i],ki ∈ Θ. (1)

Here, Θ is a set of sampling locations and n[i] is the noise
process. The mapping can be compactly represented as
b = AΘ(x) + n. A common approach for recovering im-
ages from heavily undersampled measurements such as (1) is
model based strategies, which pose the reconstruction as an
optimization problem of the form

x̂{Θ,Φ} = arg min
x

‖b−AΘ(x)‖22 + RΦ(x). (2)

Here, RΦ is a regularization penalty (e.g transform domain
sparsity, when R(x) = λ‖Tx‖`1 ) with Φ denoting the pa-
rameters of the regularizer and the transform. The notation
x̂{Θ,Φ} for the solution of (2) denotes its dependence on the
regularization parameters as well as sampling pattern.

2.2. Deep learning based image recovery

Recently, several authors have proposed to replace the above
hand-crafted image regularization penalties in (2) with learned
priors. For instance, model based deep learning (MoDL) [11]
formulates the image recovery as

x̂{Θ,Φ} = arg min
x

‖b−AΘ(x)‖22 + ‖x−DΦ(x)‖2F , (3)

where DΦ is a residual learning based CNN that is de-
signed to denoise x. The optimization problem specified
by (3) is solved using an iterative algorithm, which alter-
nates between DΦ and a data-consistency step QΘ(z) =
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Fig. 1. The proposed joint model based deep learning (J-
MoDL) architecture and the training process. Each iteration
consists of a CNN block DΦ and a data-consistency block
QΘ. This architecture facilitates the decoupling of the image
priors and the sampling pattern, thus allowing efficient opti-
mization of the parameters Φ and Θ.
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a conjugate gradients algorithm. This iterative algorithm is
unrolled to obtain a deep networkMΘ,Φ, where the weights
of the CNN blocks and data consistency blocks are shared
across iterations as shown in Fig. 1. Specifically, the solution
to (3) is given by

x̂Θ,Φ =MΘ,Φ

(
AΘ(x)

)
(4)

The parameters of the unrolled deep network are learned
from a set of training images xi; i = 1, .., N , such that the
training error

Φ∗ = arg min
Φ

N∑
i=1

‖MΘ,Φ

(
AΘ(xi)

)
− xi‖22 (5)

is minimized. An alternative to the above model-based strat-
egy is direct inversion, which relies on a deep CNN to recover
the images from AH

Θ(b); the CNN learns to invert the class
of images for the specific sampling pattern Θ. The key dif-
ference between this strategy and MoDL is the strong cou-
pling between the CNN blocks and the sampling pattern; the
CNN parameters need to be fine tuned to the specific sam-
pling pattern. By contrast, the CNN parameters in MoDL are
more decoupled from the sampling pattern, making the train-
ing easier. We note that the use of QΘ within the network
enables MoDL to use the same learned DΦ block for differ-
ent sampling patterns [11].

2.3. Joint Optimization

The main focus of this work is to jointly optimize both DΦ

and QΘ blocks in the MoDL framework with the goal of
improving the reconstruction performance. Specifically, we
propose to jointly learn the sampling pattern Θ and the CNN
parameter Φ from training data using

{Θ∗,Φ∗} = arg min
Θ,Φ

N∑
i=1

‖MΘ,Φ

(
AΘ(xi)

)
− xi‖22. (6)

This proposed J-MoDL framework can be generalized to
other error metrics such as perceptual error.



2.4. Parametrization of the sampling pattern

In this work, we restrict our attention to the optimization of
the phase encoding locations in MRI, while the frequency en-
coding direction is fully sampled. Mathematically, we model
the sampling set as the translates of a single pattern Γ.

Θ =

P⋃
i=1

(Γ + θi) (7)

Here Θ = {θi; i = 1, .., P} are the P phase encoding lo-
cations, while Γ is the set of samples on a line. In addition
to reducing the parameter space, this approach also simplifies
the implementation; the QΘ blocks can be implemented an-
alytically in-terms of 1-D Fourier transforms. Note that this
framework can be generalized to sample arbitrary trajectories
(e.g. radial lines with arbitrary angles).

2.5. Network details and Initialization

The J-MoDL reconstruction network is shown in Fig. 1. In
our experiments, we observe that a three iteration unfolding
was sufficient in the single-channel setting. As seen from
[11], more iterations are needed in the multichannel setting.
The sampling operator AΘ is implemented using a 1-D dis-
crete Fourier transform from the spatial locations to the con-
tinuous domain Fourier samples specified by Θ. The data-
consistency block QΘ is implemented using conjugate gradi-
ents algorithm. The CNN block DΦ consists of a UNET with
four pooling and unpoolong layers. The parameters of the
blocks DΦ and QΘ are optimized to minimize (6).

We utilized publically available knee dataset in [7]. The
training data constituted of 381 slices from 10 subjects,
whereas test data had 80 slices from 2 subjects. A coil com-
bination was performed to simulate single-coil images. For
comparison, we also study the optimization of the sampling
pattern in the context of direct inversion (i.e, when a UNET
is used for image inversion). A UNET with same number of
parameters was used in the study.

In our experiments, we trained the UNET and MoDL ar-
chitecture with different random sampling masks to make the
CNN parameters Φ relatively insensitive to the undersampling
patterns. These CNNs were used as the initialization for the
networks in the remaining experiments. Starting with this ini-
tialization, we first optimize for the sampling pattern Θ alone
while keeping the reconstruction frameworks fixed. Second,
we simultaneously optimized both the sampling patter Θ and
the network parameters Φ in the two frameworks (UNET and
MoDL).

3. EXPERIMENTS AND RESULTS

The results of the optimization are reported in Table 1, where
we have reported the average PSNR and SSIM values ob-
tained on the test data. The top row corresponds to the opti-

Table 1. The average PSNR (dB) and SSIM values obtained
over the test data of two subjects with total of 80 slices using
different optimization strategies.

PSNR SSIM

Optimization UNET MoDL UNET MoDL

Φ alone 30.00 33.42 0.84 0.85
Θ alone 25.40 35.03 0.71 0.89
Θ,Φ Joint 30.61 35.69 0.87 0.90

(a) Original (b) J-UNET, 30.44 dB (c) J-MoDL, 33.93 dB

Fig. 2. A visual comparison of the J-UNET and the J-MoDL
approaches on a test slice. The joint learning using J-MoDL
preserves the fine details as pointed by arrows in the zoomed
area.

mization of the network parameters Φ alone, assuming inco-
herent undersampling patterns. The MoDL framework pro-
vides an approximate 3.5 dB improvement in performance
over a UNET scheme with the same number of parameters.
The second row corresponds to the optimization of the sam-
pling pattern Θ alone, while the network parameters are fixed
as the above initialization. We note that the optimization of
the sampling pattern provided a 1.5 dB improvement in per-
formance with MoDL, while the performance of the UNET
degraded. This deterioration is likely due to the close cou-
pling between the UNET parameters and the sampling pat-
tern in direct inversion schemes; when the sampling pattern
differs from the ones that were used to train the UNET, it
is not guaranteed to yield good performance. The last row
corresponds to the joint optimization scheme, where both Θ
and Φ are trained. The resulting J-MoDL scheme offers a 0.6
dB improvement in performance over the optimization of Θ
alone, while the resulting J-UNET approach provides a 0.6
dB improvement over the initialization. The results demon-
strate the benefit of the decoupling of sampling pattern and
CNN parameters offered by MoDL in the joint optimization.

Figure 2 shows the visual comparison of the reconstruc-



(a) Original (b) MoDL, 31.78 dB (c) J-MoDL, 35.62 dB

Fig. 3. A visual comparison of the MoDL and the J-MoDL
approachs shows that the joint optimization preserves the fine
structures as shown by arrows.

(a) Fixed Mask (b) Learned Mask

Fig. 4. The fixed mask used during testing and the learned
mask using the J-MoDL approach. The learned phase encod-
ing locations are continuous-valued that were discretized for
display purposes.

tion quality obtained by the joint optimization with UNET
as well as the MoDL based strategies. The proposed J-
MoDL method provides significantly improved results, as
highlighted by the zoomed region.

Figure 3 demonstrates the benefits of performing joint op-
timization of both the sampling pattern and the network pa-
rameters as compared to the network alone. The red arrows
clearly show that the proposed J-MoDL architecture preserves
the high-frequency details better than the MoDL architecture.
Figure 4(b) shows the learned sampling mask by the J-MoDL
approach while the initialization was done using the mask in
Figure 4(a). The learned continuous values were rounded to
nearest integer for display purpose.

4. CONCLUSIONS

This work shows how to jointly optimize the sampling pattern
and the reconstruction network simultaneously while obeying
the physics of MR acquisition. The proposed joint model-
based deep learning framework (J-MoDL) has decoupled

sampling and CNN blocks. This decoupling makes J-MoDL
architecture relatively insensitive changes in sampling pattern
as compare to a direct inverse based method. The experimen-
tal results show that the proposed J-MoDL produces better
results than J-UNET architecture for the same acceleration
factor.
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