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ABSTRACT

Echo-planar spectroscopic imaging (EPSI) sequence with
spectrally interleaving is often used to rapidly collect metabolic
MRI data. The main problem in using it on high field scan-
ners is the presence of spurious peaks resulting from phase
distortions between interleaves as well as the low signal to
noise ratio. We introduce a novel structured low-rank frame-
work for the simultaneous denoising and deinterleaving of
spectrally interleaved EPSI data. The proposed algorithm
exploits annihilation relations resulting from the linear pred-
icability of exponential signals as well as due to uncorrected
phase relations between interleaves. The algorithm is formu-
lated as a structured nuclear norm minimization of a block
Hankel matrix, derived from the interleaves. Experiments us-
ing hyperpolarized 13C mouse kidney EPSI data demonstrate
the ability of the algorithm to remove ghost peaks from EPSI
data collected using bipolar readout gradients.

Index Terms— echo planar spectroscopic imaging, odd
and even echoes, ghost peaks, structured low-rank recovery

1. INTRODUCTION

Shortening scan time has been a prime focus of magnetic
spectroscopic imaging (MRSI) research [1, 2]. EPSI [?, ?]
achieves accelerated data acquisition by using echo-planar
readouts to simultaneously encode one spectral and one spa-
tial dimension in one acquisition. This approach offers a
speed up that is equal to number of points along one spatial
dimension. However, it imposes high demands on the gradi-
ent system to maintain sufficient spectral resolution on high
field systems that have greater spectral dispersion. A common
practice to achieving sufficient spectral resolution is spectral
interleaving, where the readouts are delayed in time for each
spectral interleave. The data from multiple interleaves are
upsampled and interlaced to form the final spectrum. A
challenge associated with this strategy is the phase inconsis-
tencies between interleaves, resulting from timing errors in
the applied gradient trains, drifts in the magnetic field, and
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dependence on field inhomogeneity distortions. This prob-
lem is similar to Nyquist ghosting artifacts in echo-planar
imaging (EPI), which manifests as Nyquist ghosts in the
phase encoding dimension. In EPSI acquisitions, the phase
inconsistencies manifest as spurious peaks in the spectra,
which often makes the interpretation of the data challeng-
ing. Specifically, the proximity of a spurious peak from a
strong metabolite may result in lineshape changes, affecting
the accurate quantification of a relatively weak metabolite.
Likewise, the intensity of the true peak may also be reduced
since the energy is split between the true peak and ghost peak.

Several methods have been developed for the reduction of
spectral ghosts in EPSI data. The conventional approach pro-
cesses the odd and even echoes separately [6] reducing the
spectral bandwidth by half; hence is not an option for high
field scanners. Methods relying on theoretical estimates of
k-t space trajectory such as the interlaced Fourier transform
method [7] or the Fourier shift method [8] ignore the phase
distortion between the echos. Echo misalignment [6, 7] cor-
rection has shown good potential in the reduction of spurious
peaks, contingent to accurate estimation of k-t space trajec-
tory that is often not practical in the presence of drifts and
B0 inhomogeneity. Another popular method is to estimate
the phase inconsistencies from the center of k-space and cor-
rect for the misalignment between the echoes [5] during data
processing. Even though this method has shown promise in
fat-water imaging, its utility for low-intensity metabolites is
yet to be seen.

We introduce a novel reconstruction method for EPSI data
which does not depend on accurate estimates of phase in-
consistencies or k-t space trajectory to suppress the spectral
ghosts. We exploit the annihilation relations in spectrally in-
terleaved EPSI data resulting from the linear predictability
of exponential signals and phase relations between the inter-
leaves. We pose the problem as a recovery of two signals
at each pixel, corresponding to the odd and even interleaves.
The proposed framework is inspired by our MUSSELS strat-
egy used in multishot EPI acquisitions [9], which is concep-
tually similiar to [10, 11]. Unlike these methods [9, 10, 11]
that rely on coil sensitivity information or signal smoothness
to avoid the trivial solution resulting from uniform undersam-
pling, we rely on the annihilation property due to linear pre-
dictability of the exponentials. We construct a block Han-



kel matrix, whose entries correspond to the two echoes, that
capture the annihilation relations in a compact way; the an-
nihilation relations translate to a low-rank block Hankel ma-
trix, which we recover from undersampled measurements us-
ing structured nuclear norm minimization. / We demonstrate
the results of the proposed method using high resolution 13C
MRSI data of mouse kidney acquired at 9.4T using bipolar
EPSI readout gradients. The proposed methods show im-
provement in the signal of Pyruvate maps due to recovery of
real spectral peaks and reduction of spurious peaks leading
from combination of odd and even echoes.

2. BACKGROUND

We assume that the true spectrum at a specified pixel r as a
multi-exponential model:

ρ[r, n] =
K∑
k=1

ck[r] (νk)
n
; n = 0, .., N − 1 (1)

where K is the number of exponentials with parameters
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and ck are amplitudes. Here
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nential parameters of the kth exponential and T is the Nyquist
sampling interval. We will omit the dependence of the signal
on the spatial location for simplicity in the future discussions.
The Fourier transform of the signal along n, specified by
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will have K peaks at frequencies fk; the basic goal in MR
spectroscopy is to estimate the amplitudes ck from the data.

Since the bandwidth of the spectrum is too large in high
field scanners, it is often impossible to sample the signal at the
Nyquist rate using EPSI. It is a common practice to acquire
the data using spectral interleaving, where the signal is sam-
pled twice with a sampling interval of 2T . Specifically, one
would acquire two signals ρo[n] and ρe[n], where the read-
out of the odd signal is delayed by T , These signals are later
combined as

ρcombined[n] =

{
ρe[n] if n is even
ρo[n] if n is odd (4)

Unfortunately, ρe and ρo are acquired at two different acqui-
sitions and hence would differ in terms of a phase distortion.
The distortion is often a complex function of the readout de-
lay T and the field inhomogeneity at the spatial location r.
Hence, the combined signal (4) often suffers from spectral
ghosts, shifted from the original point by N/2 spectral points;
the distribution of the amplitudes to the two peaks is depen-
dent on the phase distortion. A schematic diagram explaining
the signal formation is shown in Fig.1.

3. METHODS

We introduce an algorithm for the removal of spurious peaks
as well as the denoising of spectroscopic MRI data. The algo-
rithm exploits the annihilation relations induced by the spec-
tral model (1) as well as the phase relations in (5) & (6). We
use a lifting strategy, where a structured matrix is formed us-
ing the entries of the measured signals ρe and ρo to exploit
the annihilation relations. The rank of the structured ma-
trix is very low due to the annihilation relations. We use the
low-rank property to jointly recover the fully sampled signals
ρe[n];n = 0, .., N − 1 and ρo[n];n = 0, .., N − 1 from their
undersampled measurements.

We model the phase distortions in ρe and ρo as convolu-
tions by finite impulse response filters ge[n] and go[n], respec-
tively. Specifically, we assume that

ρ̂e[k] = ρ̂[k] ĝe[k] (5)
ρ̂o[k] = ρ̂[k] ĝo[k], (6)

where the signals ge[k] and go[k] are specified by

g[k] =

M∑
p=−M

c[k] exp

(
−j 2πpk

N

)
(7)

Note that the above model can easily account for differences
in phases and differences in frequencies in a small range de-
termined by T , between the two acquisitions.

3.1. Annihilation relations induced by exponential model

Exponential signals in (1) satisfy an annihilation relation [12,
13]:

ρ[n] ∗ h[n] = 0, (8)

where h is the FIR filter of the form

h(z) =

K∏
i=1

(
1− νkz−1

)
. (9)

Since ρe(z) = ρ(z)he(z) and ρo = ρ(z)ho(z), both of these
signals also satisfy (8) with the same filter. The convolu-
tion relation in (8) can be expressed as in the matrix form
as Qeh = 0 and Qoh = 0, where Qe and Qo are (N −
K + 1) × K dimensional Hankel matrices formed from the
samples of ρo and ρe, respectively. In reality, the number of
exponentials K is unknown, when one can overestimate it as
P . In this case, any filter specified by hn(z) = h(z)η(z) such
that hn is a P tap filter also annihilates the signal. Since one
can find P −K linearly independent filters η(z), the rank of
the (N − P + 1) × P dimensional matrices Qo and Qe can
be shown to be equal to K − 1 (see [12] for details).

3.2. Annihilation property induced by phase relations

The model specified by (6) and (5) implies that there exists
annihilation relations between the two signals

ρe[n] ∗ go[n]− ρe[n] ∗ ge[n] = 0. (10)



Fig. 1: The FID at each pixel rho are corrupted by different
phase distortion functions φ1 & φ2 before combining the odd
(ρo) and even (ρe) as shown in the data acquisition block as
described in Eqn:4. Standard schemes form the interleaved
signal ρcombined as shown in the reconstruction block. We
propose to replace the reconstruction by Eqn: 13.
This annihilation relation can be represented in the matrix
form as

[Qe,Qo]︸ ︷︷ ︸
Q

[
go
−ge

]
= 0, (11)

where Qo = T (ρo) and Qe = T (ρe) are (N −M + 1)×M
dimensional convolution (Hankel) matrices obtained from the
samples ρo[n] and ρe[n], respectively.

In reality, one often does not know the precise value of
M needed to model the phase distortion; we overestimate
the support to P ≥ M . In this case, there are multiple an-
nihilation relations, involving filters g̃o(z) = go(z)γ(z) and
g̃e(z) = ge(z)γ(z), where γ(z) is an arbitrary filter such that
h̃o(z) and h̃e(z) are still support limited within M . This im-
plies that the matrix H is low-rank.

We note that the combined lifting will benefit from both
the exponential structure and phase relations. Specifically, we
have

[Qe,Qo]︸ ︷︷ ︸
Q

[
go ∗ γ h ∗ η 0
−ge ∗ γ 0 h ∗ η

]
= 0, (12)

Both the annihilation relations together result in a matrix with
small rank.

3.3. Proposed structured low-rank algorithm

We use the low-rank structure of Q to recover the two signals
µo and µe from their undersampled measurements:

{µo, µe} = arg min
µo,µe

‖Aoµo − ρo‖2 + ‖Aeµe − ρe‖2

+λ‖ [T (µo), T (µe)]︸ ︷︷ ︸
Q

‖∗, (13)

whereAo andAe are undersampling operators corresponding
to ρo and ρe, respectively. We use an iteratively reweighted
nuclear norm minimization algorithm to minimize the above
cost function and recover the signals. Post recovery, we will

use root mean square of µo & µe as the recovered spectrum.
Since exponential signals with fewer exponential parameters
are associated with lower rank, the proposed formulation per-
forms simultaneous denoising and deinterleaving.

The periodic undersampling pattern that results from in-
terleaved sampling may result in a trivial solution, if the spec-
tral annihilation relations are not exploited [11]. Specifically,
the trivial solution µo = ρcombined = µe will satisfy the
data consistency relations and the trivial annihilation relation
µe[n]∗δ[n]−µe[n]∗δ[n] = 0, resulting in a matrix of rank P .
However, when the signal follow a multiexponential model
as in (1), we observe that the trivial solution has 2K (dou-
ble the number of exponential parameters), when compared
to the true solution due to aliasing. This shows that the triv-
ial solution is not the one that satisfies the data consistency
constraints and yield the minimum rank of Q.

4. EXPERIMENTS AND RESULTS

A 9.4T small animal imaging scanner (Bruker BioSpin MRI
GmbH, Germany) equipped with 1H−13C dual-tuned mouse
volume Tx/Rx coil was used for all experiments [15]. [1-
13C] pyruvic acid doped with 15mM Trityl radical and 1.5M
Dotarem was polarized for 1 hour using HyperSense DNP
polarizer (Oxford Instruments, Oxford, UK). Hyperpolarized
sample was dissolved with Tris/EDTA-NaOH solution, and
350ul of pyruvate was injected into Balb/c mouse through tail
vein catheter over duration of 5s. Axial oriented slice con-
taining mouse kidney of 3 mm thickness was selected, and
the scan was started at 5s after injection of the pyruvate. All
procedures of the animal experiments were approved by the
local animal care and use committee. EPSI data of matrix size
64 × 64 was collected using a bipolar gradient with 64 spec-
tral points. Combination of odd and even echoes achieved a
spectral bandwidth of 1562.5 Hz.

We compared the algorithm with phase correction method
[5]. In Fig.2(a) the reference 1H image with three reference
pixels are shown. Fig.2(b-d) & (f-g) show the spurious peak
frame and pyruvate maps for all methods. The spurious peak
frame shows reduced intensity for the proposed method which
corresponds to improved removal of spurious peaks. The pro-
posed method shows improved signal concentration for the
pyruvate maps in areas as shown by the arrows. The per-
centage difference map in Fig.2(e) shows upto 70% increased
signal recovered by the proposed method compared to the un-
corrected data.

The spectra in Fig.3 from three regions of the kidney
(aorta, cortex & medulla) show complete removal of spuri-
ous peaks and also exhibits denoising. The phase correction
provides no denoising and also has sub-optimal performance
especially for the renal medulla (blue) pixel.

5. CONCLUSION

In this work we proposed a novel algorithm for denoising
and deinterleaving of EPSI data without directly estimating



Fig. 2: Metabolite maps: (a) 1H reference image of mouse
kidney with reference pixels marked in three regions. (b-d)
Intensity map at the spurious peak corresponding to Pyruvate
and (f-h) Pyruvate maps, for the uncorrected data, phase cor-
rection method and proposed method respectively. (e) Map
showing percentage increase of signal intensity provided by
proposed method compared to uncorrected data. Pixels show
upto 70% increase.

phase or relying on theoretical k-space trajectory. We fur-
ther demonstrated the improvement offered by the proposed
method compared to the classical phase correction method.
The proposed scheme would be highly beneficial in recon-
struction and correction of high-resolution EPSI, especially
for the acquisition from high field magnets.
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