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Abstract

Purpose: To introduce a novel algorithm for the recovery of high-resolution MRSI data with minimal

lipid leakage artifacts, from dual-density spiral acquisition.

Methods: The reconstruction of MRSI data from dual-density spiral data is formulated as a compart-

mental low-rank recovery problem. The MRSI dataset is modeled as the sum of metabolite & lipid

signals, each of which is support limited to the brain and extra-cranial regions respectively, in addition

to being orthogonal to each other. The reconstruction problem is formulated as an optimization problem,

which is solved using iterative reweighted nuclear norm minimization.
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Results: The comparisons of the scheme against dual-resolution reconstruction algorithm on numerical

phantom and in-vivo datasets demonstrate the ability of the scheme to provide higher spatial resolution

and lower lipid leakage artifacts. The experiments demonstrate the ability of the scheme to recover the

metabolite maps, from lipid unsuppressed datasets with TE=55 ms.

Conclusion: The proposed reconstruction method and data acquisition strategy provide an efficient way

to achieve high resolution metabolite maps without lipid suppression. This algorithm would be beneficial

for fast metabolic mapping and extension to multislice acquisitions.

Key words: MR spectroscopic imaging; lipid suppression; low-rank models; chemical shift imag-

ing; fast sequences; spiral trajectory; dual-density acquisition.
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INTRODUCTION

MR Spectroscopic Imaging (MRSI) enables spatial mapping of multiple tissue metabolites in vivo, many

of which are proven to be valuable biomarkers for several diseases (1–3). However, the clinical utility

of MRSI is currently restricted by several challenges, resulting from very low metabolite concentrations.

Specifically, achievable spatial resolution using Nyquist sampling and conventional recovery schemes is

limited by metabolite SNR and scan time. Broad point spread functions (PSF) result in significant spectral

leakage from the extracranial lipid and residual water signals, which have several orders of magnitude higher

intensity than metabolites.

Several water and lipid suppression schemes are available in MRSI. Chemical-shift selective saturation

methods (4–6), followed by post-processing methods such as Hankel singular value decomposition (HSVD)

(7) can provide reasonable suppression of residual water signal. Popular approaches to attenuate lipid signals

include outer volume suppression (OVS) (8–11), inversion recovery (12–14), inner volume excitation (15,

16), and use of long echo times (17, 18). None of these methods provide perfect lipid suppression, in addition

result in signal loss or reduced brain coverage. Moreover, many of these methods have practical limitations.

For example, OVS band placement may be challenging and time-consuming for multislice acquisitions and

also limited by allowable RF energy deposition limits at higher field strengths. Performance of many of the

above methods (e.g. OVS, inner volume excitation) also degrades in presence of field inhomogeneity and

chemical shift effects, especially at high field strengths.

Post-processing methods were introduced for minimizing residual lipids. A popular approach is k-space

extrapolation using high-resolution spatial support estimates (19, 20). This method provides acceptable

spectral quality, when combined with inversion recovery (21). Several authors have proposed dual-density

acquisition methods, coupled with dual-resolution reconstruction algorithms, to further improve lipid sup-

pression. The basic idea is to extend k-space coverage to obtain narrower PSF, translating to reduced lipid

leakage (18, 22–25). Since weak metabolite signals cannot be recovered reliably from small voxels in a

short acquisition time, dual-resolution schemes acquire the central k-space regions with more averages. The

data are recovered using dual-resolution reconstruction algorithms, which restrict the nominal resolution of

the metabolites by the k-space regions collected with more averages, while lipid regions are estimated at a

high spatial resolution. Recovery of strong lipid signals at high spatial resolution results in reduced lipid

leakage in the brain region. While similar dual-resolution algorithms have been successfully used (26, 27),
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all of them need to be coupled with some form of lipid suppression. In addition, most of these methods are

associated with smoothness priors, resulting in low-resolution recovery of metabolite regions. To overcome

such limitations recent works have focused on super-resolution MRSI data recovery. An overview of such

super-resolution methods in MRSI is available in (28, 29).

In this work, we combine dual-density spiral MRSI acquisition method with a novel compartmentalized

low-rank algorithm to recover metabolic images with higher spatial resolution and minimal lipid leakage ar-

tifacts. We model field inhomogeneity compensated dataset as the sum of metabolite and lipid signals, each

of which is non-zero within the brain and extra-cranial regions, respectively. Since each of these signals arise

from finite number of anatomical regions with distinct spectral signatures, they can each be efficiently repre-

sented as the linear combination of finite number of basis functions. We propose to organize the metabolite

and lipid signals as low-rank matrices, and their recovery from noisy measurements can be regularized us-

ing nuclear norm penalties. Similar low-rank methods have been recently introduced for signal recovery

in many areas, including MRSI (17, 30–34) and dynamic imaging (35–39). Unlike dual-density methods

that restrict nominal resolution of metabolites to the multi-averaged low-resolution portion of the k-space

(18, 22–27, 40), the proposed scheme recovers metabolites from the entire k-space; low-rank prior makes

the recovery scheme well-posed and recovers metabolite maps with improved spatial detail. Metabolite and

lipid spectral signatures are drastically different with different chemical shifts and T2 decay rates. Inspired

by the work of Bilgic et al. (40), we propose to decouple the subspaces using an orthogonality penalty,

which encourages metabolite and lipid subspaces to remain orthogonal. Denoising of lipid signals offered

by the low-rank and orthogonality priors in our framework offers improved lipid suppression, compared to

(40) that uses lipid signals estimated from an initial high-resolution reconstruction. We designed a variable

density spiral sequence using the numerical algorithm in (41). This sequence enables us to fully acquire a

128x128 image matrix in 7.2 minutes scan time. The sequence acquires the central k-space regions (k-space

radius ≤ 16) with twelve-fold oversampling, while outer k-space regions are acquired at Nyquist rate. The

spiral sequence is a better alternative to Cartesian dual-density acquisitions that combine data from separate

scans (17, 23, 33, 42); since all the data blue are acquired using a single sequence, no correction methods

are needed.

Recently low-rank based method, SPICE was introduced for high resolution MRSI (17, 33, 34). SPICE

uses a low resolution data to estimate metabolite and lipid bases based on spectral priors in the first step.

MRSI data from high-resolution measurements is recovered using the basis functions in the second step.

4



The proposed method, contrarily uses orthogonality priors and does not rely on accurate prior knowledge

of spectral supports of lipid regions to suppress lipids. Our experiments show that the proposed method is

applicable to problems where there is considerable field inhomogeneity variations in the lipid region, where

use of spectral priors may be difficult. Another benefit of the proposed scheme is that it may be readily

applicable to a variety of sampling schemes, compared to (17, 33, 34) that requires specialized trajectories.

We compare the performance of the proposed scheme to our dual-resolution reconstruction scheme

that relies on compartmental smoothness priors (26) and dual-density recovery scheme in (40), followed

by denoising using a low-rank approximation. A simulated phantom and in-vivo data with and without

lipid suppression and TE=55 ms were used to validate the method. Experiments show that the proposed

method can provide improved reconstruction than dual-resolution recovery schemes. Specifically, it yields

metabolite maps with higher resolution and minimal lipid artifacts, even in absence of lipid suppression.

THEORY

We denote the underlying spatio-spectral function in MRSI by x(r, f), where r is the spatial index and f is

the spectral index. The measured signal from the jth coil in k − t space is modeled as,

ŝj(k, t) =

∫
r∈Ω

∫
f
x(r, f) cj(r)e−i2πkre−i2π(f+∆f(r))tdrdf + ηj(k, t); j = 1, ..#Ncoils. [1]

Here, r specifies the spatial location and t denotes time. ∆f(r) = γ̄4B0(r) is the field inhomogeneity

induced spectral shift at the spatial location r. cj(r) is the jth coil sensitivity, and ηj(k, t) is white Gaussian

measurement noise. Note that the spatial integral is restricted to Ω, which is a mask that specifies signal

support (e.g., head). The entire acquisition scheme can be compactly represented as

S = AΩ (X) + η. [2]

The operator AΩ includes coil sensitivity encoding, k-space encoding, and spatially varying chemical shift

resulting from field inhomogeneity. S is a matrix, whose entries correspond to the measured k − t space

samples. Here, X is the R×N Casorati matrix derived from x(r, f), whose rows correspond to the N point
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spectra from pixels within Ω:

X =



x(r1, f1) x(r1, f2) · · · x(r1, fN )

x(r2, f1) x(r2, t2) · · · x(r2, fN )

...
...

. . .
...

x(rR, f1) x(rR, t2) · · · x(rR, fN )


[3]

Here, R is number of pixels in Ω.

Compartmental low rank MRSI signal model: Several authors have proposed to model signal x(r, f)

using low-rank methods (30, 32). A challenge with direct application of these methods to lipid unsuppresed

data is the strong extracranial lipid signals that are several orders of magnitude stronger than metabolites;

low-rank modeling may result in the lower principal components being captured by the lipid signals to

account for subtle variations in lipid signal. A high rank representation will hence be needed to accurately

represent the metabolites, which may make the model inefficient.

The lipid and metabolite signals that originate from disjoint spatial supports, have finite number of

resonant frequencies arising from finite anatomical regions inside the spatial compartments. We assume that

brain and lipid regions, denoted by ΩM and ΩL respectively, to be known a-priori from water reference

scans. We denote metabolite and lipid components of x(r, f) as

xM (r, f) = x(r, f) · χΩM
(r) [4]

xL(r, f) = x(r, f) · χΩL
(r) [5]

Here, χΩ is the characteristic function of the region Ω:

χΩ(r) =

 1 if r ∈ Ω

0 else.
[6]

Since the regions ΩM and ΩL are mutually exclusive, we have

x(r, f) = xM (r, f) + xL(r, f). [7]

Note that the dynamic range of signals xM and xL is individually small, even though the dynamic range
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of the signal x is very high. We construct matrices XM and XL similar to [3] from xM and xL by only

including pixels from ΩM and ΩL, respectively. We assume that XM and XL are individually low-rank; the

compartmental low-rank model allows these matrices to be represented using distinct basis functions and to

independently control their ranks.

We observe that spectra of the metabolite and lipid regions are highly dissimilar, and hence orthogonal

(i.e., 〈xL(r1, f), xM (r2, f)〉 = 0; ∀r1, r2). We are inspired by the use of a similar prior in (40) to minimize

cross-talk between xM and xL. Combining this prior with the decomposition in [7], we obtain

X = XM + XL; XL XH
M = 0, [8]

where XH is the conjugate transpose of the matrix X.

Recovery of the compartmental signal model from k-t space data: We pose recovery of the metabolite

and lipid components from measured k-space data as the optimization problem:

{XM ,XL} = arg min
XL,XM

‖AΩM
(XM ) +AΩL

(XL))− S‖2︸ ︷︷ ︸
data consistency

+ λ1‖XM‖∗ + λ2‖XL‖∗︸ ︷︷ ︸
low-rank priors

,

+ β ‖XMXH
L ‖2︸ ︷︷ ︸

orthogonality prior

. [9]

Here ‖X‖∗ denotes the nuclear norm of X. The first term is the data consistency term, while the

second and third terms are the low-rank priors on metabolite and lipid signals, respectively. Note that we

do not explicitly use spectral priors of metabolite and lipid regions to discourage cross-talk as in (17, 33);

the cross-talk is automatically minimized by use of the orthogonality priors. As shown in (40) and our

experiments, orthogonality priors will only cause minimal biases in the metabolite signals. We do not use

detailed anatomical priors (e.g. masks of gray matter, white matter, and CSF regions) as proposed by several

authors (26, 28, 43–48). The inner-product between metabolite and lipid signals are penalized, weighted by

a high regularization parameter β.

We propose to solve the above problem using the iterative re-weighted least square minimization (IRLSM)

algorithm (49, 50) for nuclear norm minimization. This approach relies on approximating the nuclear norm
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penalty at the nth iteration as the weighted Frobenius norm:

‖X‖∗ ≈ ‖X Q‖2F, [10]

where the weight matrix at the nth iteration is chosen as Q =
(
XH
n−1Xn−1

)−1/4; where Xn−1 is the

solution of the nuclear norm minimization problem at the (n− 1)th iteration. The matrix power is evaluated

using eigen value decomposition. Specifically, we perform eigen decomposition to obtain
(
XH
n−1Xn−1

)
=

UΣUH and complete the weight matrix as Q = USUH , where S = Σ−(1/4). To avoid division by

zero, diagonal entries of S are stabilized as si = max (σi, ε)
−(1/4), where ε is a stabilization constant. For

convergence of the solution, we require ε→ 0 as n→∞. When a target rank K is desired, the stabilization

parameter is chosen as ε = γ σK , where 0 < γ < 1. Using the IRLSM scheme to solve [9] amounts to

solving the following quadratic criterion at the nth iteration:

{XL,XM}n = arg min
XL,XM

‖AΩM
(XM ) +AΩL

(XL))− S‖2 + λ1‖XM QM‖2F

+ λ2‖XL QL‖2F + β‖XM QO‖2F︸ ︷︷ ︸
orthogonality penalty

. [11]

Weight matrices matrices QM and QL are updated at the nth iteration using the solutions {XM ,XL}n−1 as

QM = UM Σ̃
(−1/4)
M UH

M , where XH
MXM = UMΣMUH

M [12]

QL = UL Σ̃L
(−1/4)

UH
L , where XH

L XL = ULΣLUH
L . [13]

Diagonal entries of the matrices Σ̃M and Σ̃L are stabilized versions of the entries of ΣM and ΣL,

respectively; i.e, Σ̃(i) = min(Σ(i), ε). Equation [11] may be intuitively interpreted; if the matrices XM

and XL are low-rank and the singular values decay rapidly, QM and QL are projection operators onto

the noise subspaces of XM and XL (corresponding to insignificant singular values), respectively. Thus, the

second and third terms enable denoising by minimizing projection of the signals to the null-spaces, estimated

from the previous iteration. The projection matrix for orthogonality constraint QO in [11] is obtained as

QO = UL Σ
(1/2)
L UH

L , where XH
L XL = ULΣLUH

L [14]
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METHODS

Variable density spiral spin-echo sequence

The k-space trajectories are designed using a numerical algorithm (41). The sequence is illustrated in Fig.

1. We use a slice selective spin echo sequence with CHESS water suppression. No lipid suppression is used.

The parameters are TR/TE=1500/55 ms; total scan time=7.2 mins. A separate water scan using the same

sequence with TR= 500 and 2.4 mins of scan time, is used to estimate coil sensitivities, field inhomogeneity

map, and spatial supports of lipid and water regions. Coil sensitivities are estimated using the sum of squares

method (51).

Digital phantom for validation

We developed a numerical MRSI phantom with metabolite and lipid compartments by extending the tem-

plate and code in (52). This phantom is discretized on a 512× 512 Cartesian sampling grid as described in

Fig. 3. Fourier samples of the phantom are numerically evaluated at the k-t space points specified by the

above described spiral trajectory. White Gaussian noise was added to the Fourier samples.

To study the effect of lipid suppression, we considered two realizations of the digital phantom (a) without

any lipid signals (no lipid compartments) and (b) when lipid signals are present. SNR of the k-t space data

is 5.26 dB in (a) and 26.7 dB in (b); higher signal energy in presence of lipids translates to higher SNR

in (b). We compare the performance of Tikhonov regularized method and the proposed low-rank method

for both realizations. Reference reconstruction is obtained by gridding reconstruction of the k-t space data,

without lipids and additive noise. All reconstructions are performed on a grid size of 96 × 96 and a field

map estimated at the same resolution to correct for field inhomogeneity artifacts.

We also study the sensitivity of the algorithm to inaccurate lipid boundary estimation. Specifically, we

used two different lipid masks, obtained by morphologically shrinking and dilating the original mask used

for simulation, to reconstruct the MRSI data.
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Recovery of MRSI data using other algorithms for comparison

We compare the proposed method against the dual-resolution reconstruction scheme, which relies on com-

partmentalized Tikhonov smoothness regularization (26, 27):

{XM ,XL} = arg min
XL,XM

‖AΩM
(XM ) +AΩL

(XL)− S‖2︸ ︷︷ ︸
data consistency

+ α1‖∇ΩM
XM‖2 + α2‖∇ΩM

XL‖2︸ ︷︷ ︸
smoothness priors

.

Here, ∇ΩX denotes spatial gradient of X, restricted to the spatial compartment Ω. This approach is a

variational alternative to iterative methods used in (18, 22–25). We consider two different settings for choice

of α1 to illustrate tradeoffs in dual-resolution reconstruction. We consider α1 = 10−5, which corresponds

to minimal blurring of metabolites, referred to as high resolution (HR) Tikhonov recovery. We also consider

α1 = 10−3, termed as low-resolution (LR) Tikhonov recovery; this is the choice considered in (26). These

settings translate to PSF FWHM of 1 pixel and 2.5 pixels, respectively. In both cases, the parameter α2 is

chosen as 10−5 to minimize, lipid signal smoothing and lipid contamination of XM .

We also compare the proposed algorithm against the dual-resolution reconstruction algorithm in (40),

which uses orthogonality priors. We used the software provided by the authors for the reconstruction.

Metabolite signals were further denoised using low-rank approximation with rank=15 (using truncated SVD)

after reconstruction.

In-vivo experiments

In-vivo experiments were performed on a 3T Siemens Trio scanner using a 12 channel receive head-coil

under a protocol approved by the Institutional Review Board (IRB) of the University of Iowa . Single slice

proton MRSI data were collected from two healthy volunteers, after receiving informed consent.

Subject 1: An oblique axial slice above the ventricles was acquired with FOV = 240× 240 mm2 and a slice

thickness = 10 mm . Whole slice is excited without any lipid suppression.

Subject 2: An oblique axial slice is selected containing the corpus callosum and lateral ventricles and was

acquired with a FOV = 240 × 240 mm2. A lipid suppressed dataset (with eight OVS bands) and another

without lipid suppression were acquired.

High resolution B0 map, lipid and water images are estimated from the water reference data using (53).

Water and lipid images are thresholded to derive lipid region ΩL and brain region ΩM , respectively. These
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masks are used in [9] to define the forward model and to construct matrices XM and XL. A gridding

recovery is performed , followed by residual water estimation using the HSVD algorithm (7). The k-space

signal corresponding to the residual water signal is subtracted from the measured k-space data before any

processing.

We study the benefit in expanding k-space coverage, using variable density spiral k-space trajectory in

Fig. 2 using data from subject 1. We truncate k-space data to different sizes (radius 32, 64, 96 and 128),

corresponding to voxel sizes of 0.56, 0.14, 0.06 and 0.03 ml, respectively. We recover data from these four

cases using gridding reconstruction algorithm on an image grid size of 128× 128. Post recovery, metabolite

data within the brain is smoothed with an iterative algorithm after polynomial baseline removal. Smoothing

parameters are selected such that the FWHM of the PSF is 2.5 pixels. NAA images are estimated using peak

integration.

Impact of the orthogonality constraint on the metabolite signals is studied in Fig. 4. We obtained lipid

spectra from four different datasets. Dataset 1 and 2 were distributed along with the software for (40) and

(17). Datasets 3 and 4 correspond to data acquired from subjects 1 and 2, respectively, without any lipid

suppression. We modeled 3300 metabolite spectra, as idealized peaks at spectral locations corresponding

to NAA, Creatine, & Choline in the real data. We consider simulations with FWHM = 10 Hz and 20 Hz.

Peak intensities are chosen from a random distribution. Parallel and orthogonal projection of the metabolite

spectra to the weighted lipid subspace (given by eqn [14]) is reported in Fig. 4. In Supporting Fig. S1,

we report the quantitative reductions in metabolite intensities due to orthogonal projection and orthogonal

projection energies. We also studied the effect of rank change of the lipid subspace which was found to be

practically invariant.

Regularization parameters in the proposed algorithm described in [11] are chosen empirically to yield the

best results for the experiments on data from subject 2. Effect of changing the regularization parameters are

explained in details in the results section. We chose the target rank of 15 for the metabolite signals, and 20

for the lipid signals. The parameter γ in the stabilizing parameter equation ε = γ σK , is chosen as 0.8 for

both metabolites and lipids. All reconstructions are performed at a grid size of 96× 96 and metabolite maps

are obtained by peak integration over a 16 Hz bandwidth.
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RESULTS

We study the utility of acquiring data using variable density spiral k-space trajectory with extended k-space

coverage in Fig. 2 using data from subject 1. We show reconstructed spectra from three different pixels

within the brain, marked in the reference image. Since no lipid suppression is used, spectra with 32x32

spatial coverage is highly distorted at all the three pixels. Noise like variations observed at lower resolutions

are essentially systematic artifacts introduced by lipid leakage. At lower resolutions, the spectrum at each

pixel is a weighted linear combination of the spectra at all locations (including lipid regions), weighted by

sinc point spread functions. If the magnetic field varies significantly within the lipid regions, the weighted

linear combination of shifted lipid spectrum with large amplitudes will appear as noise-like variations. Ex-

periments clearly show benefit of extended k-space coverage. With higher k-space encodes / smaller voxel

size, spectrum at the blue pixel in the center of the brain is recovered with minimal distortion. The pink

pixel closer to skull exhibits some lipid leakage, while the red pixel close to skull is corrupted by extra-

cranial lipids even with extended k-space coverage. Reduction in leakage-induced ringing artifacts can also

be visualized from the NAA map. Extended k-space coverage alone cannot eliminate all spectral leakage

artifacts, therefore,we propose to combine it with the compartmentalized low-rank method to further reduce

lipid leakage.

Impact of the orthogonality constraint on the metabolite signals is studied in Fig. 4. For each of the

four datasets lipid lineshapes and metabolite lineshapes are shown. Parallel and orthogonal projection of a

selected metabolite spectra to the lipid subspace is plotted as well. The tables in Supporting Fig. S1 record

average (mean) case percentage reduction of metabolite intensities due to orthogonal projection and the or-

thogonal projection energy. It is observed that the NAA peak attenuation depends on the field inhomogeneity

in the lipid regions. These experiments show that loss of metabolite intensities due to the orthogonality as-

sumption is minimal, even for data with poor shimming. These observations are consistent with the findings

in (40).

Phantom experiment results are shown in Fig. 5. The first column corresponds to simulations without

any lipid signal, while the second column is the one with lipid signal. For the lipid suppressed case, Tikhonov

high resolution (Tikhonov HR), Tikhonov low resolution (Tikhonov LR), and the proposed algorithm are

compared, whereas reconstruction using the scheme described in (40) are added for the lipid unsuppressed

case. For comparisons, we recover a reference data from signals without any lipids and noise using gridding,
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followed by field inhomogeneity compensation. NAA maps, their error maps, and spectra at marked pixels

are shown in Fig. 5(a) for lipid free simulation and in Fig. 5(b) for simulation with lipids. For the lipid free

case, we observe that Tikhonov HR method results in relatively noisy maps, while Tikhonov LR method

oversmoothes the spatial maps, resulting in systematic edge information loss, seen from the error maps.

The proposed method provides maps with reduced noise and minimal blurring. These results can also be

appreciated from the spectra corresponding to the pixels marked on the reference image. RMSE (Root

Mean Square Error) of NAA maps are calculated to be 3.08% and 5.20% for Tikhonov HR and Tikhonov

LR respectively, while the proposed has the least RMSE of 2.69%. In the lipid unsuppressed phantom

experiments (second column), we observe that Tikhonov HR method is noisy and has severe ringing artifacts

(seen from maps and spectra in Fig. 5(b)). Tikhonov LR method on the other hand reduces lipid leakage

artifacts, but results in blurred maps. Error maps and spectra show that pixels closer to skull have residual

lipid artifacts in the Tikhonov LR method. Dual density with orthogonality method (as in (40)) suppresses

lipids efficiently except for pixels close to skull (first and fifth row) but results in blurred maps. By contrast,

the proposed method reduces noise and eliminates artifacts without smoothing the data and retains most

of the high resolution details. Tikhonov HR method has a poor RMSE of 42.73%, due to extensive lipid

leakage. Tikhonov LR method and (40) have RMSE of 10.85% and 5.16% for NAA maps respectively,

while the proposed method maintains a RMSE of 2.88%, which is comparable to the lipid suppressed

setting. Table (c) reports other metabolite map RMSEs. Thus the reconstruction quality of the proposed

method is robust even in presence of lipids. Lipid maps obtained by peak integration over lipid resonances

are shown in Fig. 5(d) for the lipid unsuppressed case.

Recovery using different lipid masks, obtained by morphologically dilating or shrinking the original

lipid mask is presented in Fig. 6. We observe minimal changes in NAA maps, while the spectra show slight

increases in lipid leakage when the lipid region is underestimated. These results show that the algorithm is

relatively robust to inaccurate mask estimation. Since moderately overestimating the lipid mask provides

good reconstructions, we resort to this approach in the remaining experiments.

Effect of changing different regularization parameters of the algorithm is studied with the lipid unsup-

pressed data acquired from subject 2. In Supporting Fig.S2 , the left box illustrates the effect of changing

λ1, which controls metabolite compartment rank. In these experiments, we set λ2 = 1e−8;β = 1000. We

observe that increasing λ1 is associated with spectral denoising, while high values are associated with spatial

details loss. We choose λ1 = 4e−6, which provide good compromise. The middle box demonstrates the
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effect of changing λ2, which controls lipid compartment rank. We set λ1 = 4e−6;β = 1000 in these exper-

iments. Over regularizing the lipid compartment (increasing value of λ2) results in lipid signal attenuation,

increased lipid leakage to metabolite signals and noisier metabolite signals. Lipid maps show increased lipid

leakage in pixels close to skull. We fix λ2 to 1e−6 which offers slight increase in metabolite intensities in

comparison to unregularized lipid compartment. In our experiments (right box) we observe the parameter β

can be assigned a high value to impose the constraint of lipids being orthogonal to the metabolites; the algo-

rithm’s performance was observed to be relatively insensitive to this parameter, provided it is high enough.

Some spatial details are lost when very high β values are chosen, probably due to poor convergence. β is

set to 1000 for the remaining experiments.

Results for the in-vivo experiments with lipid suppression on subject 2 are shown in Fig. 7. The proposed

method is compared against Tikhonov LR scheme and dual-density scheme in (40), denoised further using

low-rank approximation. Lipid region is overestimated based on our findings in Fig. 6. From Fig. 7.(a),

it is seen that the Tikhonov regularized method has substantial lipid leakage artifacts (maps are scaled

by 2.5 times for Tikhonov method maps). Lipid leakage can also be seen from the spectra. We observe

that the dual-density orthogonality method achieves good lipid suppression. However, nominal resolution

of the maps are restricted by the extent of central k-space regions. The proposed method is observed to

result in negligible lipid leakage artifacts, while the maps are seen to have improved spatial details. This

is expected since we estimate metabolite signals from the entire k-space data, which is regularized by low-

rank priors. Considering that detailed anatomical priors of gray matter, white matter, and CSF are not used

in the recovery, the ability of the algorithm to recover the spatial details is significant. The lipid maps

obtained by peak integration of the lipid resonances are shown for all three methods. The Tikhonov method

shows heavy lipid leakage in regions close to skull whereas lipid leakage is negligible for the dual-density

orthogonality and the proposed method. Spectra at the pixel grid marked in the reference image are shown

for the Tikhonov regularized method, dual-density orthogonality method and the proposed method in Fig.

7(b),(c) & (d) respectively. Similar to the phantom simulation results, spectra obtained from Tikhonov

method are noisy and have spectral leakage especially in pixels close to skull. By contrast, dual-density

orthogonality method and the proposed method denoises the spectra and removes all spectral leakage.

Comparisons of the methods on the lipid unsuppressed dataset from the same subject are shown in Fig. 8.

Metabolite maps in Fig. 8(a) show quite significant lipid leakage for the Tikhonov regularized method (the

image is scaled by 5 times). The dual-density method in this case has some residual lipids close to skull as
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pointed out by arrows in the lipid maps. The proposed method is seen to recover the data with minimal lipid

leakage and with improved spatial details. Spectra at the pixels marked in the reference image are shown in

Fig. 8(b),(c) & (d) for Tikhonov LR, dual-density orthogonality and proposed method respectively.

DISCUSSION

We introduced a novel compartmentalized low-rank based algorithm and a spiral dual-density MRSI se-

quence for high resolution MRSI reconstruction. The proposed method enables recovery of high resolution

metabolite maps with minimal lipid leakage artifacts from TE=55 ms acquisitions in absence of lipid sup-

pression. This approach may be useful in three dimensional acquisitions, when OVS band placement is

difficult.

Low rank methods have been used in MRSI by several groups for denoising (30) and reconstruction (17,

32–34, 54). Direct use of global low-rank methods as in (32) may be challenging in our lipid unsuppressed

setting. Using a single subspace to represent both lipid and metabolite signal may result in the subspace

being dominated by lipid basis functions, especially due to huge dynamic range between lipid and metabolite

signals. The proposed single step compartmentalized low-rank algorithm shares conceptual similarities to

two step low-rank (SPICE) method (17, 33, 34). SPICE estimates basis functions from low spatial resolution

data, which are separated into metabolite and lipid basis using spatial and spectral prior information in the

first step; these basis sets are used for recovery of the signals from high-resolution measurements in the

second step. Good recovery is demonstrated using OVS or long TEs to reduce lipid signals. Our preliminary

experiments (not shown here) using the software provided by the authors (17) indicate that direct use of these

methods in our setting is challenging. Specifically, large field inhomogeneity induced variations present

in the extra-cranial regions made it difficult to separate the lipid and metabolite basis sets using spectral

prior information; the default parameter set for the lineshapes did not provide good estimation and lipid

suppression. Complexity of the dataset can be appreciated by the huge variability of lipid spectra in the

second row (Dataset 3 and 4) of Fig. 4, compared to the dataset considered by (17) (Dataset 2). While

a more exhaustive optimization of the large parameter set SPICE may provide improved recovery, this is

beyond the scope of the present work.

Note that our scheme does not require extensive prior knowledge of lipid lineshapes, which is a benefit

over (17, 33, 34), especially with poorly shimmed datasets. The proposed method estimates basis functions
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from all the available k-space encodes using the orthogonality between the metabolite and lipid signals.

This work is inspired by use of orthogonality constraints in (40), where lipid and metabolite signals are

shown to have strikingly different spectral signatures (e.g. metabolite are highly localized in frequency,

while lipids are very broad due to fast T2 decay). Distinction between these signals are preserved even

in presence of field inhomogeneities. Use of these priors, along with field inhomogeneity compensation,

enables metabolite data recovery with minimal leakage, even without lipid suppression.

Low-rank penalty on the lipid signal serves to regularize lipid signal recovery, which in turn can enhance

lipid suppression using orthogonality priors. Specifically, noisy lipid signals can result in a large subspace

(of large rank); use of this subspace for lipid suppression may result in unwanted metabolite signal attenu-

ation. Denoising enables us to use a larger orthogonality parameter (β), thus effectively suppressing lipids

without suppressing metabolites. Impact of the lipid low-rank prior may be more pronounced when the

acquisition is more noisy, or undersampled, as proposed in (40).

We observe from Fig. 8 that the proposed scheme offers improved lipid suppression than that of the

scheme in (40), where an initial high-resolution lipid signal recovery is used in the orthogonality prior.

The key difference is that the lipid subspace estimate improves with iterations, due to orthogonality and

lipid low-rank priors. Lipid estimate at the first iteration is unregularized and hence is corrupted by noise,

and also leakage from metabolites. Use of this subspace can result in unwanted metabolite suppression

(due to overlap), especially when used with large β values. As iterations progress, the lipid subspace is

decontaminated from metabolite signals (due to orthogonality priors) and denoised (due to low-rank priors).

Cleaner lipid subspace improves lipid suppression efficiency, thus reducing metabolite suppression; this

allows us to use a larger β values and more effectively suppress lipids without suppressing metabolites.

The dual-density acquisition method is inspired by (18, 55). This approach capitalizes the considerably

higher lipid signal intensity. Variable density spiral approach is more reliable than dual-density Cartesian

scans, which require sophisticated data registration and data mismatch correction to combine data from

different acquisitions (17, 23, 33, 34, 42). Our future work will include use of only a subset of 288 inter-

leaves, which corresponds to Nyquist sampling of lower k-space regions and subsampling of higher k-space

regions. We expect the compartmentalized low-rank method, bolstered with parallel imaging (56, 57), to

provide good recovery even in this setting. Efficiency may improve by using more spectral interleaves.

Specifically, around 40% of acquisition time is now devoted for ramping down the spiral gradients and

rewinders. SNR efficiency can be improved by using faster rewinders and also using the k-space data from
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the rewinders for recovery.

Utility of lipid orthogonality priors in suppressing lipids in short echotime data, where higher macro-

molecule induced baseline signals are present, has not been determined yet. This is also a topic for further

research.

CONCLUSION

We introduce a novel compartmentalized low-rank algorithm with orthogonality constraint which enables

reconstruction of high resolution metabolite maps without any lipid suppression method. The proposed

method is validated with TE (55 ms) acquisitions. Also an efficient dual-density data acquisition method

using variable density spirals has been introduced to achieve high resolution lipid estimates in a feasible

scan time.
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Legends

Fig 1. Pulse sequence diagram for spin echo based variable density spiral spectroscopic imaging: Water

suppression is achieved using CHESS pulses. Slice selective excitation and refocusing RF pulses are applied,

followed by repeatedly playing out the spiral gradients, ramp-down gradients, and rewinders. For sake of

simplicity the ramp-down gradients and crushers for each spiral gradient, are not shown in the figure. Image

matrix size = 128×128 is acquired with variable density spiral trajectory with 24 interleaves, which samples

the lower k-space region of radius less than 16 at the Nyquist rate , and the higher k-space region at
1

12
times

Nyquist rate. 12 averages are collected by rotating the trajectories by
2π

24× 12
degrees at each average. Thus

the central k-space regions is averaged twelve-fold, while the higher k-space region is Nyquist sampled. The

acquisition requires 24×12 = 288 spatial interleaves and thus 288 RF excitations. The spectral bandwidth=

574.7 Hz (4.7 ppm), temporal interleaves =256; which achieves a spectral resolution of 2.2 Hz. The k-space

trajectory consists of (a) lower k-space region(35% of sampling time), (b) higher k-space regions,(24% of

time, and (c) gradient ramp down and rewinding(41% of time). Field of view = 240 mm, maximum gradient

amplitude = 22.4 mT/m, and a slew rate= 125 T/m/sec.

Fig 2. Benefit of extended k-space coverage in acquisition without lipid suppression: The top figure (a)

shows the spectra at three different locations (blue pixel at the center of the brain, pink pixel between the

center and skull, red pixel near the skull or lipid layer). In the absence of lipid suppression, better lineshape

and reduction of lipid signal is achieved with increased k-space coverage. The peak integral NAA images in

(b) demonstrates the decreased ringing artifacts with increasing k-space coverage.

Fig 3: Construction of the digital phantom: The phantom is constructed with five different spatial com-

partmental basis functions (two lipid compartments, CSF, white matter and gray matter ). Each of these com-

partments have a unique metabolite or lipid spectrum associated with it. The metabolite spectra have peaks

corresponding to NAA (at 2.008 ppm), Creatine (at 3.027 and 3.913 ppm) and Choline (3.185 ppm)(59). We

choose the concentration of the metabolites in different compartments based on normal brain concentrations

reported in literature(60). The lipid peaks are constructed with a six peak model, reported in (58). The

lipid peaks are chosen to be 500-1000 times larger in amplitude, in accordance to real data without lipid

suppression. We also accounted for the T2 decay with appropriate parameters, which translates to spectral

broadening of the line shapes.A field inhomogeneity map using fourth order polynomial in both the spatial

dimensions is also simulated. The spatial masks(support) of lipid and metabolite region are shown on the
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top left and right respectively. It is to be noted that uniform spatial masks are used instead of detailed maps

with edge weights of white matter, gray matter and CSF regions.

Fig 4. Spectral orthogonality of lipid and metabolite lineshapes: Orthogonality between lipids and

metabolites are demonstrated using four datsets. Dataset 1 and 2 are simulated using real lipid unsuppressed

data of (40) and (17), which are distributed with the software. Dataset 3 and 4 are simulated using real data

acquired from subject 1 and 2 respectively, without any lipid suppression. For each dataset, lipid lineshapes

generated from real data are shown in (a). The idealized metabolite spectra consisting of NAA, Creatine

and Choline peaks are simulated with FWHM = 10 Hz and 20 Hz (color coded outline in red and blue

respectively) in (b) and (c) respectively. The metabolites are projected to a rank=20 weighted lipid subspace

as given by eqn [14]. The parallel and orthogonal projection of a randomly selected metabolite spectra of the

dataset, to the lipid subspace for the two simulations are plotted in (d) and (e) respectively. (For quantitative

report of orthogonal projection energy please refer Supporting Fig. S1).

Fig 5. Simulated phantom experiments: We consider the recovery of the MRSI phantom in Fig. 3 from

its noisy k-space measurements on the spiral trajectory. The case without lipid signals (corresponding to

perfect lipid suppression) is shown on the left column and the case with lipid signals (no lipid suppression)

on the right column. We compare the reconstructions obtained using Tikhonov HR, Tikhonov LR, and

the proposed method for the lipid suppressed case whereas the results for dual density with orthogonality

(DD+Orth) scheme as proposed in (40) are added for the lipid unsuppressed case. The NAA maps and

the corresponding error maps (scaled up) for all the methods under comparison with and without lipids are

shown in (a) and (b) respectively. Also the spectra at 5 representative locations marked in the reference

image are shown for all the methods for lipid free and lipid unsuppressed case in (a) and (b) respectively.

The lipid maps for the case without lipid suppression is shown in (d). Table (c) shows the RMSEs for the

different maps.

Fig 6: Simulated phantom experiments showing robustness to incorrect lipid mask selection:(a) Recon-

structed NAA maps are shown in the first row whereas the corresponding lipid masks and lipid maps are

shown in the second and third row respectively. The NAA maps are of comparable quality . The lipid leak-

age reduces slightly for an overestimated/wide mask. Only the metabolite region is shown in the lipid maps

for better visualization of differences. (b) The spectra at five representative locations shown in the reference

image are plotted. The lipid leakage and denoising is comparable even for incorrect mask estimation. How-

ever a wide mask might show improvement in lipid suppression.It is to be noted that the reconstructions
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with ideal mask(second column) is same as reconstruction with proposed method as in Fig. 5 (b) and (d).

The metabolite mask used in all the simulations are same.

Fig 7. In-vivo experiments with lipid suppression: The spatial contours for the metabolite and lipid

region and the field map are shown in the top row. The metabolite maps and the lipid maps are shown

for the Tikhonov method, dual-density orthogonality as in (40) followed by low-rank approximation (using

truncated SVD) and proposed method in (a). The metabolite maps obtained from Tikhonov method are

scaled up by 2.5 times. The color scale for the metabolite maps in the second and third row are shown

below. It is observed that the proposed method has superior spatial details compared to the dual-density

orthogonality method. For the dual density method spatial details are not observed because the metabolite

data is constrained to center k-space. The lipid for all the methods are plotted in the same log scale. The

Tikhonov method has heavy lipid leakage in the metabolite region whereas the dual-density method and the

proposed method has no residual lipid in the metabolite region.Spectra from the locations marked in the

reference image are shown in (b) for the Tikhonov method (in blue),(c) dual-density orthogonality followed

by truncated SVD (in purple) and in (d) for the proposed method (in red).

Figure 8. In-vivo experiments without lipid suppression: The spatial contours for the metabolite and

lipid region and the field map are shown in the top row. The metabolite maps and the lipid maps are shown

for the Tikhonov method, dual-density orthogonality as in (40) followed by low-rank approximation(using

truncated SVD) and proposed method in (a). The metabolite maps obtained from Tikhonov method are

scaled up by 5 times. The color scale for the metabolite maps in the second and third row are shown below.

It is observed that the proposed method has superior spatial details whereas the dual-density orthogonality

method has some residual lipids at the edges. Spatial details are lost for the dual density method because the

metabolite data is limited to center k-space. The lipid for all the methods are plotted in the same log scale.

The Tikhonov method has heavy lipid leakage in the metabolite region whereas the dual-density method

has some residual near the edges as shown by the yellow arrows. The proposed method on the other hand

has no residual lipid in the metabolite region.Spectra from the locations marked in the reference image are

shown in (b) for the Tikhonov method (in blue),(c) dual-density orthogonality followed by truncated SVD

(in purple) and in (d) for the proposed method (in red).
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Figure 1: Pulse sequence diagram for spin echo based variable density spiral spectroscopic imaging: Water
suppression is achieved using CHESS pulses. Slice selective excitation and refocusing RF pulses are applied,
followed by repeatedly playing out the spiral gradients, ramp-down gradients, and rewinders. For sake of
simplicity the ramp-down gradients and crushers for each spiral gradient, are not shown in the figure. Image
matrix size = 128×128 is acquired with variable density spiral trajectory with 24 interleaves, which samples

the lower k-space region of radius less than 16 at the Nyquist rate, and the higher k-space region at
1

12
times

Nyquist rate. 12 averages are collected by rotating the trajectories by
2π

24× 12
degrees at each average. Thus

the central k-space regions is averaged twelve-fold, while the higher k-space region is Nyquist sampled. The
acquisition requires 24×12 = 288 spatial interleaves and thus 288 RF excitations. The spectral bandwidth=
574.7 Hz (4.7 ppm), temporal interleaves =256; which achieves a spectral resolution of 2.2 Hz. The k-space
trajectory consists of (a) lower k-space region(35% of sampling time), (b) higher k-space regions,(24% of
time, and (c) gradient ramp down and rewinding(41% of time). Field of view = 240 mm, maximum gradient
amplitude = 22.4 mT/m, and a slew rate= 125 T/m/sec.
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(a) Spectra at the marked pixels 

(b) NAA Maps

Reference 

Image

Voxel Size (ml)

0.56 0.14 0.06 0.03 

Voxel Size (ml)

0.56 0.14 0.06 0.03

Figure 2: Benefit of extended k-space coverage in acquisition without lipid suppression: The top figure (a)
shows the spectra at three different locations (blue pixel at the center of the brain, pink pixel between the
center and skull, red pixel near the skull or lipid layer). In the absence of lipid suppression, better lineshape
and reduction of lipid signal is achieved with increased k-space coverage. The peak integral NAA images in
(b) demonstrates the decreased ringing artifacts with increasing k-space coverage.
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Figure 3: Construction of the digital phantom: The phantom is constructed with five different spatial com-
partmental basis functions (two lipid compartments, CSF, white matter and gray matter ). Each of these com-
partments have a unique metabolite or lipid spectrum associated with it. The metabolite spectra have peaks
corresponding to NAA (at 2.008 ppm), Creatine (at 3.027 and 3.913 ppm) and Choline (3.185 ppm)(59). We
choose the concentration of the metabolites in different compartments based on normal brain concentrations
reported in literature(60). The lipid peaks are constructed with a six peak model, reported in (58). The
lipid peaks are chosen to be 500-1000 times larger in amplitude, in accordance to real data without lipid
suppression. We also accounted for the T2 decay with appropriate parameters, which translates to spectral
broadening of the line shapes.A field inhomogeneity map using fourth order polynomial in both the spatial
dimensions is also simulated. The spatial masks(support) of lipid and metabolite region are shown on the
top left and right respectively. It is to be noted that uniform spatial masks are used instead of detailed maps
with edge weights of white matter, gray matter and CSF regions.
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Figure 4: Spectral orthogonality of lipid and metabolite lineshapes: Orthogonality between lipids and
metabolites are demonstrated using four datsets. Dataset 1 and 2 are simulated using real lipid unsup-
pressed data of (40) and (17), which are distributed with the software. Dataset 3 and 4 are simulated using
real data acquired from subject 1 and 2 respectively, without any lipid suppression. For each dataset, lipid
lineshapes generated from real data are shown in (a). The idealized metabolite spectra consisting of NAA,
Creatine and Choline peaks are simulated with FWHM = 10 Hz and 20 Hz (color coded outline in red and
blue respectively) in (b) and (c) respectively. The metabolites are projected to a rank=20 weighted lipid
subspace as given by eqn [14]. The parallel and orthogonal projection of a randomly selected metabolite
spectra of the dataset, to the lipid subspace for the two simulations are plotted in (d) and (e) respectively.
(For quantitative report of orthogonal projection energy please refer Supporting Fig. S1).

30



Figure 5: Simulated phantom experiments: We consider the recovery of the MRSI phantom in Fig. 3 from
its noisy k-space measurements on the spiral trajectory. The case without lipid signals (corresponding to
perfect lipid suppression) is shown on the left column and the case with lipid signals (no lipid suppression)
on the right column. We compare the reconstructions obtained using Tikhonov HR, Tikhonov LR, and
the proposed method for the lipid suppressed case whereas the results for dual density with orthogonality
(DD+Orth) scheme as proposed in (40) are added for the lipid unsuppressed case. The NAA maps and
the corresponding error maps (scaled up) for all the methods under comparison with and without lipids are
shown in (a) and (b) respectively. Also the spectra at 5 representative locations marked in the reference
image are shown for all the methods for lipid free and lipid unsuppressed case in (a) and (b) respectively.
The lipid maps for the case without lipid suppression is shown in (d). Table (c) shows the RMSEs for the
different maps.
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Figure 6: Simulated phantom experiments showing robustness to incorrect lipid mask selection:(a) Recon-
structed NAA maps are shown in the first row whereas the corresponding lipid masks and lipid maps are
shown in the second and third row respectively. The NAA maps are of comparable quality . The lipid leak-
age reduces slightly for an overestimated/wide mask. Only the metabolite region is shown in the lipid maps
for better visualization of differences. (b) The spectra at five representative locations shown in the reference
image are plotted. The lipid leakage and denoising is comparable even for incorrect mask estimation. How-
ever a wide mask might show improvement in lipid suppression.It is to be noted that the reconstructions
with ideal mask(second column) is same as reconstruction with proposed method as in Fig. 5 (b) and (d).
The metabolite mask used in all the simulations are same.
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Figure 7: In-vivo experiments with lipid suppression: The spatial contours for the metabolite and lipid
region and the field map are shown in the top row. The metabolite maps and the lipid maps are shown
for the Tikhonov method, dual-density orthogonality as in (40) followed by low-rank approximation (using
truncated SVD) and proposed method in (a). The metabolite maps obtained from Tikhonov method are
scaled up by 2.5 times. The color scale for the metabolite maps in the second and third row are shown
below. It is observed that the proposed method has superior spatial details compared to the dual-density
orthogonality method. For the dual density method spatial details are not observed because the metabolite
data is constrained to center k-space. The lipid for all the methods are plotted in the same log scale. The
Tikhonov method has heavy lipid leakage in the metabolite region whereas the dual-density method and the
proposed method has no residual lipid in the metabolite region.Spectra from the locations marked in the
reference image are shown in (b) for the Tikhonov method (in blue),(c) dual-density orthogonality followed
by truncated SVD (in purple) and in (d) for the proposed method (in red).
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Figure 8: In-vivo experiments without lipid suppression: The spatial contours for the metabolite and lipid
region and the field map are shown in the top row. The metabolite maps and the lipid maps are shown
for the Tikhonov method, dual-density orthogonality as in (40) followed by low-rank approximation(using
truncated SVD) and proposed method in (a). The metabolite maps obtained from Tikhonov method are
scaled up by 5 times. The color scale for the metabolite maps in the second and third row are shown below.
It is observed that the proposed method has superior spatial details whereas the dual-density orthogonality
method has some residual lipids at the edges. Spatial details are lost for the dual density method because the
metabolite data is limited to center k-space. The lipid for all the methods are plotted in the same log scale.
The Tikhonov method has heavy lipid leakage in the metabolite region whereas the dual-density method
has some residual near the edges as shown by the yellow arrows. The proposed method on the other hand
has no residual lipid in the metabolite region.Spectra from the locations marked in the reference image are
shown in (b) for the Tikhonov method (in blue),(c) dual-density orthogonality followed by truncated SVD
(in purple) and in (d) for the proposed method (in red).
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Figure S1: The tables record the average case(mean) percentage attenuation of metabolite intensities due 

to orthogonal projection and the orthogonal projection energy of the metabolites to the weighted lipid 

subspace (as shown in Fig. 4) for the four datasets. The orthogonal energy is small which supports our 

assumption. The effect of changing rank is studied with a rank=5 lipid subspace; the projection energy 

change due to rank is negligible. The mean orthogonal projection energy of lipid lineshapes on a weighted 

metabolite subspace of rank=15 is reported and is found to be very small. 
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