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Abstract—We introduce a model-based deep learning architec-
ture termed MoDL-MUSSELS for the correction of phase errors
in multishot diffusion-weighted echo-planar MRI images. The
proposed algorithm is a generalization of existing MUSSELS
algorithm with similar performance but with significantly re-
duced computational complexity. In this work, we show that an
iterative re-weighted least-squares implementation of MUSSELS
alternates between a multichannel filter bank and the enforce-
ment of data consistency. The multichannel filter bank projects
the data to the signal subspace thus exploiting the phase relations
between shots. Due to the high computational complexity of self
learned filter bank, we propose to replace it with a convolutional
neural network (CNN) whose parameters are learned from
exemplary data. The proposed CNN is a hybrid model involving a
multichannel CNN in the k-space and another CNN in the image
space. The k-space CNN exploits the phase relations between
the shot images, while the image domain network is used to
project the data to an image manifold. The experiments show
that the proposed scheme can yield reconstructions that are
comparable to state of the art methods while offering several
orders of magnitude reduction in run-time.

Index Terms—Diffusion MRI, Echo Planar Imaging, Deep
Learning, convolutional neural network

I. INTRODUCTION

Diffusion MRI (DMRI), which is sensitive to anisotropic
diffusion processes in the brain tissue, has the potential to pro-
vide rich information on white matter anatomy [1] and hence
have several applications including neurological disorders [2],
the aging process [3], and acute stroke [4]. DMRI relies on
large bipolar directional gradients to encode water diffusion,
results in the attenuation of signals from diffusing molecules
in the direction of the gradient. The diffusion encoded signal is
often spatially encoded using single-shot echo planar imaging
(ssEPI), which allows the acquisition of the entire k-space in a
single excitation. While it can offer high sampling efficiency,
the longer readout makes the acquisition vulnerable to B0
inhomogeneity induced distortions. Specifically, the recovered
images often exhibit geometric distortions and signal drop-outs
along the phase encoding direction. These artifacts essentially
limit the extent of k-space coverage and thereby the spatial
resolution that ssEPI sequences can achieve.

Multi-shot echo planar imaging (msEPI) methods were
introduced to minimize the distortions related to the long
readouts in ssEPI. This scheme segments the k-space over
multiple excitation and shots as shown in (Fig. 1), which
shortens the readout duration for each of shot. While multi-
shot imaging can offer high resolution, a challenge is its
vulnerability to inter-shot motion in the diffusion setting.
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Specifically, subtle physiological motion during the large bipo-
lar gradients manifest as phase differences between different
shots. The direct combination of the k-space data from these
shots results in Nyquist ghost artifacts.

We recently introduced a multi-shot sensitivity-encoded
diffusion data recovery algorithm using structured low-rank
matrix completion (MUSSELS) [5], which allows the com-
bination the k-space data from different shots. The method
exploits the redundancy between the Fourier samples of the
shots to jointly recover the missing k-space samples in each
of the shots. The k-space data recovery is then posed as a
matrix completion problem that utilizes a structured low-rank
algorithm and parallel imaging to recover the missing k-space
data in each shot. While this scheme can offer state of the art
results, the challenge is the high computational complexity.
The large data size and the need for matrix lifting make
it challenging to reconstruct the high-resolution data from
different directions and slices despite the existence of fast
structured low-rank algorithms.

In this paper, we introduce a novel deep learning framework
to minimize the computational complexity of MUSSELS [5].
This work is inspired by the network structure of MUSSELS
and is similarly formulated in k-space to exploit the convo-
lutional relations between the Fourier samples of the shots.
The proposed scheme is also motivated by our recent work on
model-based deep learning (MoDL) [6] and similar algorithms
that rely on un-rolling of iterative algorithms [7]–[9]. The main
benefit of MoDL is the ability to exploit the physics of the
acquisition scheme, add multiple regularization priors [10],
and improve performance. In addition, the unrolled and learned
recovery scheme offers significantly reduced run time during
image recovery/testing. The use of the conjugate-gradient
algorithm within the network to enforce data consistency in
MoDL provides improved performance for a specified number
of iterations. The sharing of network parameters across itera-
tions enables MoDL to keep the number of learned parameters
decoupled from the number of iterations, thus providing good
convergence without increasing the number of trainable pa-
rameters. A lesser number of trainable parameters translate to
significantly reduced training data in data constrained medical
imaging applications.

We first introduce an iterative reweighted least-squares
algorithm (IRLS) [11] based approach to solve the MUSSELS
cost function [5]. The original MUSSELS algorithm, which is
based on iterative singular value shrinkage, alternates between
a data-consistency block and a low-rank matrix recovery block.
By contrast, the IRLS algorithm alternates between a data-
consistency block and a residual multichannel convolution
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Fig. 1. Demonstration of multi-shot EPI acquisition employing multiple
excitations and readouts. The first RF excitation and diffusion sensitization are
followed by k-space readout by shot 1 that samples k-space lines 1,3, and 5.
The second RF excitation and diffusion sensitization are followed by k-space
readout by shot 2 capture lines 2,4, and 6. The combined data corresponds to
the fully sampled k-space. Yet, the k-space samples in shot 1 and shot 2 are
sensitized to different motion due to omnipresent inter-shot motion and hence
will have a unique net phase. Thus, the image generated from the combined
shot will show phase artifacts. MUSSELS attempts to recover the missing
k-space samples in shot 1 and shot 2 thus bypassing the need to combine the
k-space samples from different shots

block. The multichannel convolution block can be viewed as
the projection of the data to the null-space of the multi-channel
signals; the subtraction of the result from the original ones,
induced by the residual structure, projects the data to the signal
subspace, thus removing the artifacts in the signal. The IRLS
MUSSELS algorithm learns the parameters of the denoising
filter from the data itself, which requires several iterations.
Motivated by [6], we propose to replace the multichannel
linear convolution block in MUSSELS by a convolutional
neural network (CNN). Unlike the self-learning strategy in
MUSSELS, where the filter parameters are learned from the
measured data itself, we propose to learn the parameters of
the non-linear CNN from exemplar data. We hypothesize that
the non-linear structure of the CNN will enable us to learn
and generalize from examples; the learned CNN will facilitate
the projection of each test dataset to the associated signal
subspace. While the architecture is conceptually similar to
MoDL, the main difference is the extension to multichannel
settings and the learning in the Fourier domain (k-space)
motivated by the MUSSELS IRLS formulation.

The proposed framework has similarities to recent k-space
deep learning strategies [12]–[15], which also exploit the con-
volution relations in the Fourier domain. The main distinction
of the proposed scheme with these methods is the model-based
framework, along with the training of the unrolled network.
Many of the current schemes [14] are not designed for the
parallel imaging setting. The use of the conjugate gradient
steps in our network allows us to account for parallel imaging
in an efficient manner, requiring few iterations. We also note
the relation of the proposed work with [16], which uses a self-
learned network to recover parallel MRI data; the weights of
the network are estimated from the measured data itself. Since
we estimate the weights from exemplar data, the proposed
scheme is significantly faster.

II. BACKGROUND

A. Problem formulation

The long EPI readouts, which are needed for high-resolution
diffusion MRI, are vulnerable to field inhomogeneity induced
spatial distortions. In addition, the large rewinder gradients
also make the achievable echo-time rather long, resulting in
lower signal to noise ratio. To minimize these distortions, It

is a common practice to acquire the data using multishot EPI
schemes. These schemes acquire a highly undersampled subset
of k-space at each shot; since the subsets are complementary,
the data from all these shots are combined together to obtain
the final image. The image acquisition of the ith shot and the
jth coil can be expressed as

yi,j [k] =

∫
R2

ρ(r)sj(r) exp
(
i kT r

)
dr + ni,j [k]; ∀k ∈ Θi.

(1)
Here, sj(r) denotes the coil sensitivity of the jth coil and
Θi; i = 1, .., N denotes the subset of the k-space that is
acquired at the ith-shot. Note that the sampling indices of
the different shots are complementary; the combination of the
data from the different shots will result in a fully sampled
image. Specifically, we have

⋃N
i=1 Θi = Θ, where Θ is the

Fourier grid corresponding to the fully sampled image. The
above relation, to acquire desired image ρ(r) from N shots
can be compactly represented as

yi = Ai(ρ(r)) + n, i = 1, .., N (2)

in the absence of phase errors. Here, yi represents the un-
dersampled multi-channel measurements of ith shot acquired
using acquisition operator Ai and n represents the additive
Gaussian noise that may corrupt the samples during acquisi-
tion.

Diffusion MRI uses large bipolar diffusion gradients to en-
code the diffusion motion of water molecules. Unfortunately,
subtle physiological motion between the bipolar gradients
often manifests as phase errors in the acquisition. With the
addition of the unknown phase function φi(r); |φi(r)| = 1
introduced by physiological motion, the forward model gets
modified as

yi = Ai
(
ρ (r)φi(r)︸ ︷︷ ︸

ρi(r)

)
+ n, i = 1, .., N (3)

If the phase errors φi(r); i = 1, .., N are uncompensated,
the image obtained by the combination of yi, i = 1, .., N
will consist of Nyquist ghosting artifacts. Current multishot
methods on GE scanners termed as MUSE [17] rely on
the independent estimation of φi(r), i = 1, .., N from low-
resolution reconstructions of the phase corrupted images ρi.
The forward model can be compactly written as y = A(ρ),

where ρ =
[
ρ1

T , . . . ρN
T
]T

is the vector of multishot
images. Once the phases are estimated, the reconstruction is
posed as a phase aware reconstruction [17].

B. Brief Review of MUSSELS
MUSSELS relies on a structured low-rank formulation to

jointly recover the phase corrupted images ρi from their
under-sampled multichannel measurements, capitalizing on the
multichannel nature of the measurements as well as annihila-
tion relations between the phase corrupted images. The key
observation is that the above images satisfy an image domain
annihilation relation ρi(r)φj(r) − ρj(r)φi(r) = 0, ∀r [18].
This multiplicative relation translates to convolution relations
in the Fourier domain:

ρ̂i(k) ∗ φ̂j(k)− ρ̂j(k) ∗ φ̂i(k) = 0 ∀k, (4)
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where x̂ denotes the Fourier transform of x. Since the phase
images φj(r) are smooth, their Fourier coefficients φ̂j(k) can
be assumed to be support limited to a region Λ in the Fourier
domain. This allows us to rewrite the convolution relations in
(4) in a matrix form using block-Hankel convolution matrices
HΓ

Λ(ρ). The matrix product HΓ
Λ(ρ) h corresponds to the 2D

convolution between a signal ρ supported on a grid Γ and
the filter h of size Λ. Thus, the Fourier domain convolution
relations can be compactly expressed using matrix matrices [5]
as [

HΓ
Λ(ρ̂i)|HΓ

Λ(ρ̂j)
] [

φ̂j
−φ̂i

]
= 0.

We note that there exists a similar annihilation relation
between each pair of shots, which imply that the structured
matrix

T(ρ̂) =
[
HΓ

Λ(ρ̂1) | · · · | HΓ
Λ(ρ̂N )

]
(5)

is low-rank. MUSSELS recovers the multi-shot images from
their undersampled k-space measurements by solving:

ρ̃ = arg min
ρ

∥∥A(ρ)− y
∥∥2

2
+ λ
∥∥T (ρ̂)

∥∥
∗ , (6)

where ‖ · ‖∗ denotes the nuclear norm. The above problem is
solved in [5] using iterative shrinkage algorithm.

III. DEEP LEARNED MUSSELS
A. IRLS reformulation of MUSSELS

To bring the MUSSELS framework to the MoDL setting,
we first introduce an iterative reweighted least squares (IRLS)
reformulation [11] of MUSSELS. Using an auxiliary variable
z, we rewrite (6) as

arg min
ρ,z

∥∥A(ρ)− y
∥∥2

2
+ β‖ρ̂− z‖2F + λ‖T(z)‖∗ (7)

We observe that (7) is equivalent to (6) as β → ∞. An
alternating minimization algorithm to solve the above problem
yields the following steps:

ρn+1 = arg min
ρ

∥∥A(ρ)− y
∥∥2

2
+ β ‖ρ̂− zn‖2F (8)

zn+1 = arg min
z
‖ρ̂n+1 − z‖2F +

λ

β
‖T(z)‖∗ (9)

We now borrow from [11], [19] and majorize the nuclear norm
term in (9) as ∥∥T(z)

∥∥
∗ ≤

∥∥T(z)Q
∥∥2

F
, (10)

where the weight matrix is specified by

Q =
[
TH(z)T(z) + εI

]−1/4
(11)

Here, I is the identity matrix. With the majorization (10), the
z-subproblem in (9) would involve the alternation between

zn+1 = arg min
z
‖ρ̂n+1 − z‖2F +

λ

β
‖T(z)Q‖2F (12)

and the update of the Q using (11). Thus the IRLS reformula-
tion of MUSSELS scheme would alternate between (8), (12),
and (11). The matrix Q may be viewed as a surrogate for the
null-space of T(z). The update step (12) can be interpreted as
finding an approximation of ρ̂n+1 from the signal subspace.

Conv DeConv
ρ̂n ẑn

G(Q) G(Q)H

(a) Representation of Eq. (18) as MUSSELS Denoiser Dw .

Iterate

Denoiser Conjugate Gradient
ρ̂n ẑn ρ̂n+1

Dw = I −Nw (AHA+ βI)−1

AHy

DC Step
(b) The IRLS MUSSELS algorithm

Fig. 2. (a). The interpretation of Eq. (18) as a convolution-deconvolution
network. (b) The IRLS MUSSELS iterates between (18), and (8). The data
consistency (DC) step represents the solution of Eq. (8).

B. Interpretation of MUSSELS as an iterative denoiser

We note that the entries of the matrix Q can be split as

Q =

q11 . . . qN,1
. . .
q1N . . . qNN

 (13)

such that

T(z)q1 = HΓ
Λ(z1)q11 + ..HΓ

Λ(zN )qN1.

Due to commutativity of convolution h∗g = g ∗h, we have
the relation

HΓ
Λ(g)h = S(h)g, (14)

where S(h) is an appropriately sized block Hankel matrix
constructed from the zero-filled entries of h. We use this
relation to rewrite

T (z)Q =


S(q11) S(q12) . . . S(q1N )

... . . .
...

S(qN1) S(q12) . . . S(qNN )


︸ ︷︷ ︸

G(Q)


z1

...
zN


︸ ︷︷ ︸

z

(15)

We note that G(Q)z correspond to the multichannel convolu-
tion of z1, . . . , zN with the filterbank having filters qi,j . With
this reformulation, (12) is simplified as

zn+1 = arg min
z
‖ρ̂n − z‖2F +

λ

β

∥∥G (Q) z
∥∥2

F
(16)

Differentiating the above expression and setting it equal to
zero, we get

zn+1 =

(
I +

λ

β
G (Q)

H
G (Q)

)−1

ρn+1 (17)

One may use a numerical solver to determine zn+1. An
alternative is to solve this step approximately using the matrix
inversion lemma, assuming λ << β:

zn+1 ≈
[
I− λ

β
G (Q)

H
G (Q)

]
ρ̂n+1

= ρ̂n+1 −
λ

β
G (Q)

H
G (Q) ρ̂n+1 (18)
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Repeat

Nw
Dw

Layer 1

Conv

ReLU

Conv

Layer M-1

ReLU
Conv

Layer M

(a) The M-layer CNN based Denoiser

Iterate

Denoiserρn ρn+1

Dk = I −Nk (AHA+ λ1I)−1

AHy

DC Layer

(b) Proposed k-space MoDL-MUSSELS architecture

Fig. 3. The block diagram of the proposed k-space network architecture to
solve Eq. (19). (a) The Nw block represents deep learned noise predictor and
Dw is a residual learning block. (b) Here, the denoiser Dk is the M-layer
network Dw that performs k-space denoising.

We note that G(Q) can be viewed as a single layer con-
volutional filter bank, while multiplication by G(Q)H can
be viewed as flipped convolutions (deconvolutions in deep
learning context) with matching boundary conditions. Note
that both of the above layers do not have any non-linearities.
Thus, (18) can be thought of as a residual block, which
involves the convolution of the multishot signals ρ̂n with
the columns of Q, followed by deconvolution as shown in
Fig. 2(a). As discussed before, the filters specified by the
columns of Q are surrogates for the null-space of T(ρ̂). Thus,
the update (18) can be thought of as removing the components
of ρ̂n in the null-space and projecting the data to the signal
subspace, which may be viewed as a sophisticated denoiser
as shown in Fig. 2(a).

The MUSSELS scheme as represented in Fig. 2 provides
state of the art results [5]. However, note that the filters
specified by the columns of Q are estimated for each diffusion
direction by alternating between (8), (18), and (11). The
computational complexity of the structured low-rank algorithm
is high, especially in the context of diffusion-weighted imaging
where several directions need to be estimated for each slice.

C. MoDL-MUSSELS Formulation

To minimize the computational complexity of MUSSELS,
we propose to learn a non-linear denoiser from exemplar
data rather than learning a custom denoising block specified
by
[
I− λ

β G (Q)
H
G (Q)

]
for each direction and slice. We

hypothesize that the non-linearities in the network as well as
the larger number of filter layers can facilitate the learning
of a generalizable model from exemplar data. This framework
may be viewed as a multi-channel extension of MoDL [6].
The cost function associated with the network is

arg min
ρ

‖A(ρ)− y‖22 + λ1‖Nk(ρ)‖22 (19)

Here,Nk(ρ) is a non-linear residual convolutional filterbank
working in the Fourier domain, with

Nk(ρ) = ρ−Dk(ρ) (20)

Iterate

ρn

ηn

ρn+1

Dk = I −Nk
(AHA+ λ1I + λ2I)−1

AHy

DC Layer
DI = I −NI

+

ζn

Fig. 4. The proposed hybrid MoDL-MUSSELS architecture architecture
resulting from alternating scheme shown in in (22)-(24). Here Dk and DI

blocks represents k-space and image-space denoising networks respectively.
Both the Dk and DI networks have identical structure as in Fig 3(a). The
learnable convolution weights are differnt for both the networks Dk and DI

but remains constant across iterations.

Dk(ρ) can be thought of as a multichannel CNN in the
Fourier domain such that the image domain input ρ is first
transformed to k-space as ρ̂ then passes through the k-space
model and then transformed back to image domain. Figure 3(a)
shows the proposed M-layer CNN architecture. The overall
k-space MoDL-MUSSELS network archtecture is shown in
Fig. 3(b) that solves Eq. (19). Unlike MUSSELS in Fig. 2, the
parameters of this network are not updated within the iterations
and is learned from exemplar data.

D. Hybrid MoDL-MUSSELS Regularization

A key benefit of the MoDL framework over direct inversion
methods is the ability to exploit different kinds of priors, as
shown in our prior work [10]. The MUSSELS and the MoDL-
MUSSELS scheme exploits the multichannel convolution re-
lations between the k-space data. By contrast, we relied on an
image domain convolutional neural network in [6] to exploit
the structure of patches in the image domain. Note that this
structure is completely complementary to the multichannel
convolution relations. We now propose to jointly exploit both
the priors as follows:

arg min
ρ

‖A(ρ)− y‖22 + λ1‖Nk(ρ)‖22 + λ2‖NI(ρ)‖22, (21)

here, Nk is the same prior as in (19), while NI is an image
space residual network of the form NI(ρ) = ρ−DI(ρ). Here,
DI is a image domain CNN as in [6]. The problem (21) can
be rewritten as

arg min
ρ

‖A(ρ)− y‖22 + λ1‖ρ−Dk(ρ)‖22 + λ2‖ρ−DI(ρ)‖22.

By substituting η = Dk(ρ), and ζ = DI(ρ), an alternating
minimization based solution to the above problem iterates
between following steps:

ρn+1 = (AHA+ λ1I + λ2I)−1(AHy + λ1η + λ2ζ) (22)
ηn+1 = Dk(ρn+1) (23)
ζn+1 = DI(ρn+1). (24)

The above solution results in the hybrid MoDL-MUSSELS
architecture shown in Fig. 4. Note that this alternating min-
imization scheme is similar to the plug-and-play priors [20]
widely used in inverse problems. The main exception is that
we train the resulting network in an end-to-end fashion. Note
that unlike the plug-and-plug denoisers that learn the image
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manifold, the network Dk is designed to exploit the redun-
dancies between the multiple shots resulting from the phase
relations. This non-linear network are expected to project the
multichannel k-space data orthogonal to the null-spaces of the
multichannel Hankel matrices.

IV. EXPERIMENTS

We perform several experiments to validate different aspects
of the proposed model such as benefits of the recursive
network, impact of regularization, comparison with existing
deep learning model such as U-NET [21], and comparison
with recent a model-based technique termed as MUSE [17].

A. Dataset Description

In-vivo data were collected from healthy volunteers at the
University of Iowa in accordance with the Institutional Review
Board recommendations. The imaging was performed on a GE
MR750W 3T scanner using a 32-channel head coil. A Stejskal-
Tanner spin-echo diffusion imaging sequence was used with a
4-shot EPI readout. A total of 60 diffusion gradient direction
measurements were performed with a b-value of 700 s/mm2.
The relevant imaging parameters were FOV= 210× 210 mm,
matrix size = 256 × 152 with partial Fourier oversampling
of 24 lines, slice thickness= 4 mm and TE = 84 ms. Data
were collected from 7 subjects. The acquisition was repeated
twice for 5 subjects while two subjects had only one set of
measurements.

The training dataset constituted a total of 68 slices, each
having 60 directions and 4-shots, from 5 subjects. The vali-
dation was performed on 6 slices of the 6th subject whereas
testing was carried out on 5 slices of the 7th subject. Thus, a
total of 4080, 360, and 300 complex images each having size
256×256×4 (rows×columns×shots) were used for training,
validation, and testing respectively.

B. Multichannel forward model

All of the model based schemes used in this study (MUSE,
MUSSELS, MoDL-MUSSELS) rely on a forward model that
mimics the image formation. We implement this forward
model as described in (1) and (3). The raw dataset consists
of 32-channels. We reduce the data to four virtual channels
using singular value decomposition (SVD) of the non-diffusion
weighted (b0) image. The coil sensitivity maps of these four
virtual channels are estimated using ESPIRIT [22]. The same
channel combination weights are used to reduce the diffusion
weighted MRI data to four coils.

C. Network architecture and training

In this work, we trained a 8-layer CNN having convolution
filters of size 3 × 3 in each layer. Each layer comprises
of a convolution, followed by ReLU, except the last layer
which consists of 1 × 1 convolution as shown in Fig. 5.
The real and imaginary components of the complex 4-shots
data were considered as channels in the residual learning
CNN architecure whereas the data-consistency block worked
explicitly with complex data.

128
4 4

64
8

8128 64 64

3x3 3x3 3x3 3x3 3x3 3x3 1x1

64

+

4

noiseshots shots

Fig. 5. The specific M=7 layer residual leanring convolutional neural
network (CNN) architecture used as Dk and DI blocks in the experiments.
The 4-shot complex data is the input and output of the network. The first layer
concatenates the real and imaginary part as 8 input features. The numbers on
top of each layer represents the number of feature maps learned at that layer.
We learn 3×3 filters at each layer except the last where we learn 1×1 filter.
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Fig. 6. The decay of training and validation errors with epochs. Each epoch
represents one sweep through entire dataset. We note that both the losses decay
with iterations. This suggests that the amount of training data is sufficient to
train the parameters of the model. Our previous work [6] suggests that the re-
use of the network weights across iterations significantly reduces the training
data demand.

The proposed network architecture, as shown in Fig. 4,
was unfolded for 3 iterations and the end-to-end training was
performed for 100 epochs. The input to the unfolded network
is the zero-filled complex data from the four shots, which
corresponds to AHy, while the network outputs the fully
sampled complex data for the four shots. The proposed MoDL-
MUSSELS architecture combines the data from the four shots
using sum-of-squares approach. The network weights were
randomly initialized using Xavier initialization and shared
between iterations. The network was implemented using Ten-
sorFlow library in Python 3.6 and trained using NVIDIA P100
GPU. The conjugate-gradient optimization in DC step was
implemented as a layer operation in TensorFlow library as
described in [6]. The total network training time of the network
was around 37 hours.

The plot in Fig. 6 shows training loss decays smoothly with
epochs. It can be noted that the loss on the validation dataset
also has overall decaying behavior, which implies that the
trained model did not over-fit the dataset. The model-based
framework has considerably fewer parameters than direct
inverse methods and hence requires far fewer training data
to achieve good performance, as seen from the experiments in
[6].
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TABLE I
THE AVERAGE PSNR (DB) VALUES OBTAINED ON THE REAL TEST

DATASET WITH K-SPACE ALONE MODEL AND HYBRID MODEL.

AHb K-space model Hybrid model

PSNR 18.89 24.31 27.96

D. Quantitative metrics used for comparison

The reconstruction quality is measured using peak signal-
to-noise ratio (PSNR).

PSNR(x,y) = 10 ∗ log10

(
max(x)2

MSE(x,y)

)
where MSE is the mean-square-error between x and y. The
final PSNR value is estimated by the average of the PSNR of
individual shots.

E. Algorithms used for comparison

We compare the proposed scheme against MUSSELS [5],
MUSE [17], and a UNET based solution [21] . The MUSSELS
scheme iteratively solves (8), (12), and (11). MUSE [17] is a
two-step algorithm which first estimates the motion induced
phase using SENSE [23] reconstruction and total-variation
denoising. With the knowledge of the phase errors, it recovers
the images using a regularized optimization using (3) as the
forward model. We extend the U-NET [21] model for the
multi-shot diffusion MR image reconstruction, which is the
extension of [24] to the multishot setting. The number of
convolution layers, feature maps in each layer, and filter size
are kept the same as in [21]. This k-space based formulation
is similar to the one used in [24]. The input to the extended
U-NET model is the 8-channel data obtained by concatenating
the real and the imaginary parts of phase corrupted complex
4-shots. The MUSSELS [5] reconstruction were used as the
ground truth for the training of the deep-learning models. We
trained the network in image domain with 1000 epochs for 13
hours using ADAM [25] optimizer.

F. Validation using numerical simulations

To perform quantitative comparisons, we simulate the image
formation numerically using the forward model in Eq. (3). In
particular, we multiply one of the recovered shot images from
the MUSSELS reconstruction with synthetically generated
random bandlimited phase errors to generate the multishot
data with the same undersampling patterns as in the real
experiments. Gaussian noise of varying amount of standard
deviation σ was added to the phase corrupted images.

V. RESULTS

A. Benefit of multiple regularization priors

We study the ability of the k-space network in minimizing
the phase errors in Fig. 7(a). The experiments show the
strength of the k-space network to compensate for phase errors,
in comparison to the uncorrected combination of multishot
data. Note that the results agree visually with the MUSE

(a) MUSE, 24.48 dB (b) K-space, 25.7 dB (c) Hybrid, 28.51 dB

Fig. 7. Comparison of k-space and hybrid models on testing data. (b) only
the k-space model was used (b) the hybrid model. The numbers in the sub-
captions are showing PSNR (dB) and SSIM values respectively. The k-space
alone network is only designed to exploit the phase relation between the
different shots. The results show the utility of the hybrid network, which also
includes the image domain network, which provides additional regularization.

TABLE II
TESTING TIME TO RECONSTRUCT ALL 5 SLICES OF THE TEST SUBJECT.
EACH SLICE HAD 60 DIRECTIONS AND 4-SHOTS. MUSSELS WAS RUNS

ON CPU WITH PARALLEL PROCESSING.

Algorithm: U-NET MUSE MUSSELS MoDL-MUSSELS

Time (sec) : 7 110 1150 47

reconstructions. We study the ability of the hybrid network,
with the addition of image domain regularization as in Fig.
4, to further improve the reconstructions in Fig. 7(c). We
note that the image domain network exploits the manifold
structure of patches, which serves as a strong prior which the
k-space network has difficulty capturing. Note that the data
was acquired using partial Fourier acceleration, where one side
of k-space data was not acquired. The limited ability of the
local k-space network is the reason for the blurring of the
images. The additional image domain prior brought in by the
hybrid scheme hence can reduce the blurring. Both the deep
learned networks (k-space alone as well as the hybrid) network
were trained independently. The quantitative comparison of
the methods is shown in Table I, where we report the average
PSNR and SSIM values obtained on the testing dataset by the
two models. On average, the hybrid scheme offers more than
2 dB improvement in average PSNR values, which agrees with
the visual improvement seen in Fig. 7.

B. Impact of iterations on image quality

In Fig 8, we study the impact of the number of iterations in
the iterative algorithm described in (22)-(24). Specifically, we
unroll the iterative algorithm for different number of iterations
and compare the performance of the resulting networks. We
use the hybrid model due to its improved performance as seen
from the previous paragraph. The parameters of both the k-
space and image-space networks are assumed to be constants
with iterations; they are shared across iterations. The images
in Fig. 8 correspond to a specific direction and slice in the
testing dataset. We note that the contrast and details in the
image improve with iterations, and improved visualization of
some features as shown by zoomed portions.
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(a) MUSSELS (b) One iteration
PSNR=24.84 dB

(c) Three iteration
PSNR=27.00 dB

Fig. 8. Effect of iterations on image quality. We observe that the quality
of the reconstructions with the proposed MoDL-MUSSELS scheme improve
with iterations. Specifically, the sharpness of the image and the contrast seem
to improve with more iterations.

C. Comparison with existing methods on experimentatal data

Figure 9 shows reconstruction quality on a testing dataset
for two of the four shots a particular slice and direction. The
proposed algorithm provides reconstructions with qualitatively
similar magnitude and phase components. It is noted that
the alias artefacts are significantly reduced compared to the
uncorrected data.

In Fig. 10, we compare the proposed method with a
deep learning based method named U-NET [21], as well
as traditional model-based methods named as MUSE [17]
and MUSSELS. We empirically find the best parameters of
MUSE as λ1 = 1.5, λ2 = 0.05, iter = 50. We extended and
implemented the U-NET model for the multi-shot diffusion
MRI as described above in Section IV (E). Figure 10 shows
the reconstructions offered by the different algorithms. Note
that the proposed scheme used MUSSELS as the ground truth
for training. Visually, the MUSE results in a comparatively
blurred image than proposed MoDL-MUSSELS scheme and
MUSSELS. The UNET reconstructions appear less blurred,
but it seems to miss some key features highlighted by boxes
and arrows.

To further validate the reconstruction accuracy of all the
DWIs corresponding to the test slice, we performed a tensor
fitting using all the DWIs and compared the resulting fractional
anisotropy (FA) maps and the fiber orientation maps. For this
purpose, the DWIs reconstructed using various methods from
the test dataset were fed to a tensor fitting routine (FDT
Toolbox, FSL). FA maps were computed from the fitted tensors
and the direction of the primary eigenvectors of the tensors
was used to estimate the fiber orientation. The FA maps
generated using the various reconstruction methods are shown
in Fig. 11, which has been color-coded based on the fiber
direction. It is noted that these fiber directions reconstructed
by the MUSSELS method and the MoDL-MUSSELS match

TABLE III
THE PSNR (DB) VALUES OBTAINED BY FOUR METHODS ON THE TESTING

DATASET WITH SIMULATED PHASEES OF DIFFERENT BANDWIDTHS AND
ADDED GAUSSIAN NOISE OF VARYING STANDARD DEVIATION σ.

Bandwidth, σ U-NET MUSE MUSSELS Proposed

3x3,0.00 23.24 27.68 27.99 31.13
5x5,0.00 22.5 27.32 27.45 30.63
7x7,0.00 21.81 26.44 26.93 30.11

3x3,.001 23.23 27.51 29.15 31.02
5x5,.001 22.5 27.17 28.25 30.68
7x7,.001 21.81 26.31 27.47 30.17

3x3,.003 22.97 26.29 28.51 29.36
5x5,.003 22.31 25.69 27.92 29.18
7x7,.003 21.67 24.97 27.36 28.89

the true anatomy known for this brain region from a DTI white
matter atlas1.

Table II compares the time taken to reconstruct the entire
testing dataset using the four compared methods. It is noted
that the computational complexity of MoDL-MUSSELS is
around 28 fold lower than MUSSELS. Note that MUSSELS
estimates the optimal linear filter bank from the measurements
itself, which requires significantly many iterations. By con-
trast, since the non-linear network is pre-learned, three alter-
nations between the data consistency step and the projections
provided by the deep learned network is sufficient for the
proposed scheme to yield good recovery; the quite significant
speedup follows directly from the significantly fewer number
of iterations. Note that we rely on a conjugate gradient
algorithm to enforce data consistency specified by (22). Note
that solving (22) exactly as opposed to the use of steepest
gradient steps at each iteration would require more unrolling
steps, thus diminishing the gain in speedup. The greatly
reduced runtime is expected to facilitate the deployment of
the proposed algorithm on clinical scanners.

D. Quantitative comparisons using simulated data

Table III summarizes the quantitative results from the simu-
lated data in Section IV-F. Specifically, we quantitatively com-
pare the reconstructions provided by the four algorithms, while
varying the noise levels and bandwidths for phases; larger
bandwidths imply larger spatial variations in the phase errors
corresponding to large motion. The deep learning methods
(UNET or MoDL-MUSSELS), which were trained using the
true MUSSELS reconstructions, were used on the simulated
experiments; no re-training was performed with synthetic data.
Figure 12 shows the visual comparisons of the four methods
in the less challenging (low noise and low bandwidth) and
most challenging (high-noise and high bandwidth) settings.

VI. DISCUSSION

The proposed model-based deep learning method was
trained using reconstructions obtained using the MUSSELS
scheme. Once the training is completed, the testing was
performed on phase corrupted images that were not included

1http://www.dtiatlas.org
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Input AHb MUSSELS MoDL-MUSSELS

(a) Magnitude and Phase of Shot 2

Input Abb MUSSELS MoDL-MUSSELS

(b) Magnitude and Phase of Shot 3

Fig. 9. Magnitude and phase images recovered by MUSSELS and MoDL-MUSSELS. The inputs to both the networks are the zero-filled shot images from
the four shot acquisition, while the outputs are the recovered shot images. These images are then combined using sum of squares reconstruction. (a) and (b)
correspond to shot 2 and shot 3, respectively. Note that the magnitude of the recovered magnitude images of the shots are roughly similar, while the phases
are very different.

U-NET MUSE MUSSELS Proposed

Fig. 10. Reconstructions obtained using different algorithms. The columns
correspond to the reconstructions using UNET, MUSE, MUSSELS, and
MoDL-MUSSELS, respectively. The rows correspond to two of the diffusion
directions from two different slices. The red and yellow boxes highlights the
differences.

in the training data. We note that the MUSSELS scheme
does not use any spatial regularization; the recovered images
are not completely free in the inner brain regions, where the
diversity of the coils are not high. We note from Fig. 10 that
the reconstructions provided by MoDL-MUSSELS appear less
noisy and visually more appealing compared to MUSSELS,
even though similar noisy images recovered using MUSSELS
were used for training. This behavior may be attributed to the
convolutional structure of the network, which is known to offer
implicit regularization [26].

In this work, we utilized a 8-layer neural network as
shown in Fig. 5. However, the proposed MoDL-MUSSELS

architecture in Fig. 4 method is not constrained by the choice
of the network. Any network architecture (e.g. U-NET) may
be used instead. It is possible that the results can improve by
utilizing more sophisticated network architecture. Further, it
can be noted that the proposed model architecture is flexible
to allow different network architectures for image-space and
k-space models. However, for the proof of concept, we used
the same network architecture for both k-space and image-
space. The results can further improve by incorporating more
complex image-domain network architecture.

To avoid overfitting the model and reduce the training
time, the proposed network in Fig. 4 was unfolded for 3
iterations before performing the joint training. The sharing
of network parameters allow the network to be unfolded for
any number of iterations without increasing the number of
trainable parameters.

VII. CONCLUSIONS

We introduced a model based deep learning framework
termed MoDL-MUSSELS for the compensation of phase
errors in multishot diffusion-weighted MRI data. The proposed
algorithm alternates between a conjugate gradient optimiza-
tion algorithm to enforce data consistency and multichannel
convolutional neural networks (CNN) to project the data to
appropriate subspaces. We rely on a hybrid approach involving
a multichannel CNN in k-space and another one in image
space. The k-space CNN exploits the phase relations between
the shot images, while the image domain network is used to
project the data to an image manifold. The weights of the deep
network, obtained by unrolling the iterations in the iterative
optimization scheme, are learned from exemplary data in an
end-to-end fashion. The experiments show that the proposed
scheme can yield reconstructions that are comparable to state
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(a) Uncorrected (b) UNET (c) MUSE (d) MUSSELS (e) MoDL-MUSSELS

Fig. 11. The fractional-anisotropy maps of the slice corresponding to the second row of Fig. 10. These images are computed from the sixty directions of the
slices, recovered using the respective algorithms. We note the the proposed scheme provide less blurred reconstructions than MUSE, which are comparable
with MUSSELS.

3
×

3,
σ

=
0.

0

(a) Ground Truth (b) U-NET, 23.08 (c) MUSE, 27.92 (d) MUSSELS, 30.27 (e) MoDL-MUSSELS, 31.73

7
×

7
,
σ

=
0.

0
03

(f) Simulated AHb, 17.65 (g) U-NET, 22.22 (h) MUSE, 25.49 (i) MUSSELS, 26.80 (j) MoDL-MUSSELS, 28.01

Fig. 12. Simulation results: the least challenging case with phase errors of bandwidth 3x3 and noise standard deviation σ = 0 are on the top row, while
the most challenging setting (7x7 phase errors and σ = .003). The quantitative results are shown in Table III. These results show that the proposed scheme
provide the most accurate results at all parameter settings.

of the art methods, while offering several orders of magnitude
reduction in run-time.
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