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Dynamic MRI using SmooThness Regularization on
Manifolds (SToRM)
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Abstract—We introduce a novel algorithm to recover real
time dynamic MR images from highly under-sampled k-t space
measurements. The proposed scheme models the images in the
dynamic dataset as points on a smooth, low dimensional manifold
in high dimensional space. We propose to exploit the non-linear
and non-local redundancies in the dataset by posing its recovery
as a manifold smoothness regularized optimization problem. A
navigator acquisition scheme is used to determine the structure
of the manifold, or equivalently the associated graph Laplacian
matrix. The estimated Laplacian matrix is used to recover the
dataset from undersampled measurements. The utility of the
proposed scheme is demonstrated by comparisons with state
of the art methods in multi-slice real-time cardiac and speech
imaging applications.

I. INTRODUCTION

Dynamic MR imaging plays a central role in several ap-
plications such as structural and functional imaging of the
heart, lung and liver, as well as vocal tract imaging in speech.
While breath-held and ECG gated imaging is the default
acquisition strategy in cardiac MRI, free-breathing un-gated
acquisitions can enable the imaging of patients that have
difficulty holding their breath [1] (e.g. COPD, obese, and
paediatric subjects). Such free running sequences, where the
acquisitions are not triggered by physiological signals, can also
offer higher acquisition efficiency. The main challenge with
free-breathing and ungated strategies (often termed as real-
time (RT) imaging), is the slow nature of MR acquisition,
which severely restricts the achievable spatial and temporal
resolution.

Several model-based reconstruction algorithms that recover
dynamic data from undersampled measurements have been
introduced to improve the spatial and temporal resolution.
The popular approaches include k-t SPARSE methods [2], [3],
total variation (TV) regularization [4], and low rank methods
such as k-t PCA [5] or partially separable functions (PSF)
[6], [7]. k-t SPARSE methods model the intensity profiles
as a sparse linear combination of exponentials. Temporal TV
regularization relies on the similarity of each frame with its
neighbours in time. PSF and k-t PCA methods exploit the lin-
ear dependencies between the intensity profiles by modelling
them as a linear combination of basis functions, which are
estimated from navigator signals. The main drawback of these
schemes in the context of real-time MRI is the degradation in
performance with extensive inter-frame motion.
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We introduce a novel RT image acquisition and recon-
struction method termed SToRM (SmooThness Regularization
on Manifolds), which exploits the non-linear and non-local
dependencies between images in the time series. In many
RT applications, each image frame in the dataset is a non-
linear function of a few physiological parameters (e.g. cardiac
and respiratory phase in real-time cardiac cine). Thus the
image frames can be modelled as points on a smooth and
low dimensional non-linear manifold. Unlike motion resolved
reconstruction strategies that bin the data to a few cardiac and
respiratory phases and recover them, we propose to recover
the entire dynamic dataset from the undersampled k-t data as a
manifold smoothness regularized reconstruction problem. The
proposed approach is inspired by the manifold regularization
schemes that are widely used in machine learning applications
[8], [9], [10]. This strategy requires the knowledge of the
manifold structure, or equivalently the associated graph Lapla-
cian operator. We introduce a navigator acquisition scheme
to estimate the graph Laplacian matrix. We consider both
`2 and `1 regularization penalties. We show that the `2-
SToRM formulation can be solved analytically in the Fourier
domain in the single receiver coil setting, while it can be
solved efficiently using a simple conjugate gradients algorithm
in the multi-channel case. We introduce a variable splitting
based algorithm to solve for the `1-SToRM formulation. We
demonstrate the utility of our method in accelerated cardiac
and speech imaging. The comparisons of the proposed method
with the state of the art methods show improved image quality.
We expect that our proposed scheme can also be used to
accelerate other MR imaging applications such as lung, bowel
and liver imaging. The early version of the proposed algorithm
was presented in the conference paper [11], and later extended
in [12].

II. BACKGROUND
A. Acquisition scheme

We model the raw dynamic multi-channel MRI data from
the ith image frame xi as:

bij = SiFCj︸ ︷︷ ︸
Aij

xi + ηij , j = 1, ..,Ncoils (1)

where Cj is the receive sensitivity of the jth coil, Si is the
sampling pattern for the ith frame and ηij is the noise. F is the
discrete Fourier transform matrix. The above can be simplified
and re-written as:

B = A(X) + η (2)

where X = [x1, . . . ,xk] is the Casorati matrix obtained by
stacking the vectorized images as columns.
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B. Manifold regularization
We model the images in the dynamic dataset as points on a

smooth low-dimensional image manifold i.e. x1,x2, . . . ,xk ∈
M ⊆ RN . Here M is a smooth m-dimensional manifold
(m << N ) and N specifies the number of pixels in an image.
The regularized recovery of continuous multi-dimensional
functions of a manifold has received considerable attention in
the context of machine learning [9]. The problem is formulated
as:

f̂ = argmin
f
V(f) + λ

∫
M
‖∇Mf‖2dx (3)

where f is the continuous function, V is the desired loss
function and ∇Mf is the derivative of f on M. The second
term contains the roughness prior on the manifold which can
also be expressed as:∫

M
‖∇Mf‖2dx = 〈∇Mf,∇Mf〉 = 〈f,4Mf〉

=

∫
M
f 4Mf dx (4)

where 4M is the Laplace-Beltrami operator on the manifold.
When one is only interested in recovering discrete function
values specified by f = f1, f2, . . . , fk at points x1,x2, . . . ,xk,
the common practice is to approximate the problem as [9]:

f̂ = argmin
f
V(f) + λ

∑
i

∑
j

wij ‖fi − fj‖2 (5)

where the weights wij are specified by:

wij = e−
‖xi−xj‖

2

σ2 (6)

Note that the weights decay with distance. Specifically, wij

will assume a high value if xi and xj are similar to each
other, and a small value if they are different. The penalty term
can also be expressed as:∑

i

∑
j

wij‖fi − fj‖2 = 2Tr
(
fLfH

)
(7)

where Tr denotes the trace operator and L is the graph
Laplacian operator. The L matrix is related to the weight
matrix W (with entries defined by (6)) as:

L = D−W (8)

where D is a diagonal matrix with entries D(i, i) =
∑

j wij .
For example, in a three node graph, the Laplacian is:

L =

 w12 + w13 −w12 −w13

−w12 w12 + w23 −w23

−w13 −w23 w13 + w23

 (9)

Note the similarity between the discrete approximation (7)
and (4). When the manifold is uniformly sampled, the discrete
graph Laplacian operator converges to the Laplace Beltrami
operator on the manifold in the limit (as the distance between
samples tend to zero) [13]. WhenM = Rm, then L is exactly
the finite difference discretization of the continuous Laplacian
operator on a regular lattice (up to a constant factor)[10]:

4Mf(r) =
m∑
i=1

f(r + ei) + f(r− ei)− 2f(r)

δ2
= −

[Lf ](r)

δ2

(10)

where e1, . . . em form an orthogonal basis for Rm with ‖ei‖ =
δ.

III. PROPOSED SCHEME

We model the images in the dynamic dataset as points on
a smooth low-dimensional manifold parameterized by a few
variables. For example, the images in a free-breathing and
ungated cardiac MRI dataset are non-linear functions of their
cardiac and respiratory phases. The proposed framework is
also general enough to be applied to other dynamic imaging
applications like imaging of the vocal tract in speech, where
there is no concept of phases equivalent to cardiac and
respiratory phases in cardiac imaging. We propose to recover
the dynamic dataset from its undersampled measurements (1)
by exploiting the manifold structure of the data. Motivated by
(5), we pose the recovery as:

{X∗} = argmin
X
‖A(X)−B‖2F +

λ
∑
i

∑
j

(√
wij ‖xi − xj‖p

)p
(11)

where we use the `p (p ≤ 2) norm of the image differences in
the regularizer. We will consider the special cases p = 2 and
p = 1 in the later subsections. The above optimization problem
promotes solutions where each image frame is similar in the lp
norm sense to its neighbours on the manifold and the degree
of similarity is determined by the weights wij .

In classical manifold embedding applications, the weights
are derived from the images themselves. This approach is not
practical in our setting since we only have a few measurements
available from each frame. We hence propose an acquisition
strategy using navigators to estimate the weights to be used
in (11). This approach is similar to [6], [7].

A. Estimation of Manifold Structure from Navigators

Consider that each of the k images is observed by the
same M ×N matrix Ψ (M < N ). This mapping is a stable
embedding if the distance between any two points xi and xj is
preserved after the mapping Ψxi. Wakin et al [14] have shown
that a random orthoprojector Ψ provides a stable embedding
of the manifold. Specifically, for some 0 < ε ≤ 1

3 and a
sufficient number of measurements M , the following holds
with high probability for every pair xi and xj :

(1− ε)‖xi − xj‖ ≤ ‖Ψxi −Ψxj‖ ≤ (1 + ε)‖xi − xj‖ (12)

The number of measurements M required to yield stable
embedding is independent of the ambient dimension N and is
almost linearly proportional to the dimension of the manifold
m. The required number of measurements also depends on
the characteristics of the manifold which are captured by its
condition number and volume [15].

Motivated by the above result, we propose to sample the
same k-space locations in every temporal frame. We term the
common measurements as navigator acquisitions, which are
often used in many dynamic MRI applications for calibration
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[6], [7]. We define the measurement operator Aij correspond-
ing to the ith frame and the jth coil as (see (1)):

bi,j =

[
Φ
Bi

]
F Cj︸ ︷︷ ︸

Aij

xi + ηij (13)

The first operator Φ samples the same k-space locations every
frame, regardless of the frame number i; the corresponding
samples (termed navigator signals) enable the estimation of
the neighbours of each frame. The second operator Bi which
samples different k-space locations every frame aids the image
recovery algorithm by sampling the neighbours of a particular
image frame at complementary k-space locations. We propose
to estimate the inter-image distances as:

d2ij =

Ncoils∑
l=1

‖zil − zjl‖2 (14)

where zi,l are the navigator signals given by:

zi,l = ΦF Cl xi + ηil, l = 1, ..,Ncoils (15)

We compute the weights as:

wij =

e−
d2ij

σ2 , if xi and xj are neighbours.
0 , otherwise.

(16)

We set the neighbourhood of each frame to be a fixed number
of nearest neighbours. For example, in order to retain the 5
nearest neighbours for each frame, the ith and the jth frames
are considered to be neighbours if the ith frame is among the
5 frames most similar to the jth frame or the jth frame is
among the 5 frames most similar to the ith frame.

B. Special case: `2 smoothness prior

When p = 2, the recovery using (11) simplifies to:

X∗ = argmin
X
‖A(X)−B‖2F + 2λ Tr(XLXH), (17)

where the Laplacian matrix L is obtained from the weights
using (8). We refer to this implementation as `2-SToRM. We
can view (17) as an analysis formulation since the regularizer
is based on the analysis of X (specified by XQ), where L =
QQH . The problem (17) can be rewritten as:

{X∗} = argmin
X
‖A(X)−B‖2F + 2 λ‖XQ‖2. (18)

The k × k(k − 1)/2 matrix Q specifies a gradient operator.
For example, in a 4 node graph, the matrix Q is specified by:

QT =



√
w12 −

√
w12 0 0

0
√
w23 −

√
w23 0

0 0
√
w34 −

√
w34√

w13 0 −
√
w13 0

0
√
w24 0 −

√
w24√

w14 0 0 −
√
w14

 (19)

Note that this approach is very similar to Tikhonov temporal
regularization, when the sparse matrix Q is the temporal finite
difference operator. The proposed scheme uses an operator that
computes differences between the neighbours on the manifold,

rather than the temporal neighbours. Since the neighbours on
the manifold are expected to be more similar than the ones in
time, we expect to obtain better recovery.

We will now show that this formulation is also equivalent
to a synthesis formulation by a simple change of variables.
In addition to providing additional insights, this offers an
approach to represent the data efficiently, while working with
large datasets. The Laplacian matrix has a singular value
decomposition specified by:

L = VΣVH (20)

The eigen vectors of the Laplacian matrix denoted by vi are
ideally suited to represent smooth signals on the manifold. A
simple special case worth discussing is when the graph has
r disjoint clusters. In this case, spectral graph theory shows
that L will have r zero singular values. The corresponding r
singular vectors V0 with an appropriate rotation matrix R will
yield a set of sparse temporal basis functions:

E0 = RV0 (21)

Each of the basis functions in E0 will assume a value of
zero for frames that are not in a particular cluster, and a
constant value for all the frames in the cluster. This property
is exploited in spectral clustering. If the images in the cluster
are the same, these temporal basis functions are sufficient to
represent the signal. Note that this representation is strikingly
different from principle component analysis used in k-t PCA
or PSF methods [6], [7]. Unlike the global subspace model
used in these methods, the proposed approach captures the
geometry of the data on the manifold, enabled by the non-
linear mapping (16). By minimizing the cross talk between
images in distinct cardiac/respiratory phases, it is expected to
reduce temporal blurring.

In the general setting, one would need more basis functions
to account for the variability of images within clusters/on the
manifold. Substituting L in the regularization penalty term in
(17), we obtain:

Tr

(XV)︸ ︷︷ ︸
U

Σ(XV)H

 =

k∑
i=1

σi‖ui‖2, (22)

where ui = Xvi is the projection of X onto the ith singular
vector vi and σi is the ith singular value of L. Substituting for
X in terms of U in (17), we obtain the equivalent synthesis
formulation:

U∗ = argmin
U
‖A(UVH)−B‖2F + 2λ

k∑
i=1

σi‖ui‖2 (23)

Note that the above formulation is very similar to the k-t PCA
or PSF [6] algorithms that are now widely used in dynamic
MRI. The columns of U correspond to representative images,
while the columns of V are the corresponding temporal basis
functions.
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C. Special case: `1 smoothness prior

We consider the `1 norm of the differences between neigh-
bouring images on the manifold:

{X∗} = argmin
X
‖A(X)−B‖2F + 2λ‖XQ‖1 (24)

We term this implementation `1-SToRM. Note that the above
approach simplifies to the popular temporal total variation
formulation when:

wij =

{
1, if j = i+ 1, i− 1.

0, otherwise.
(25)

We expect our method to achieve better reconstruction than
temporal TV since it enforces the differences between the
closest neighbours of a frame on the manifold to be sparse.
These frames might not be the frames that are close to it
temporally, especially in case of high motion between frames.

Considering that Q has a singular value decomposition:

Q = VΣ
1
2 T (26)

we can also find the equivalent synthesis formulation for the
`1 problem by a change of variable X = UVH :

U∗ = argmin
U
‖A(UVH)−B‖2F + 2λ ‖UΣ

1
2 T‖1, (27)

Note that this approach has similarities to `1 regularized PSF
regularization schemes [7], except that the `1 norm of UΣ

1
2 T

is penalized rather than that of U.

IV. IMPLEMENTATION

We consider separately the solutions for the 2 cases de-
scribed in the previous section: p = 2 and p = 1.

A. `2 smoothness prior

In the single coil case, problem (17) has an analytical
solution in the Fourier domain. We rewrite (17) in this special
case as:

X̂∗ = argmin
X̂

∑
i

‖Six̂i − bi‖2F + 2λTr( X̂ L X̂H) (28)

where the columns of X̂ = [x̂1, . . . , x̂k] are the Fourier
coefficients of the images given by: x̂i = Fxi. The key
observation is that the above expression can be decoupled into
several independent subproblems, each involving the recovery
of a row of X̂. Let X̂(j,·) denote the jth row of X̂ and B(j,·)
denote the vector of measurements corresponding to this row.
Then, we can solve for X̂(j,·) analytically as:

X̂(j,·) = (DH
j Dj + 2λL)−1DH

j B(j,·) (29)

where Dj is the sampling matrix corresponding to the jth row.
The solutions for the different rows of X̂ can be computed
in parallel. This analytic approach can give us a significant
speed-up over solving for the whole matrix X̂ using iterative
algorithms such as conjugate gradient.

In the multi-channel setting, it is possible to solve for each
coil using the above method and combine them using a sum-
of-squares strategy. Since this approach is suboptimal, we
propose to directly solve (17) using the conjugate gradient

algorithm (accounting for the coil sensitivities) to obtain a
more accurate solution. The gradient of the cost function in
(17) can be computed as: 2AHA(X)+4XL. The computation
of AHA(X) can be broken down into blocks (each containing
a few temporal frames of X) and the blocks can be processed
in parallel in order to reduce computational complexity.

B. `1 smoothness formulation

We rely on a variable splitting strategy using an auxiliary
variable Z to solve (24):

{X∗,Z∗} = argmin
X,Z
‖A(X)−B‖2F +

2λ‖Z‖`1 + β‖XQ− Z‖2F (30)

We solve the above problem by alternating between minimiza-
tion with respect to the 2 variables:

X(n) = argmin
X
‖A(X)−B‖2F +

β‖XQ− Z(n−1)‖2F (31)
Z(n) = argmin

Z
β‖X(n)Q− Z‖2F + 2λ‖Z‖1 (32)

We use a homotopy continuation strategy on the parameter
β, where β is initialized to a very small value and then
increased gradually to a very large value till the algorithm
converges. As in the `2 case, (31) can be solved analytically
in the Fourier domain for single coil data. For multi-coil data,
we use the conjugate gradient algorithm. (32) can be solved
using shrinkage. The matrix Z is large and storing it explicitly
will result in huge memory demands. We observe that the
evaluation of (31) only requires ZQT , which is considerably
smaller in dimension than Z. We perform in-place computation
of the variable ZQT and store it instead of Z to reduce the
memory demand of the algorithm.

C. Acquisition Scheme

The acquisition scheme used follows from the discussion
in section III-A. We used a set of uniformly spaced radial
navigator acquisitions (corresponding to Φ), separated by
180◦/Nl degrees where Nl is the number of navigator lines per
frame. The remaining k-space samples (corresponding to Bi)
were acquired using a golden angle radial k-space trajectory,
where each line was separated by an angle of 111.25◦ from
the previous line. Thus, Bi varies from frame to frame. The
acquisition and reconstruction pipeline is illustrated in Fig 1,
where we consider the single coil setup for simplicity.

D. Datasets

We use a numerical cardiac phantom and a retrospectively
undersampled speech dataset for quantitative comparisons. We
also consider the recovery of prospectively undersampled real-
time cardiac MRI data.

1) PINCAT phantom: A short axis view of the PINCAT
phantom [16] heart with matrix size 128×128 and 500 frames
was used for numerical simulations. The dataset has around
26 cardiac cycles and 5 respiration cycles.



5

Fig. 1: Summary of the proposed data acquisition and recon-
struction scheme for the single coil case. The blue radial lines
denote the navigators that sample the same k-space locations in
every frame. The weight matrix is estimated from the k-space
data acquired using these navigator lines as described in (16).
The final images are recovered from the entire measurements
by solving (11).

2) Speech Imaging: We use the MR dataset titled ’F1’ in
the USC-TIMIT database [17] to demonstrate our method.
The raw k-space data for the images in the database was
acquired using a spiral trajectory and this data was gridded
to reconstruct the images. The reconstructed images have
been made available in the dataset as a movie in the coil-
combined form with matrix size 68×68 and frame-rate 23.18
frames/s. This corresponds to a temporal resolution of around
43 ms. The Fourier data corresponding to the first 6000 image
frames was retrospectively undersampled using 9 golden angle
radial lines and 1 spiral navigator per frame and used for our
experiments.

3) Cardiac Imaging: A prospectively undersampled free-
breathing ungated radial dataset was acquired using a SSFP
sequence on a Siemens 3T TIM Trio scanner with a 18 channel
cardiac array from a healthy volunteer who was asked to
breathe normally. The scan parameters were TR/TE = 4.2/2.2
ms, number of slices = 5, slice thickness = 5 mm, FOV = 300
mm, spatial resolution = 1.17 mm. A temporal resolution of 42
ms was achieved by sampling 10 lines of k-space per frame,
out of which 4 were navigator lines. 10000 radial lines of k-
space were acquired per slice which resulted in an acquisition
time of around 42 s per slice. For 5 slices this resulted in a
total acquisition time of around 3.5 mins.

The raw k-space data was interpolated to a Cartesian grid
and a SVD based coil-compression technique was used in
order to create 4 virtual coil elements from the initial 18. We
reconstructed low temporal resolution images for the original
coils by binning k-space data from a large number of frames.
We then performed an SVD on these images and retained
only the 4 most significant singular vectors. The data from
the original coils was coil-combined to form virtual coil data
using the singular vectors obtained. This was done in order
to reduce the computational complexity of the reconstruction
procedure. The coil sensitivity maps were estimated from this
compressed data using the method by Walsh et al [18]. To

Fig. 2: Illustration of the weight matrix and the ability of
the scheme to enable implicit motion resolved recovery. (a,b)
Two frames from the PINCAT dataset. (c) Weight matrix
computed from the fully sampled k-space data. The green
and blue lines show the rows corresponding to the frames in
(a) and (b) respectively. The neighbours of these frames can
be obtained using the weight matrix. (d) Temporal intensity
profile corresponding to the cut shown by the red dotted line
in (a). Frames (a) and (b) and a few of their neighbours are
marked.

reduce computational complexity, the coil sensitivity maps
were assumed to be constant over time.

4) Comparison between breath-held and free-breathing car-
diac acquisitions: In order to compare the image quality
obtained using our method to that obtained by a breath-held
protocol, we acquired 2 cardiac datasets:

• A prospectively undersampled free-breathing ungated ra-
dial dataset.

• A fully-sampled breath-held ECG-gated radial dataset.

The first dataset was acquired using a SSFP sequence on
a Siemens 3T TIM Trio scanner with a 5 channel cardiac
array from a healthy volunteer who was asked to breathe
normally. A TRUFI frequency scout was performed prior
to data acquisition to prevent banding artifacts due to the
presence of field in-homogeneity. The scan parameters were
TR/TE = 3.2/1.62 ms, number of slices = 5, slice thickness
= 5 mm, FOV = 300 mm, spatial resolution = 1.17 mm. A
temporal resolution of 41.6 ms was achieved by sampling 13
lines of k-space per frame, out of which 4 were navigator lines.
13000 radial lines of k-space were acquired per slice which
resulted in an acquisition time of around 42 s per slice. For
5 slices this resulted in a total acquisition time of around 3.3
mins.

The fully-sampled ECG-gated breath-held dataset was ac-
quired by a SSFP sequence on the same subject immediately
after the free-breathing scan. The sampling trajectory was uni-
form radial and the scan parameters were: TR/TE = 3.4/1.72
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Fig. 3: Effect of different navigator trajectories on weight matrix estimation. (a) Percentage error in the weight matrix estimation
(computed using `2 norm), using different navigator trajectories. Spiral and radial trajectories are chosen such that the time
taken to acquire 1 spiral shot is the same as that for 1 radial line. (b) The 2nd, 3rd and 4th eigen vectors of the Laplacian
matrix estimated from (1) fully sampled k-space, shown in blue (2) 1 radial spoke, shown in green (3) 1 spiral readout, shown
in pink. We observe that these vectors capture the respiratory motion, the 2nd harmonic of the respiratory motion, and the
cardiac motion modulated by the respiratory frequency respectively.

ms, number of slices = 5, slice thickness = 5 mm, number
of channels = 5, FOV = 300 mm, spatial resolution = 1.17
mm, number of cardiac phases = 18, radial views per cardiac
phase = 253. Each slice required a breath-hold of around 16 s
followed by a resting period of around 25 s. For 5 slices this
resulted in a total acquisition time of around 3 mins.

Pre-interpolation to a Cartesian grid, coil sensitivity estima-
tion and coil compression were performed using the acquired
k-space data as described in the previous section. 3 virtual
coils were created in this case.

E. State of the art methods used for comparison

The in vivo data reconstructed using `2 and `1-SToRM was
compared to the reconstructions by 3 other methods: kt-LR
[19], temporal TV and PSF. The kt-LR and temporal TV
methods do not require the acquisition of navigators. Thus,
we did not include navigator lines in our sampling pattern
for the speech data, for generating the results for these 2
methods. However, we could not do the same for the cardiac
datasets since they were prospectively undersampled. For the
PSF method, we used the Frobenius norm of the basis images
as a regularizer. The approach followed was similar to [6],
with the same weighting applied to all basis images. For all
3 competing methods, the regularization parameter giving the
highest SER reconstruction was chosen in case of the speech
dataset. For the cardiac dataset, since the ground-truth was
not available, the regularization parameter which seemed to
best preserve the features of the data was chosen. Spatial TV
regularization was not used with any of the algorithms.

V. RESULTS

A. Simulations using PINCAT phantom data

We first conducted some numerical simulations on the
PINCAT phantom. Two frames of the phantom dataset are
shown in Fig 2.(a) and Fig 2.(b).

1) Weight matrix estimate from fully sampled data: We
computed the weight matrices from the fully sampled k-space
data, corresponding to different σ values. These matrices were
thresholded to retain only the 5 nearest neighbours for each
frame. The k-space data was then under-sampled (10 lines per
frame sampled on a pseudo golden angle trajectory). Images
were reconstructed from this under-sampled data using `2-
SToRM with the weight matrices corresponding to different
σ values. The σ value giving the highest SER reconstruction
was chosen to form the optimal weight matrix. This matrix
is shown in Fig 2.(c). The temporal intensity profile of the
original dataset (along the cut given by the red dotted line in
Fig 2.(a)) is shown in Fig 2.(d). The frames in Fig 2.(a) and
Fig 2.(b) and a few of their neighbours (obtained from the
weight matrix) are marked along the profile. We observe that
the frames in Fig 2.(a) and Fig 2.(b) are very similar to their
neighbours estimated by the weight matrix.

2) Effect of navigator trajectory on weight matrix estima-
tion: The effect of different navigator schemes on weight
estimation is studied in Fig 3. The weights estimated from dif-
ferent trajectories were compared quantitatively to the ground-
truth weights obtained from the fully sampled data (Section
V-A1). The normalized `2 norm of the weight estimation error
was used as the error metric. The optimal σ parameter varies
from trajectory to trajectory, depending on the number of k-
space points. We chose the best σ value in each case to obtain
fair comparisons. We did not threshold the weight matrices
for this experiment. We considered spiral and radial navigators
with the same readout duration (TR = 4.3 ms). The percent
errors in weight estimation (computed using `2 norm) are
plotted in Fig 3.(a). We observe that 1 spiral shot (4.3 ms)
is almost as accurate in estimating the weights as 5 radial
lines (21.5 ms). The percent errors incurred in the two cases
are 7.34% and 6.99% respectively. The 2nd, 3rd and 4th eigen-
vectors of the L matrix estimated from: (1) the fully sampled
data, (2) 1 radial line, and (3) 1 spiral shot are shown in Fig
3.(b). The experiments show that the eigen vectors in all three
cases are quite similar. We also observe that the 2nd eigen-
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Fig. 4: Effect of weight matrices estimated using different navigator trajectories on reconstruction. (a) Signal to error ratio
of the reconstructions with the Laplacian matrix estimated from different navigator trajectories. The k-space samples used to
reconstruct the images are the same for all cases (10 golden angle radial lines per frame). Only the navigator trajectory used
to compute the weight matrix are varied. (b) A reconstructed frame is shown for a few of the trajectories reported in (a).

vector captures the respiratory motion of the data (5 respiratory
cycles can be seen). The 3rd eigen-vector shows the 2nd

harmonic of the respiratory motion. The dominant frequency
of this eigen-vector is double that of the dominant frequency
of the respiratory motion. The 4th eigen vector captures the
cardiac motion modulated by the respiratory frequency (26
cardiac cycles can be seen).

3) Effect of weight matrix on image reconstruction:
The effect of different weight matrices (computed using the
navigator trajectories described in Section V-A2) on image
reconstruction quality is studied in Fig 4.(a). The phantom
data was under-sampled in k-space using a golden angle
trajectory with 10 lines per frame and this data was used
for all reconstructions. The navigator data was used only for
weight computation. The weight matrices were thresholded
to retain only the 5 nearest neighbours for each frame. In
Fig 4.(b), we show a single image frame from the time
series, as reconstructed using different weight matrices. The
weights computed using a 1 radial line navigator produced
reconstructed images of comparable quality (31.87 dB) to the
case of ground-truth weights (32.25 dB). The single shot spiral
navigator trajectory, which takes the same acquisition time as 1
radial line, performed slightly better (32.18 dB) than the single
radial line case. Estimation of weights using only the centre k-
space signal gave very poor reconstructions (20.57 dB). Using
a 3 × 3 patch around center k-space as the navigator signal
(instead of the centre only) improved the results considerably
(30.33 dB), though the error images show more artifacts than
when using radial or spiral trajectories.

We clarify that for the above experiment we used the
navigator data only for estimating the weights and not for
reconstruction. However, the navigator data was used for
reconstruction in all the subsequent in-vivo experiments on
the speech and cardiac data. For the experiment in Sec V-A2,
we were studying the relative merits of different sampling
schemes on the weight computation. The analysis was ex-
tended in the above experiment, where we studied the effect

of those computed weights on image reconstruction. If we
included the navigator signals for the reconstruction step, then
the quality of our reconstructed images would be dependent
on: (1) The accuracy of the computed weights (2) The incoher-
ence of the sampling patterns used for each trajectory. Since
we were only studying effect (1), we used the same samples
for reconstruction in each case.

B. Experiments on in vivo data

In the in vivo experiments, the parameter σ used for the
calculation of the weight matrix W was automatically com-
puted using the strategy described in [20]. For this purpose,
we computed the weight matrix for a range of σ values
and evaluated l(σ) =

∑k
i=1

∑k
j=1Wij(σ) for each weight

matrix obtained. A log-log plot of l(σ) revealed 2 constant
asymptotes at σ → 0 and σ →∞, smoothly connected by an
approximately straight line. The approximate σ value at the
middle of this linear portion was selected to form our weight
matrix. The weight matrix was thresholded to retain only the 4-
6 nearest neighbours for each frame. For the multi-slice cardiac
datasets, we had to compute the weight matrix separately for
each slice. This is because our acquisition scheme was 2D, i.e.
the k-space samples from a particular slice were completely
acquired before moving on to the next slice. The regularization
parameter λ was chosen emperically. All reconstructions were
done on a desktop computer (Intel Xeon E5-1620 CPU, 3.6
GHz, 32 GB RAM). The algorithms were implemented in
MATLAB, and may be further optimized to produce lower
reconstruction times.

1) Retrospective undersampling experiments on speech
dataset: The speech dataset was reconstructed from under-
sampled k-space data using different techniques, as shown in
Fig 5. The first row (a) shows the ground-truth images, while
each subsequent row corresponds to datasets reconstructed by
different methods. The techniques used for reconstruction from
under-sampled k-space data along with their reconstruction
times are: (b) kt-LR (4.8 hrs) (c) temporal TV (21 mins)
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Fig. 5: Reconstruction of the speech dataset. (a) Ground-truth
images. The subsequent rows correspond to reconstructions
from under-sampled k-space data using (b) kt-LR, (c) temporal
TV, (d) PSF, (e) `2-SToRM, and (f) `1-SToRM. The data
used for (b) and (c) had a golden angle radial trajectory
without navigators. The data used for (d), (e) and (f) had a
spiral navigator. The arrows point out artefacts in the images
reconstructed by the competing methods, which are not present
in the images reconstructed by SToRM.

(d) PSF [6] (3 mins) (e) `2-SToRM (7 mins) (f) `1-SToRM
(32 mins). For the kt-LR and temporal TV reconstructions,
10 golden angle radial lines of k-space were used per frame
and no navigator lines were included. For the PSF and
SToRM methods, k-space was undersampled using 9 golden
angle radial lines and 1 spiral navigator per frame. SToRM
produces reconstructions with higher SER than the other
methods. Though the `1 and `2-SToRM reconstructions have
comparable SER, it can be seen than the `1 formulation
reduces blurring and preserves borders better. The competing
techniques have more artifacts compared to the proposed
methods, as pointed out in the figure. The ability to recover
high quality images from under-sampled data indicates that
our method can be used to improve the temporal resolution
and also acquire multiple slices in a shorter scan.

2) Recovery of prospectively undersampled RT cardiac
dataset: The multi-slice free-breathing highly undersampled
cardiac dataset described in Section IV-D3 was reconstructed
using different methods, as illustrated in Fig 6. The techniques
used for reconstruction in the different rows along with their
reconstruction times are: (a) kt-LR (7.5 hrs) (b) temporal

Fig. 6: Reconstruction of the free-breathing cardiac dataset.
Selected image frames and temporal intensity profiles along a
vertical cut given by the red dotted line in (a) are shown. The
images were reconstructed from under-sampled k-space data
using (a) kt-LR, (b) temporal TV, (c) PSF, (d) `2-SToRM, and
(e) `1-SToRM. The arrows point out artefacts in the images
reconstructed by the competing methods, which are not present
in the images reconstructed by SToRM.

TV (4.7 hrs) (c) PSF (4 mins) (d) `2-SToRM (24 mins) (e)
`1-SToRM (4.9 hrs). The temporal intensity profile along a
vertical cut of the image frames (given by the red dotted line
in Fig 6.(a)) is also shown for each method. The comparisons
are only qualitative since the ground truth dataset was not
available. We observe that SToRM reduces streaking artifacts
and spatial blurring, compared to other state of the art methods.
Specifically, we observe that the myocardial borders are well
captured, while details such as the papillary muscles are better
defined. We also note that while the image frames of the `1 and
`2-SToRM reconstructions look similar, the temporal intensity
profiles of the `1 formulation appear sharper.

3) Comparison between free-breathing and breath-held car-
diac reconstructions: The quality of the reconstructed free-
breathing and breath-held cardiac datasets described in Section
IV-D4 are compared in Fig 7. The breath-held dataset was
reconstructed using CG-SENSE [21], while the free breathing
dataset was reconstructed using `2-SToRM. We show the data
corresponding to 2 out of the 5 reconstructed slices. The figure
shows results from a particular slice of the breath-held dataset
and also its best matching slice from the free-breathing dataset;
it was difficult to find perfect matches between the breath-
held and the free-breathing acquisitions. Fig 7 shows: (a) 3
cardiac phases from the breath-held cine reconstruction and
temporal intensity profile along the yellow dotted line. (b) 3
frames from a single cardiac cycle of the free-breathing dataset
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Fig. 7: Comparison between proposed free-breathing (FB) reconstruction and breath-held (BH) reconstruction. The BH dataset
was reconstructed using CG-SENSE. The FB dataset was recovered using `2-SToRM. Two matching slices from both datasets
are shown. The rows represent different slices. (a) Images in different cardiac phases from the BH dataset. The voxel profiles
along the yellow dotted line are also shown. (b) Image frames from a particular cardiac cycle of the FB dataset. The voxel
profiles for a few cardiac cycles of the FB dataset are also shown (along the same cut as the BH dataset).

and temporal intensity profile along a vertical cut (same cut
as the breath-held dataset). Note that the breath-held dataset
has a few cardiac phases averaged over many cardiac cycles,
while the free-breathing dataset consists of several cardiac
cycles. Images from the cardiac cycle of the free-breathing
reconstructions which best matched the breath-held images
are shown here. We observe that the dataset reconstructed
using SToRM is of comparable quality to the breath-held cine
datasets.

VI. DISCUSSION

The proposed dynamic imaging scheme estimates the prox-
imity of the images on the manifold using navigator signals,
followed by a manifold aware recovery of the images from
highly undersampled measurements. The reconstructed image
quality was observed to be superior to that achieved by other
state-of-the-art ungated reconstruction methods. Moreover, the
experiment on the speech dataset demonstrated that SToRM
can recover images in case of repeating frames, irrespective of
whether the repetitions are periodic. In fact, the method does
not distinguish between periodic and aperiodic changes. The
quality of our reconstructed images is quite dependent on the
degrees of freedom of the underlying physiological process.
If the degrees of freedom is low, then every frame will have
a sufficient number of neighbours very similar to it with high
probability (provided that our acquisition time is long enough).
If the degrees of freedom is high, then many frames may not
have any other frames very similar to it, and the recovered
frames will be of poor quality. However, in such situations,
other model-based reconstruction schemes should also perform
poorly due to lack of redundancy in the data.

While the original stable embedding theory deals with
random ortho-projectors [14], our empirical comparisons in
section V show that the radial k-space sampling scheme
can estimate the neighbourhood of each image frame quite
accurately. Moreover, our experiments also show that approx-
imate estimates of the weight matrix (using one radial line
of k-space) are often sufficient to ensure good recovery of
images. Our experiments also reveal that spiral navigators
are more efficient than radial navigators. We used the radial
acquisition scheme for ease of implementation on the scanner.
We will investigate the utility of spiral navigators in the
future, which may translate to improved temporal resolution
or reconstruction quality.

The proposed scheme has a few free parameters: (1) σ
(2) the number of neighbours (3) λ. The optimal σ value is
dependent on the k-space trajectory as well as the number of
points. However, we observed that the reconstruction quality
is not very sensitive to the exact value of σ. Specifically,
changing σ by a factor of 10 does not significantly affect the
reconstruction quality. The number of neighbours is a data
dependent parameter determined by the degree of redundancy
in the dataset. If a sufficient number of similar frames is
available for each frame, then a small increase in the number
of neighbours will not affect the image quality. However, if
the number of neighbours is made very high, then all the
neighbours of a particular frame will not be very similar to it,
and the resulting reconstructed image will have motion blur.
If the number of neighbours is made very low, then we will
have aliasing artefacts. Similarly, the regularization parameter
λ is also data dependent.

We show that `2-SToRM has similarities to the k-t PCA
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and PSF methods, with the exception that the temporal basis
functions are the singular vectors of the Laplacian matrix
rather than that of the covariance matrix. These basis functions
promote smoother solutions on the manifold, enabling the
exploitation of the non-linear dependencies between images.
`1-SToRM is similar to the temporal TV scheme, with the
exception that the standard finite difference matrix is replaced
by an adaptive finite difference operator; this enables the
exploitation of non-local dependencies between images in the
dataset. The `2-SToRM scheme has similarities to the recent
work [22]. Specifically, their solution is a clever approximation
of our analytic solution in the `2 setting for the single
channel case. Our approach also has conceptual similarities
to [23], where the cardiac and respiratory phase information
is recovered from the singular vectors of the graph Laplacian.
This approach has been inspired by dimensionality reduction
methods such as ISOMAP and LLE [24], [25] that are used
to embed the data on a manifold to a lower dimensional
subspace. [23] identifies the cardiac and respiratory phases
from the dimensionality reduced data, followed by explicit
motion-resolved binned reconstructions similar to [26]. In
contrast, SToRM performs an implicit motion-resolved recov-
ery of the entire RT dataset. In addition, SToRM does not
need the explicit identification of individual phases, which
is difficult in applications with both cardiac and respiratory
motion and require additional pre-processing steps [23], [27].
The estimation of the cardiac and respiratory phases using
band-pass filtering as in [27], [26] may be challenging in cases
with irregular respiratory motion and arrhythmia. In addition,
many applications like speech imaging have no concept of
phase equivalent to cardiac and respiratory phases in cardiac
imaging. SToRM extends readily to such applications. The
proposed scheme also has conceptual similarities to recent
kernel PCA based approaches, introduced to exploit non-
linear similarities between image patches. Specifically, [28]
learns the basis functions using linear PCA on non-linearly
transformed patches from low-resolution images. They then
iterate between projecting each non-linearly transformed patch
from the high-resolution images to this subspace, and solving
for pre-images that satisfy data-consistency. This approach
may be seen as a synthesis formulation of `2-SToRM, when
re-engineered for image patches.

VII. CONCLUSION

We introduced a novel acquisition scheme and reconstruc-
tion algorithm for real-time dynamic MR imaging, termed
SToRM. The central assumption is that the images in the
dynamic dataset are points on a smooth, low dimensional
manifold embedded in high dimensional space. We formulated
the recovery of the dataset from highly under-sampled mea-
surements as a manifold smoothness regularized optimization
problem. The neighbours of each image on the manifold
were estimated from the navigator acquisition. SToRM was
demonstrated to be useful in accelerating free breathing car-
diac imaging and speech imaging, without compromising on
image quality and slice coverage. This approach improves the
spatio-temporal resolution, while ensuring patient comfort and

reducing the total scan time. It can be easily extended to
other dynamic imaging applications like liver, bowel and lung
imaging.
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