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Abstract

Magnetic Resonance Imaging (MRI) is a widely used non-invasive clinical imag-

ing modality. Unlike other medical imaging tools, such as X-rays or computed

tomography (CT), the advantage of MRI is that it uses non-ionizing radiation.

In addition, MRI can provide images with multiple contrast by using different

pulse sequences and protocols. However, acquisition speed, which remains the

main challenge for MRI, limits its clinical application. Clinicians have to compro-

mise between spatial resolution, SNR, and scan time, which leads to sub-optimal

performance.

The acquisition speed of MRI can be improved by collecting fewer data sam-

ples. However, according to the Nyquist sampling theory, undersampling in k-

space will lead to aliasing artifacts in the recovered image. The recent mathemat-

ical theory of compressed sensing has been developed to exploit the property of

sparsity for signals/images. It states that if an image is sparse, it can be accurately

reconstructed using a subset of the k-space data under certain conditions.

Generally, the reconstruction is formulated as an optimization problem. The

sparsity of the image is enforced by using a sparsifying transform. Total varia-

tion (TV) is one of the commonly used methods, which enforces the sparsity of

the image gradients and provides good image quality. However, TV introduces

patchy or painting-like artifacts in the reconstructed images. We introduce novel
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regularization penalties involving higher degree image derivatives to overcome

the practical problems associated with the classical TV scheme. Motivated by

novel reinterpretations of the classical TV regularizer, we derive two families of

functionals, which we term as isotropic and anisotropic higher degree total varia-

tion (HDTV) penalties, respectively. The numerical comparisons of the proposed

scheme with classical TV penalty, current second order methods, and wavelet al-

gorithms demonstrate the performance improvement. Specifically, the proposed

algorithms minimize the staircase and ringing artifacts that are common with TV

schemes and wavelet algorithms, while better preserving the singularities.

Higher dimensional MRI is also challenging due to the above mentioned trade-

offs. We propose a three-dimensional (3D) version of HDTV (3D-HDTV) to re-

cover 3D datasets. One of the challenges associated with the HDTV framework

is the high computational complexity of the algorithm. We introduce a novel

computationally efficient algorithm for HDTV regularized image recovery prob-

lems. We find that this new algorithm improves the convergence rate by a factor

of ten compared to the previously used method. We demonstrate the utility of

3D-HDTV regularization in the context of compressed sensing, denoising, and de-

blurring of 3D MR dataset and fluorescence microscope images. We show that

3D-HDTV outperforms 3D-TV schemes in terms of the signal to noise ratio (SNR)

of the reconstructed images and its ability to preserve ridge-like details in the 3D

datasets.

To address speed limitations in dynamic MR imaging, which is an important

scheme in multi-dimensional MRI, we combine the properties of low rank and

sparsity of the dataset to introduce a novel algorithm to recover dynamic MR

datasets from undersampled k-t space data. We pose the reconstruction as an
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optimization problem, where we minimize a linear combination of data consistency

error, non-convex spectral penalty, and non-convex sparsity penalty. The problem

is solved using an iterative, three step, alternating minimization scheme. Our

results on brain perfusion data show a significant improvement in SNR and image

quality compared to classical dynamic imaging algorithms.
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1 Introduction

Magnetic resonance imaging (MRI) is a widely used non-invasive clinical imaging

modality. In contrast to other medical imaging techniques such as X-rays, com-

puted tomography (CT), and positron emission tomography (PET), which involve

exposure to ionizing radiation, a distinct advantage of MRI is that it uses non-

ionizing radiation. Since MRI poses minimal risk, it is preferable for longitudinal

research and functional studies [1]. Another popular non-ionizing imaging tech-

nique is ultrasound, which uses high frequency sound waves to acquire images.

Both ultrasound and MRI can provide images with high resolution. However,

the sound waves used in ultrasound could be sub-optimal in imaging regions with

bone and air. MRI, on the other hand utilizes the nuclear magnetic resonance

properties of hydrogen atoms inside the body, and hence can efficiently image a

wide range of tissues.

Another advantage of MRI is that it is capable of providing images with

multiple contrast. Specifically, by changing the pulse sequences and the pro-

tocols, images with different tissue contrast can be obtained depending upon

the specific application. For example, T1-weighted MRI provides good contrast
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of gray matter and white matter in the brain, T2-weighted MRI improves the

visualization of myocardial edema, T ∗2 -weighted MRI is very useful for the de-

tection of cerebral microbleeds [2], diffusion MRI helps diagnosis of vascular

strokes and enables detection of neuronal fiber tracts, and the metabolite dis-

tributions can be achieved from chemical shift imaging (CSI). Fig. 1.1 shows a

series of MR images with multiple contrast due to different clinical applications [2;

3].

(a) T1 weighted image (b) T ∗
2 weighted image (c) Diffusion weighted image

Figure 1.1: Brain MR images with different contrast. (a) is a T1 weighted brain MR image,

where the brain gray matter and white matter are distinguished clearly. (b) shows a T ∗
2 weighted

brain image. The microbleeds point can be detected from the image. A diffusion weighted brain

image is presented in (c). The obvious high intensity area indicates the cerebral infarction which

causes acute stroke.

1.1 Motivation

The main challenge of MRI that limits its clinical application is the relatively slow

acquisition speed. The achievable resolution is constrained by signal to noise ratio

(SNR) and the scan time. In practical applications, clinicians are often forced to

compromise between spatial resolution, SNR, and scan time, often resulting in
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sub-optimal performance. Fig. 1.2 illustrates the three-way tradeoff among the

three factors in MRI. In many applications, the SNR is often sufficient, thus the

major tradeoff is between resolution and scan time.

Scan Time

Resolution SNR
Gradient Strength

Figure 1.2: MRI is a compromise between three tradeoff factors: the scan time, spatial resolution,

and the SNR.

1. Tradeoff between SNR and scan time: SNR is one of the most im-

portant parameters of image quality. Theoretically, increasing field strength leads

to a linearly increased SNR [4]. However, as the main magnetic field (B0 field)

strength increases, the scanner becomes considerably more expensive and the scan

time gets longer. In addition, a higher B0 field strength leads to increment of both

B0 field inhomogeneity and RF magnetic field (B1 field) inhomogeneity. As a re-

sult, it is often difficult to get a good compromise between the two factors.

2. Tradeoff between SNR and resolution: If the scan time remains un-

changed, the resolution can be increased by either using higher gradient field

or less signal averaging. Both approaches lead to the reduction of SNR. More-

over, increased gradient field strength can cause peripheral nerve stimulation [5;

6; 7], which is undesirable. In fact, US food and drug administration (FDA) has

strict limits on the gradients, which restrains the compromise between SNR and

resolution.
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3. Tradeoff between scan time and resolution: It is known that MRI

scanners acquire samples of the images in the Fourier domain, which is termed

as k-space. According to Nyquist theorem, the extension of the k-space region

determines the spatial resolution, while the density of the samples in k-space

determines the field of view (FOV). Fig. 1.3 shows the relationship between the

image domain and the k-space. An effective way to shorten the scan time is

to undersample k-space. However, undersampling violates the Nyquist criterion,

which will lead to aliasing artifacts in the recovered image.

Fourier 
Transform

FOV kmax

Nyquist 
Theorem

Image domain k-space

Δx Δk

Figure 1.3: The relation between image domain and k-space. The two domains can form

a Fourier transform pair. The sampling parameters are inversely proportional. Specifically,

FOV = 1/∆k, ∆x = 1/kmax. The coverage of the k-space samples (kmax) determines the spatial

resolution of the image. The sampling density in k-space determines the image FOV.

While static MRI schemes are widely used, the acquisition of higher dimen-

sional MRI (e.g. dynamic MRI) is still challenging due to the above mentioned

tradeoffs. Instead of imaging a static object, dynamic MRI acquires a series of im-

ages of a dynamically evolving object at different time points [8]. There are several

dynamic MRI applications such as cardiac, perfusion, gastro-intestinal, and vocal

tract imaging. For specific application, researchers have developed customized

solutions. For example, in cardiac MRI, the periodicity of the heartbeats is ex-
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ploited to enable data sharing in k-space. Subsets of the k-space are filled within

each heartbeat and the image is reconstructed by combining the k-space samples

from different heartbeats. This is possible when the heart is beating periodically,

where the motion is captured by electrocardiogram (ECG) gating. Another phys-

iological motion, i.e. respiratory motion, is minimized by the subjects holding

their breath. Fig. 1.4 (a) shows the ECG gated breath-holding cardiac MRI,

with the k-space sampling pattern in (c) and the reconstructed heart image in

(d). Good reconstruction is only possible when the ECG gating is perfect and

patients are holding their breaths. However the assumptions of data sharing (pe-

riodic heartbeats and breath-holds) are often not met in many clinical scenarios.

For instance, patients with arrhythmia have high variability in their heart rates.

Pediatric patients and other patients suffering from asthma, dyspneic respiration

or congestive heart failure cannot comply with the strict breath-hold demands.

This results in inconsistent data sharing, shown in Fig. 1.4 (b), and manifests as

artifacts in the reconstruction as demonstrated in (e).

Recent research has been focused on accelerated MRI techniques, which are

aimed to address the compromise between the scan time and the image quality by

acquiring fewer data samples. The concept of sparsity has been of great interest

in accelerated MR acquisition [9]. This is motivated from the field of image com-

pression. Sparsity means that there are relatively few non-zero coefficients in the

signal domain or the transform domain. The commonly used image compression

method of JPEG/JPEG-2000 relies on the sparsity of the data in discrete cosine

or wavelet transform domain. An encoding technique is applied to store the few

non-zero coefficients for the later decoding to retrieve the original image. Most

MR images are sparse, such as MR angiography (in image domain), and brain

MR images (in wavelet domain or finite differences representation) [9]. Fig. 1.5
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ECG gating

Respiratory motion

ECG gating

Respiratory motion

(b)

(a)

(d) ECG gated, breath-
hold reconstruction

(c)  Data sharing 
in k-space

(e)  Reconstruction
with artifacts

Figure 1.4: Classical dynamic cardiac MRI. (a) depicts the ECG gated breath-holding imaging

protocol. For a frame of the cardiac image, the k-space data are collected during different

cardiac cycle. As shown in (c), each line of the k-space samples corresponds to one heartbeat.

The corresponding reconstructed image is presented in (d). However, the conditions of data

sharing (periodic heartbeats and breath-holds) usually are not satisfied, shown in (b), which

leads to artifacts in the recovered image, as (e) shows.

illustrates the sparsity of MR images.

The more sparse a signal is, the more it can be compressed, thereby raising the

question: if an image is sparse in a certain transform domain, can it be

exactly recovered from fewer k-space samples? The recent mathematical

theory of compressed sensing has been developed to address this problem. Ac-

cording to this theory, if the image is sparse, it can be reconstructed with a subset

of the k-space data under some mild conditions. According to an interpretation of

compressed sensing in the context of MRI [9], there are three key factors that are

required to ensure a perfect reconstruction of the sparse signal from its Fourier
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(a) MR angiography (b) brain MR image (c) Wavelet domain (d) Finite difference

Figure 1.5: Sparsity of MR images. (a) shows a sparse MR angiography image, where only the

few pixels indicating the blood vessels are with high intensity. Some MR images are sparse in

the transform domain. For example, (b) presents a brain MR image, which is sparse in wavelet

domain, as shown in (c); or in finite differences representation, illustrated in (d).

samples.

• The signal that is being recovered has to be sparse in a known transform

domain.

• The aliasing artifacts due to undersampling in k-space are incoherent (noise-

like).

• The reconstruction is performed using a non-linear algorithm, which simul-

taneously enforces the sparsity and the data consistency.

Specifically, incoherence means that the aliasing artifacts due to k-space under-

sampling behave much like additive random noise. The strong components in the

signal stand out from the interference, which can be detected and recovered using

a non-linear algorithm (e.g. thresholding). Fig. 1.6 illustrates the basic concept

of compressed sensing [9].

Generally, the image reconstruction is formed as an optimization problem,

where sparsity of the image is enforced by using a sparsifying transform. There
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iFFTFFT

iFFT

iFFT

a)

d)

b)

e)

c)

f)

Figure 1.6: The basic concept of compressed sensing. A sparse signal (a) is two-fold undersam-

pled in k-space (d). Equispaced undersampling (e) leads to coherent aliasing (f), from which

the signal can not be recovered. Psuedo-random undersampling (b) leads to incoherent aliasing

(c). The strong components in the signal can be detected and recovered.

are a number of sparsifying transforms introduced in compressed sensing. Wavelet

is one of the most commonly used transforms, which decomposes the image at dif-

ferent scales within three directions (vertical, horizontal, diagonal). The success

of wavelet transforms mainly lies in the good performance of capturing the sin-

gularities in one-dimensional (1D) signals. Two-dimensional (2D) wavelets are a

separable extension of 1D wavelets. Hence, 2D wavelet transforms only provide

sparse representation for discontinuities at point-like features, but are sub-optimal

in the case of line discontinuities, exhibited as edges or smooth contours in an im-

age. In this context, curvelet [10], contourlet [11], and ridgelet [12] transforms

(often denoted by “x-let”) are designed to provide more sparse representations of

images with smooth contours. In spite of the good performance in preserving the

ridges/curves of the image, x-let transforms often result in curves-like artifacts in

the reconstruction. Moreover, the computational complexity and redundancy of

x-let transforms are relatively high in practical settings.
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In the recent years, total variation, which enforces the sparsity of the image

gradients, is emerging as a popular method. The advantages of total variation

include its simplicity, rotation invariance, and capability to preserve edges and

provide good image quality [13; 14; 15]. Numerous experiments have shown that

total variation reconstruction is comparable to more sophisticated schemes such

as wavelet and x-let reconstruction [16; 17]. However, total variation has some

limitations that restricts its performance in practical applications. The main

challenge is that total variation often results in patchy or painting-like artifacts

in the reconstructed image that are visually unappealing. Fig. 1.7 shows a TV

reconstruction of a knee MR image, from its random selected samples in k-space.

Original knee MRI

(a) Original knee MR image

TV reconstruction

(b) Total variation reconstruction

Figure 1.7: Total variation reconstruction of a knee MR image from its undersampled Fourier

samples.

In this thesis, we aim to introduce novel methods improving on total variation

in order to decrease the samples required in MRI, while preserving image quality.

In addition, we combine the sparsity and other important properties of the MR

images to accelerate dynamic MRI. The main focus of the thesis is presented in

the following section.



10

1.2 Main focus

The overall goal of the proposal is to develop novel methods to improve the image

quality in MRI, while significantly reducing the scan time. We adopt compressed

sensing based algorithms, where the sparsity of the image is enforced using a

sparsifying transform. Total variation is a widely used method, which tries to find

the sparsest gradient of the image. It is simple to implement, and has good per-

formance in preserving edges of the image. However, the total variation method

is limited by the staircasing artifacts it introduces into reconstructions. There-

fore, we aim to improve the standard total variation (TV) method with so-called

higher degree total variation (HDTV) to overcome the current problems with TV

reconstruction. In addition, we use both the sparsity property and the low rank

property to further improve the performance of the scheme.

The main contributions of this thesis are:

• We formulate the image reconstruction as an optimization problem, where

the sparsity of the image gradients is enforced by using the total variation

(TV) penalty. We extend the standard TV penalty to higher degree TV

(HDTV), using the steerability of the higher degree derivatives. Depending

upon two different reinterpretations of standard TV, we introduce two fam-

ilies of HDTV penalties: isotropic HDTV and rotation invariant anisotropic

HDTV.

• In order to solve the optimization problem with HDTV penalties, we propose

a novel majorize-minimize (MM) algorithm, which involves two steps. In

the first step, the objective cost function is majorized using a surrogate

function. By solving the surrogate function successively, the minimum of
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the cost function is obtained. In addition, we use a continuation scheme to

accelerate the convergence.

• We generalize the HDTV based compressed sensing scheme into other inverse

problems, namely denoising and deblurring. We evaluate the performance

of the HDTV penalized algorithm on natural images and MR images in

these three applications. The results show that the HDTV based schemes

consistently provide better reconstructions, compared to other commonly

used sparsifying transforms such as wavelets and curvelets.

• We extend the HDTV regularized method to a 3D-HDTV version to recon-

struct high-dimensional MR data and other biological datasets. We demon-

strate the utility of 3D-HDTV regularization in the context of compressed

sensing, denoising, and deblurring of 3D MR datasets and fluorescence mi-

croscope images.

• Motivated by the observation that dynamic MR images are both sparse

and low-rank, we combine the TV penalty and the low rank penalty to

form a novel image reconstruction scheme, termed as TV-sparsity and Low

Rank (TV-SLR) algorithm. We derive an MM algorithm to efficiently solve

the problem. Moreover, a continuation scheme is applied to increase the

convergence speed.

• We demonstrate the utility of the TV-SLR scheme in 2D image recovery

and in dynamic contrast enhanced (DCE) MRI. Results show that TV-

SLR achieves high quality image reconstructions with fewer samples than

standard methods.
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1.3 Thesis outline

In the following, the organization of the thesis is presented.

Chapter 2, entitled “Background”, provides a brief overview of MRI and

compressed sensing theory .

Chapter 3, entitled “Higher Degree Total Variation (HDTV) Regularization”,

presents the improved total variation (TV) regularization algorithm: the HDTV

regularized algorithm. It introduces the two families of HDTV regularization

and the majorize-minimize (MM) algorithm to solve the resulting optimization

problem. Some preliminary results on both MR images and natural images are

illustrated at the end.

Chapter 4, entitled “Fast Majorize Minimize Three-Dimensional Higher De-

gree Total Variation (3D-HDTV)”, proposes a 3D-HDTV regularized scheme.

This chapter describes the formulation of 3D-HDTV and introduces an improved

fast MM algorithm to solve the 3D-HDTV regularized problem. The results on 3D

MR datasets and 3D fluorescence microscope images demonstrate the effectiveness

of the proposed algorithm in improving SNR and image quality.

Chapter 5, entitled “TV Sparsity and Low Rank (TV-SLR) Algorithm”, in-

troduces a combined penalties algorithm to recover matrices with sparsity and low

rank properties. A brief introduction of low rank matrix recovery is given at the

beginning. The TV sparsity and low rank regularized algorithm is then developed

to accelerate dynamic MRI. Results on MIT logo image, a simple sparse and low

rank matrix, as well as dynamic contrast enhanced (DCE) MRI are presented at

the end of this chapter.

Chapter 6, entitled “Conclusion”, provides conclusions and further directions

for this research.
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2 Background

MRI is an important non-ionizing medical imaging technique. It is capable of pro-

viding images of soft tissues with good contrast. While static MRI schemes are

widely used in clinical practice, higher dimensional MRI is still challenging due

to long data acquisition time. The recent theory of compressed sensing enables

significant reduction of scan time in MRI. By enforcing the sparsity of MR images,

the number of samples required is decreased. Classical methods include exploring

the sparsity of the image gradient (total variation), the sparsity in wavelet domain,

or in other multi-scale transform domains. Each of these transforms performs well

only for a certain class of images. For example, wavelet transforms perform well

at representing point singularities, and total variation is effective when the images

are piecewise constant. However, none of the transforms are widely applicable.

In order to address this problem, we focus on developing novel sparsifying trans-

forms, so as to accelerate MRI without degrading the image quality. This chapter

provides background on MRI and compressed sensing, which will facilitate the

easy understanding of the rest of the thesis.
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2.1 Principles of MRI

2.1.1 Nuclear Magnetic Resonance

Magnetic resonance imaging (MRI) is based on the phenomenon of nuclear mag-

netic resonance (NMR). The nuclear spins have the intrinsic angular momentum,

which gives rise to a nuclear magnetic moment µI . The overall magnetization of

a system M is defined as the vector sum of all the nuclear magnetic moment, i.e.

M =
∑
µI . Without an external magnetic field, the moments of the spins have

random directions. Hence, the net magnetization is zero. In the presence of an

external static magnetic field B0, the spins are polarized and exhibit a net mag-

netization M0 that is aligned with the magnetic field B0, as shown in Fig. 2.1 (a).

The polarization and hence the magnetization increases with the main magnetic

field strength B0. The motion of the spins in the presence of B0 is termed as

precession, with the precession frequency (also denoted as Larmor frequency) [1]:

ω0 = γB0 (2.1)

where γ is the gyromagnetic ratio. In in-vivo MRI, the signal is produced by the

spins of protons in water molecules in the body [18].

When an RF excitation field (B1), modulated at the Larmor frequency, is

applied in the transverse plane, the magnetization (M0) will be tipped away from

the equilibrium state. There are two components of the deflected magnetization,

i.e longitudinal magnetization (Mz) and transverse magnetization (Mxy). After

B1 is removed, the magnetization will gradually return to the original position

through the process termed as relaxation, as presented in Fig. 2.1 (b). The

detectable signal that is produced by the relaxation of Mxy is the MR signal.
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We will describe the formulation of the two-dimensional (2D) MR image in

the next section.

M0B0

z

x

M+

M_

y

M0

z

y

x

O O

B0

(a) The polarization of protons

Mz

B0

z

x

M+

M_

y

M

z

y

x

O O

B0

Mxy

B1
B1

θ

(b) Nuclear magnetic resonance

Figure 2.1: In the presence of an external magnetic field B0, the protons will be polarized and

generate a magnetization M0, as shown in (a). Applying a RF excitation field B1 along x

direction, the magnetization tips away from M0, producing two components, i.e. longitudinal

magnetization Mz and transverse magnetization Mxy, as shown in (b).

2.1.2 Two-dimensional Magnetic Resonance Imaging

Signal equation

When an RF excitation pulse is applied, all the protons in the magnetic field

are excited. In order to image a slice of the body, a linear gradient field along

z direction, i.e. Gz, is used. According to the linear relation between resonant

frequency and the magnetic field strength, as Eq. (2.1) presents, the resonant

frequencies vary linearly, shown in Fig. 2.2. Therefore, when the band-limited

RF field B1 is applied, only the protons at a slice of the body will be excited with

the corresponding resonant frequency. The bandwidth of the RF pulse determines

the thickness of the excited slice. Fig. 2.2 illustrates the relationship between the

RF pulse bandwidth and the slice thickness.
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Gradient

Slice Selection

Bandwidth △ω

ω0

Figure 2.2: Illustration of slice selection. The linear gradient field Gz is exerted to change

the resonant frequencies linearly. When the RF pulse centered at ω0 with bandwidth of ∆ω

is applied, the protons with the corresponding resonant frequency at a slice of the body are

excited. A higher gradient or a larger bandwidth results in thicker selected slice.

Similarly, the gradient field along x direction, Gx, and along y direction, Gy,

are applied to localize the MR signal. Hence, the magnetic field B experienced

by protons at a specific spatial location (x, y) and time point t is determined by

both the static magnetic field B0 and the time-varying gradient field G in two

directions [19]:

B(t) = B0 +Gx(t)x+Gy(t)y (2.2)

By ignoring the relaxation and the field map effect in the Larmor frequency equa-

tion (2.1), we can obtain:

Mxy(x, y, t) = m(x, y)e−jγ
∫ t
0 (Gx(t)x+Gy(t)y)dt (2.3)

The MR signal detected at a specific time point is the summation of MR signal

of all voxels:

S(t) =

∫
x

∫
y

m(x, y)e−jγ
∫ t
0 (Gx(t)x+Gy(t)y)dtdx dy (2.4)
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We define the k-space location at the time point t as:

kx(t) =
γ

2π

∫ t

0

Gx(τ)dτ (2.5)

ky(t) =
γ

2π

∫ t

0

Gy(τ)dτ (2.6)

The MR signal equation can thus be expressed as:

S(kx, ky) =

∫
x

∫
y

m(x, y)e−j2πkxxe−j2πkyydx dy (2.7)

This equation indicates that the received k-space signal S(kx, ky) and the image

m(x, y) form a Fourier transform pair, where the k-space trajectory is controlled

by the gradients.

K-space trajectories

Currently, the most popular k-space trajectory is cartesian acquisition, where the

k-space is sampled line by line in order to obtain the whole coverage of k-space

domain and reconstruct the image using Fourier transform. This sampling method

is slow because it only samples one line per excitation. The time interval between

successive excitation pulses is termed as repetition time (TR). Thus, in order to

obtain the k-space data of a 256×256 image, the scan time is about 256×TR.

Many faster sampling schemes, such as echo-planar imaging (EPI) [20], radial

sampling and spiral sampling schemes [21], were introduced to accelerate MRI.

The primary advantage of these schemes is that more k-space points are covered

during one TR by using time-varying gradient fields. Fig. 2.3 illustrates some

k-space sampling trajectories [1].

When the samples in k-space are obtained, the image can be recovered using

inverse Fourier transform according to Eq. (2.7). In order to reconstruct the image
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Figure 2.3: Different k-space sampling trajectories

perfectly, the sampling trajectory has to satisfy the Nyquist criterion. When the k-

space is undersampled, there are aliasing artifacts exhibited in the reconstruction.

Fig. 2.4 illustrates the artifacts due to undersampling.

2.1.3 Dynamic MRI

Dynamic MRI acquires a series of images of a dynamically evolving object at

different time points to show the structure and function of the object. The ap-

plication of dynamic MRI includes cardiac, perfusion, gastro-intestinal, and vocal

tract imaging. Dynamic MRI collects more information than static MRI, which is

helpful in detection of certain type of diseases (e.g cardiovascular diseases). How-

ever, obtaining dynamic MR images with high spatial and temporal resolution in a

short period of time is challenging. There are many image reconstruction schemes

developed to speed-up the data acquisition of dynamic MRI without degrading

the image quality. Generally, the methods fall into three categories: methods

using only temporal correlations, using correlations in k-space, and using both

correlations.



19

(a) Brain MR image

(e) K-space samples

(b) Low resolution 
image

(f) Center of  k-space

(c) Aliasing artifacts

(g) Equispaced
undersampling

(h) Random         
undersampling

(d) Incoherent artifacts

Figure 2.4: (a) shows a brain MR image, with the corresponding k-space samples plotted in (e).

If only the center of the k-space is sampled (f), the reconstructed image will have lower spatial

resolution, as shown in (b). If the k-space is uniformly undersampled (g), the recovered image is

contaminated by coherent aliasing artifacts (c), and consequently there is no way to distinguish

the original image. However, if the k-space is undersampled in a more irregular pattern, exhibited

in (h), incoherent artifacts appear in the MR image (d), which is much slighter than aliasing

artifacts in (c), and the original image can be identified.

1. Methods using temporal correlations: In the first category, the most

popular methods are keyhole imaging [22] and sliding window scheme [23]. Key-

hole imaging obtains a full 2D k-space data beforehand as the reference data.

During the dynamic data acquisition, the center of k-space is updated at each

time frame and the outer of k-space remains the same as in the reference data.

Fig. 2.5 shows the concept of keyhole reconstruction. This method is only appli-

cable to dynamic images where the contrast changes are predominant. Imaging

a motion involved object using keyhole method will result in artifacts in the re-
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construction. In sliding window scheme, the samples are acquired in multiple

undersampled subsets of k-space. The image is then recovered by combining the

data collected. After the first image is recovered using a full 2D data set collected

from multiple subsets, the next image in the series is reconstructed by updating

the oldest subset with the most recently acquired subset. The common disadvan-

tage of these two schemes is that a reference frame of 2D k-space data needs to be

acquired before the acquisition of the dynamic data. In addition, these methods

reconstruct the k-space samples independently, regardless of the highly correlated

neighbors.

kx

ky

t=T1 t=T2 t=T3 t=T4

Figure 2.5: Illustration of keyhole reconstruction. The center of k-space is acquired in each time

frame, while the periphery remains the same.

2. Methods using k-space correlations: The second type of schemes

exploit the correlation between k-space samples when the data is acquired using

multiple coils, also known as parallel imaging. In parallel imaging, instead of one

RF coil, multiple receive coils are used to share spatial encoding. Since the k-space

data from multiple coils are correlated, the image can be recovered by combining

the data from different coils. Several parallel imaging techniques are proposed in

the recent [24; 25; 26; 27; 28]. Parallel imaging only focuses on the correlation

of the samples in k-space. Better performance is expected if both spatial and

temporal correlations are taken into consideration.
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3. Methods using spatio-temporal correlations: The third type of strat-

egy incorporates both spatial and temporal correlations. This approach is moti-

vated by the fact that the Fourier transform of spatio-temporal basis, i.e. x − f

space, is usually very sparse, as depicted in Fig. 2.6. Since the cardiac motion

is approximately periodic, most of the energy is concentrated at the harmonics

of the cardiac frequencies. This enables the use of compressed sensing based ap-

proaches, which rely on enforcing the sparsity in the x − f space. However, the

classical sparsifying transforms do not always guarantee a sparse representation

of the signal, resulting in blurring or over smoothing artifacts.

y

x
t

x

t

x

fa) b) c)

iFFTt

Figure 2.6: x − f representation of a dynamic cardiac dataset. (a) shows a stack of dynamic

cardiac images at different time frames. The time profile for one specific line is illustrated in

(b). Taking inverse Fourier transform along the temporal axis, the x− f space domain is shown

in (c), which is obviously sparse.

2.2 Compressed Sensing

The theory of compressed sensing is motivated by the sparse representations of

images used in the field of image compression. The main question in compressed

sensing is: if the data is known to be sparse, can it be recovered using fewer mea-
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surement samples? In the recent years, this research area has received tremendous

interest. Most MR images are sparse in a pre-specified transform domain. In com-

pressed sensing based MRI, the reconstruction is formulated as an optimization

problem by enforcing both the data consistency and the sparsity of the image. The

solution of the optimization problem is achieved by using non-linear methods.

Compressed sensing (CS) theory was first proposed by Candes, Romberg, and

Tao [29], and D. Donoho [30]. Generally speaking, compressed sensing (CS) is a

technique which reconstructs a sparse signal from a limited number of its linear

measurements. Recently, Lustig has applied this technique to MRI [9]. He adapted

the compressed sensing (CS) theory in the context of recovering a sparse image

from its undersampled Fourier samples. We will now mathematically describe the

essentials of compressed sensing (CS) based schemes.

Suppose f ∈ RN is a sparse signal, Φ is the sparsifying transform (e.g wavelet,

finite differences). A is an arbitrary linear operator such that Af+n = b, where b

is the observed noisy linear measurements. In the context of MRI, A usually refers

to the undersampled Fourier transform, and n is often modeled as a Gaussian

white noise with standard deviation σ. The compressed sensing (CS) method

tries to find the signal f̂ that is sparsest in the Φ transform domain and satisfies

a data consistency requirement,

f̂(r) = arg min
f
‖Φf‖l0 , such that ‖A(f)− b‖2 = σ2. (2.8)

where the objective function ‖ · ‖l0 is the l0 norm, which indicates the number of

non-zero coefficients in the sparse signal. The sparsity is enforced by the mini-

mization of ‖Φf‖l0 . The constraint ‖A(f)− b‖2 = σ2 promotes data consistency.

The problem is often reformulated using Lagrange’s multipliers as

f̂(r) = arg min
f

(
‖Φf‖l0 + λ · (‖A(f)− b‖2 − σ2)

)
. (2.9)



23

However, the l0 reconstruction problem (2.9) is numerically infeasible. Candes

et al. and Dohono [31; 29; 30] have theoretically proved that l1 minimization is

equivalent to l0 minimization on signal recovery if the restricted isometric property

(RIP) is satisfied [32]. The l1 optimization problem is thus presented as:

f̂(r) = arg min
f
‖A(f)− b‖2 + λ ‖Φf‖l1︸ ︷︷ ︸

C(f)

. (2.10)

where the l1 norm is defined as ‖f‖l1 =
∑

i |fi|. The restricted isometric property

(RIP) guarantees the accuracy of CS reconstruction if the sparsifying transform

Φ and the undersampled Fourier transform A satisfies certain conditions. When

the signal is sparse in its domain, i.e. Φ = I, suppose that there is a constant δs

of the operator A, such that

(1− δs)‖f‖2
l2
≤ ‖Af‖2

l2
≤ (1 + δs)‖f‖2

l2
(2.11)

holds for all sparse vectors f with s non-zero coefficients [33], A is considered

to satisfy RIP. Essentially, the aim of RIP is to define an incoherent sampling

scheme, so that the operator A behaves almost like an orthogonal matrix when

the data f is sparse. Fig. 2.7 illustrates RIP intuitively. f is a sparse signal, the

random undersampling results in incoherent aliasing artifact, where the energy

approximates the original signal energy. However, the equispaced undersampling

leads to a coherent aliasing, which violates the RIP. When the sparsifying trans-

form Φ is not identity, RIP requires the matrix E = AΦ−1 to satisfy the condition

(2.11).

2.2.1 Sparsifying Transforms

Most MR images exhibit the property of sparsity. Some images such as MR an-

giography are sparse in the original pixel domain. However, most MR images are
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Figure 2.7: f is a sparse signal (a), the random undersampling results in incoherent aliasing

artifact (c), where ‖Af‖2l2 remains approximately the same. However, the equispaced under-

sampling leads to a coherent aliasing (d), which violates the RIP.

implicitly sparse in other domains. For example, most brain MR images, which

are approximately piecewise constant, have sparse finite differences. Another com-

monly used sparsifying transform are wavelet transforms [34], which also plays an

important role in conventional image compression. 1-D wavelet transforms are

especially successful in capturing the discontinuites in a 1-D signal. However,

since classical 2-D wavelet transforms are obtained by applying separable 1-D

transforms in different dimensions, they are limited in their ability to capture

the point-like features rather than the contours of the edge. Alternative direc-

tional multi-resolution transforms such as curvelet [10], contourlet [11], ridgelet

[12], which are referred to as “x-let” transforms, achieve very good performance

by capturing curvilinear features of an image [35]. However, the computational

complexity of these transforms is high, which is undesirable in practical applica-

tions.

In the recent years, the total variation based methods have become very popu-

lar. Total variation promotes the sparsity of the image gradient. Hence, it is good

at preserving the edges of the image. Moreover, it is simple to implement and

the computational time is very fast, compared to the x-let sparsifying transforms.

However, the limitation of TV reconstruction is that the reconstructed images
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often exhibit patchy or painting-like artifacts.

2.2.2 Optimization Algorithms

There are a large number of optimization algorithms introduced to solve the prob-

lem in Eq. (2.10). Generally, these algorithms fall in three categories: discrete

algorithms, convex algorithms, and majorize-minimize (MM) algorithms, as illus-

trated in Fig. 2.2.2.

Optimization algorithms



Discrete Methods


MP

OMP

· · ·

Convex Programs


LP

SDP

· · ·

Majorize-Minimize


ISTA

FISTA

· · ·

Figure 2.8: Reconstruction algorithms for regularized optimization problem

Discrete Methods

Most discrete reconstruction algorithms are greedy algorithms, which are a family

of heuristic methods that compute a local optimal solution at each stage in order

to find the global optimal answer at the end. The idea of greedy algorithms can

be traced back to Mallat et.al. [36] in 1993, where he put forward the matching
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pursuit (MP) method. The algorithm decomposes a signal into a linear combi-

nation of waveforms, which are chosen from a redundant dictionary of functions.

The waveforms are then selected to match the signal optimally. This method is

proved to have good approximation property [37] and converges for any signal in

the dictionary space. Other greedy methods based on MP are also developed [38;

39; 40]. However, there are two primary drawbacks of MP related methods [41].

Firstly, a prior sparsity level parameter is required, which is unknown under most

practical circumstances. Secondly, the algorithms are not robust to noise. These

limitations have motivated the development of other types of optimization algo-

rithms.

Convex Programs

Convex optimization studies the problem of finding the minimum of a convex func-

tion over a convex set. One of the most common types of convex optimization

problems is one with linear constraints and a linear objective, which is called a lin-

ear program (LP) [42]. With the development of convex optimization, semidefinite

programs (SDP) [43] become widely used in compressed sensing [43]. However,

SDP based algorithms are computationally inefficient for large scale problems. Be-

yond these computation concern, SDP is not applicable to optimization problems

with combined penalties.

Majorize-Minimize Methods

Because of the limitations of the previously mentioned algorithms, we focus on

majorize-minimize (MM) algorithms. The main advantage of MM algorithms

is that they replace the original difficult regularized optimization problem by a
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sequence of easier quadratic surrogate problems. The surrogate criteria, denoted

by S(m)(f), majorize the original objective function C(f), and are dependent on

the current iterate f (m):

C(f) ≤ S(m) (f) ,∀f ; S(m)(f (m)) = C
(
f (m)

)
. (2.12)

Thus, the mth iteration of the MM algorithm involves the following two steps

(i) evaluate the majorizing criterion S(m)(f) that satisfy (2.12), and (ii) solve for

f (m+1)(r) = arg minf S(m)(f) using an appropriate quadratic solver (e.g. conju-

gate gradients (CG) algorithm). Fig. 2.9 shows the basic concept of MM algo-

rithm.

Figure 2.9: Illustration of MM algorithm. The goal is to minimize the cost function C(f). Using

a surrogate function S(m)(f) to maximize C(f), the minimization of the surrogate function is

used to find the next iteration. By successively minimizing the surrogate function, the minima

of C(f) can be obtained.

One of the special cases of MM algorithm is the Expectation Maximization

(EM) algorithm, where there are two steps: E (expectation) step and M (maxi-

mization) step. In the E step, the conditional expectation of the data log likeli-

hood is computed, which basically creates a minorizing surrogate function. In the

M step, minorizing surrogate function is maximized. Therefore, EM algorithm

is essentially an example of MM algorithm [44]. There are other extensions of
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MM algorithms such as iterative shrinkage thresholding algorithm (ISTA) and

fast ISTA (FISTA) [45; 46].



29

3 Higher Degree Total Variation

(HDTV) regularization

The reconstruction of images from their noisy and ill-conditioned linear measure-

ments is an important problem. The standard approach is to pose the image

recovery as an optimization problem, where the criterion is a linear combination

of data consistency error and a regularized penalty. Total variation smoothness

prior is a popular regularization penalty. The advantages of TV include simplicity,

invariance to shift and rotations, and capability of preserving edges and providing

good image quality. However, the limitation of TV is that it introduces patchy

or painting-like artifacts. To overcome this problem, in this chapter we introduce

a higher degree TV penalty using the steerability of higher degree image deriva-

tives. We propose an iteratively reweighted majorize minimize algorithm to solve

the HDTV regularized recovery problem efficiently. We demonstrate the utility

of the proposed algorithm in compressed sensing, denoising, and deblurring. The

results show that HDTV significantly reduces the amount of patchy artifacts and

preserves ridge-like image features, compared to standard TV regularization and

other current regularization methods.
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3.1 Introduction

Rudin et al., have introduced the total variation scheme firstly, where the penalty

is the L1 norm of the gradient magnitude of the signal [13; 14]:

J1(f) =

∫
r

√(
∂f(r)

∂x

)2

+

(
∂f(r)

∂y

)2

︸ ︷︷ ︸
|∇f(r)|

dr, (3.1)

Inspite of the isotropic definition, the TV regularizer results in anisotropic 1-D

smoothing. Specifically, the Euler-Lagrange equation of (2.10) is given by [47]:

2A∗ (A(f)− b)− λ
fθ⊥,2
|∇f |

= 0. (3.2)

Here, fθ⊥,2 is the second derivative of f in the direction orthogonal to the gradient

(edge) and A∗ is the adjoint of the operator A. Here, θ is the direction of the

gradient. The second term in the above equation corresponds to smoothing along

the edge (orthogonal to the gradient). Note that the smoothing across the edge

(in the direction of the gradient) is completely attenuated. This one dimensional

smoothing property ensures the preservation of sharp image edges in TV regular-

ized reconstructions. Total variation based algorithms are widely used in remote

sensing [48], biomedical imaging [49], astronomy [50], and radar imaging.

Inspite of its desirable properties, the TV regularizer has some limitations

that restrict its performance in practical applications. The main challenge is its

poor approximation property. Steidl et. al have shown that one dimensional TV

denoising is equivalent to approximating the noisy signal by a non-uniform spline

of degree zero [51; 52]. Since the approximation ability of this representation is

poor, TV regularization often results in patchy or painting-like reconstructions

that are visually unappealing.
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Wavelet representations overcome similar problems by using basis functions

that behave like higher order derivative operators [53; 54]. Inspired by the success

of such wavelet schemes, we propose to replace the conventional gradient opera-

tor by higher order differentials to improve the approximation order. While this

extension is straightforward for one dimensional signals, one can construct several

penalties involving higher order multidimensional partial derivatives; several such

penalties were recently introduced in the context of denoising [52; 55; 56; 57; 58;

59]. Some of these choices may be inappropriate for regularizing inverse problems.

For example, the `1 norm of the Laplacian, which is introduced for denoising [57;

58; 52; 59], has a large kernel [60]; the use of this functional to regularize ill-

conditioned inverse problems may still result in ill-posed problems. We are inter-

ested in deriving functionals that inherit the desirable properties of the standard

TV regularizer.

Based on the steerability of the directional derivatives, we re-interpretate the

classical TV regularizer to derive two families of multidimensional higher de-

gree total variation (HDTV) penalties. We term them as (a) isotropic and (b)

anisotropic penalties, respectively. We first interpret the TV functional as the

L1-L2 penalty of the directional derivatives of the image, along all possible direc-

tions. We use this re-interpretation to derive the isotropic HDTV penalty. These

functionals have analytical expressions, thanks to the rotation steerability of direc-

tional derivatives. L1-L2 mixed norms are often used to enhance joint sparsity [61;

62]; the use of this norm encourages all the directional derivatives at any specified

voxel to be simultaneously zero or non-zero. Since the simultaneous attenuation

of the directional derivatives encourages isotropic smoothing, we term this family

as isotropic HDTV penalties. We also generalize this class by considering the

L1-L2 norm of the rotated versions of general differential operators; we observe
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that this class of generalized functionals contains some of the current higher de-

gree TV-like penalties [55; 56]. We use the re-interpretation of the TV functional

as the separable L1-L1 norm of the directional derivatives to derive the class of

anisotropic HDTV penalties. Since these penalties are fully separable, the pres-

ence of a strong edge/ridge singularity at a specified orientation will not attenuate

the smoothing along the edge/ridge. Thus, this property encourages anisotropic

smoothing, even-though it is invariant to rotations unlike classical anisotropic TV

penalty [13].

3.2 Isotropic HDTV regularization

We now reinterpret the TV functional as a group separable L1-L2 norm of di-

rectional derivatives of the specified image. This interpretation enables us to

generalize the standard TV scheme to higher degree derivatives.

3.2.1 Steerability of directional derivatives

We denote the derivative of a function along the direction specified by the unit

vector uθ = (cos(θ), sin(θ)) as

fθ,1(r) =
∂

∂γ
f(r + γ uθ). (3.3)

Specifically, we have f0 = ∂f/∂x and fπ
2

= ∂f/∂y. Directional derivatives are

rotation steerable [63; 64]; i.e., the derivative along any direction can be expressed

as the linear combination:

fθ,1(r) = f0(r) cos(θ) + fπ
2
(r) sin(θ). (3.4)
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This expression is compactly represented in the vector form:

fθ,1(r) = [cos(θ), sin(θ)]︸ ︷︷ ︸
sH1 (θ)

 ∂f(r)/∂x

∂f(r)/∂y


︸ ︷︷ ︸

g1(r)

. (3.5)

Similarly, the nth order directional derivative, specified by fθ,n(r) = ∂n

∂γn
f(r+γ uθ),

is rotation steerable as fθ,n(r) = sHn (θ) gn(r). Here, gn(r) is the vector of nth order

partial derivatives, while sn(θ) is the vector of trigonometric polynomials. In the

second degree case, we have fθ,2(r) = sH2 (θ) g2(r), where

s2(θ) = [ sin(θ)2 2 sin(θ) cos(θ) cos(θ)2 ]T (3.6)

g2(r) = [ ∂2f(r)
∂x2

∂2f(r)
∂x∂y

∂2f(r)
∂y2

]T . (3.7)

3.2.2 Reinterpretation of TV regularization

Proposition 1. The gradient based regularizer, specified by

J1(f) =

∫
r

|∇f(r)| dr, (3.8)

can be expressed as a group separable penalty of the directional derivatives of f :

1√
2

∫
r

|∇f(r)| dr =

∫
R2

√
1

2π

∫ 2π

0

|fθ,1(r)|2dθ︸ ︷︷ ︸
‖fθ,1(r)‖L2[0,2π]

dr. (3.9)

Proof. Using the steerability of first degree directional derivatives, we simplify the
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L2[0, 2π] norm of the directional derivatives as

‖fθ,1(r)‖2 =
1

2π

∫ 2π

0

∣∣sH1 (θ)g1(r)
∣∣2 dθ

= gH1 (r)

(
1

2π

∫ 2π

0

s1(θ) sH1 (θ) dθ

)
g1(r)

= gH1 (r)
1

2π

∫ 2π

0

 cos2(θ) sin(2θ)/2

sin(2θ)/2 sin2(θ)

 dθ
︸ ︷︷ ︸

1
2
I

g1(r)

=
1

2
gH1 (r)g1(r) = |∇f |2 /2.

Substituting this relation in (3.9), we obtain the equivalence.

3.2.3 Isotropic Higher Degree TV (I-HDTV)

Based on the above reinterpretation, we introduce the isotropic nth degree TV

regularizer as

Jn(f) =

∫
R2

‖fθ,n(r)‖L2[0,2π] dr. (3.10)

Since we are summing the square magnitude of the directional derivatives of the

function along all directions and orientations, this penalty is invariant to rotations

and translations and is also convex. Note that (3.10) is the L1-L2 mixed norm of

the directional derivatives. Such mixed norms are often used in compressed sensing

to exploit the joint sparsity of the coefficients [61; 62]. Specifically, it encourages

the coefficients that are grouped by the L2 norms to be zero or non-zero at the

same time. Thus, the presence of a strong directional derivative at a specified

orientation will encourage the preservation of small directional derivatives along

other directions at that specific pixel. Ideally, the strong directional derivatives

need to be preserved, while the small ones at other directions need to be attenuated

to encourage smoothing along line-like features, thus enhancing them, similar to
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the standard TV scheme. Note that eventhough the standard TV has an L1-L2

interpretation, it exhibits anisotropic smoothing since it can also be interpreted

as a fully separable L1-L1 penalty, as discussed in the next section. This dual

interpretation is unique to the first order TV case and does not extend to higher

order derivatives. Since, (3.10) do not inherit the anisotropic smoothing properties

of the classical TV regularizer, we term these class of functionals as isotropic

HDTV penalty.

Since the only functions for which all directional derivatives vanish are poly-

nomials of degree n − 1, the kernel associated with Jn(f) is small. Hence, the

regularization of ill-conditioned inverse problems using such penalties will be well-

posed. The L1 norm preserves the directional derivatives in regions with high

directional energy (specified by ‖fθ,n‖L2[0,2π]), thus preserving the edges/ridges in

the image. The use of higher degree derivatives in the criterion will enable the rep-

resentation of the signal as piecewise polynomials, thus providing representations

with improved approximation properties.

We now use the steerability of the directional derivatives to derive analytical

expressions for the isotropic HDTV regularizer. Specifically, the L2[0, 2π] norm of

the nth degree directional derivatives are given by

‖fθ,n(r)‖L2 =

√
1

2π

∫ 2π

0

|fθ,n(r)|2 dθ

=

√√√√√gn(r)H
(

1

2π

∫ 2π

0

sn(θ)sn(θ)H dθ

)
︸ ︷︷ ︸

Cn

gn(r)

=
√

gn(r)HCngn(r). (3.11)

Here Cn is a matrix with entries ci,j = 1
2π

∫ 2π

0
si(θ)sj(θ)dθ; i, j = 0, ..., n. Substi-
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tuting (3.11) into (3.10), we obtain the nth degree HDTV penalty as

Jn(f) =

∫
R2

√
gn(r)H Cn gn(r) dr (3.12)

We will now consider the special cases of second and third degree HDTV to

illustrate the above expression.

Isotropic second degree TV

The coefficients in the steerability relation are given by s2(θ) = [cos2(θ), sin(2θ), sin2(θ)]T .

Thus, the symmetric matrix C2 in the second degree TV functional is specified

by

C2 =
1

2π

∫ 2π

0

s2(θ)s2(θ)Hdθ =
1

8


3 0 1

0 4 0

1 0 3

 . (3.13)

Substituting back in (3.12), we obtain

J2(f) =

∫
R2

√(
3 |fxx|2 + 3 |fyy|2 + 4 |fxy|2 + 2< (fxxfyy)

)
/8 dr. (3.14)

Here, <(f) denotes the real part of f .

Isotropic third degree TV

Using the steerability relation of the 3rd order derivative operator, we obtain

J3(f) =
∫ √

q(r)dr/4
√

2, where

q(r) = 5
(
|fxxx|2 + |fyyy|2

)
+ 6< (fxxxfxyy + fyyyfxxy) + 9

(
|fxxy|2 + |fxyy|2

)
(3.15)
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3.2.4 Majorize-Minimize (MM) algorithm for I-HDTV

The HDTV recovery scheme is thus specified by

f̂(r) = arg min
f
‖A(f)− b‖2 + λ

∫
R2

√
gn(r)H Cn gn(r) dr. (3.16)

We extend the classical iterative reweighted MM formulation to (3.16) to obtain

f (m+1)(r) = arg min
f
‖A(f)− b‖2 + λ

∫
R2

gn(r)HD(m)
n (r) gn(r) dr. (3.17)

The entries of the weighting matrix D
(m)
n are spatially modulated by the scalar

weighting term φ
(m)
n (r):

D(m)
n (r) =

1

2

√
g

(m)
n

H
(r)C

(m)
n g

(m)
n (r)︸ ︷︷ ︸

φ
(m)
n (r)

Cn. (3.18)

The spatial weights φ
(m)
n (r) are inversely proportional to the directional energy

(‖f (m)
θ,n (r)‖L2[0,2π]) at the specified location r. The modulation of the quadratic

functional by these weights suppresses the regularization in spatial regions with

strong nth order singularities, thus enabling the preservation of edges/ridges. Since

(3.17) is a quadratic criterion, we solve it efficiently using the conjugate gradient

algorithm. The gradient of (3.17) has an analytical expression:

∇C(m) = 2A∗(A(f)− b) + 2λ ∂n(r)H ∗D(m)
n (r)gn(r). (3.19)

Here, ∂n(r) is the vector of nth degree differential operators and D
(m)
n (r) is a spa-

tially varying diagonal matrix, which is obtained by multiplying Cn with φ
(m)
n (r).

We now illustrate the algorithm in the context of first and second degree TV

schemes.
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Standard TV: isotropic MM algorithm

In the standard TV case, we have φ
(m)
1 (r) = 1/2|∇f (m)(r)|. Hence, the above

expression simplifies to

∇C(m) = 2A∗ (A(f)− b) + 2λ

[
∂

∂x
,
∂

∂y

]
︸ ︷︷ ︸
∂1(r)H

D
(m)
1 (r)︷ ︸︸ ︷

1

2|∇f (m)|
1

2

 1 0

0 1


︸ ︷︷ ︸

C1

 fx(r)

fy(r)


︸ ︷︷ ︸

g1(r)

= 2A∗ (A(f)− b) + λ∇ ·
(
∇f(r)

2|∇f (m)(r)|

)
(3.20)

Since the smoothing at each location is attenuated by 1/|∇f (m)|, the above scheme

enables the preservation of singularities in the image. We illustrate the matrix

D
(m)
1 (r) in Fig. 3.3.3, when f (m) is a Gaussian blurred disk image. Note that

D
(m)
1 (r) is diagonal and both the diagonal entries are exactly the same, irrespective

of the orientation of the edge.

Special case: second order TV

In the second order TV case, the above expression simplifies to

2A∗ (A(f)− b) + 2λ


∂2

∂x2

∂2

∂x∂y

∂2

∂y2


H

︸ ︷︷ ︸
∂2(r)H

D
(m)
2 (r)︷ ︸︸ ︷

φ
(m)
2 (r)

1

8


3 0 1

0 4 0

1 0 3


︸ ︷︷ ︸

C2


fxx(r)

fxy(r)

fyy(r)


︸ ︷︷ ︸

g2(r)

(3.21)
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3.3 Rotation Invariant Anisotropic HDTV reg-

ularization

We now consider an alternate interpretation of the standard TV penalty, which

allows us to develop a different class of rotation-invariant, anisotropic HDTV

penalties.

3.3.1 Reinterpretation of TV regularization

Proposition 2. The standard TV regularizer can be interpreted as a separable

penalty of the directional derivatives of f :∫
r

|∇f(r)| dr =

∫
R2

1

4

∫ 2π

0

|fθ,1(r)|dθ︸ ︷︷ ︸
‖fθ,1(r)‖L1[0,2π]

dr. (3.22)

Proof. The directional derivative at any specified location can be expressed as

fθ(r) = |∇f(r)| cos (θ − φ) , (3.23)

where, φ denotes the orientation of the gradient. Thus, we have

‖fθ,1(r)‖L1 = |∇f(r)| 1

4

∫ 2π

0

|cos (θ − φ)| dθ︸ ︷︷ ︸
1

= |∇f(r)| . (3.24)

Substituting this relation in (3.22), we obtain the equivalence.

3.3.2 Anisotropic Higher Degree TV (A-HDTV)

We will now use the above interpretation to obtain a new family of higher degree

total variation penalties:

Gn(f) =
1

2π

∫
R2

∫ 2π

0

|fθ,n(r)| dθ dr. (3.25)
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Note that this penalty is completely separable unlike the L1 − L2 mixed norms

that we considered in the earlier section. The separable formulation ensures that

the presence of a strong directional derivative in a specified orientation will not

prevent the attenuation of directional derivatives along other orientations. Thus,

this criterion will ensure that an edge-like singularity along a specified orienta-

tion will not attenuate the smoothing in the direction orthogonal to the edge.

This interpretation explains the anisotropic smoothing properties exhibited by

the standard TV regularizer [47]. We expect this class of penalties to provide

reconstructions with improved contour regularity and reduced blob-like artifacts,

compared to the isotropic extension considered in the previous section. Since we

consider all angles, this anisotropic penalty is rotation invariant; it enhances the

edges along all the orientations in contrast to the classical anisotropic TV penalty

[58].

The proof of proposition 2 can be extended to interpret the standard TV

penalty as the L1−Lp; p ≥ 1 penalty of oriented derivatives. Clearly, high values

of p are less desirable since they give more isotropic results. Thus, p = 1 is

the convex choice in this class, which provides the best anisotropic behavior.

Unfortunately, the proposed anisotropic HDTV penalty (p = 1) does not have

analytical expressions similar to the isotropic case (p = 2). However, we now

show that we still can develop an MM algorithm that is conceptually similar to

and shares the computational efficiency of the isotropic MM algorithm.

3.3.3 Majorize-Minimze (MM) algorithm for A-HDTV

We majorize the anisotropic HDTV criterion in (3.25) as

Gn(f) ≤ Gn(f (m)) +
1

2π

∫
R2

∫ 2π

0

φ(m)
n (r, θ) |fθ,n(r)|2 dθ dr, (3.26)
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where

φ(m)
n (r, θ) =

1

2
√
|f (m)
θ,n (r)|2 + ε

. (3.27)

Here, ε is an arbitrarily small constant to ensure that the above expression is well-

defined. We discuss the choice of ε in the next section. In each outer iteration, we

assume the modulation term φ
(m)
n (r, θ) to be fixed, which depends on the current

iterate f (m)(r). We now use the steerability of fθ,n(r) to expand the second term

in (3.26) as

G(m)
n (f) =

∫
R2

gn(r)H
1

2π

∫ 2π

0

sn(θ)φ(m)
n (r, θ) sHn (θ) dθ︸ ︷︷ ︸

B
(m)
n (r)

gn(r)dr (3.28)

Here, B
(m)
n (r) is the spatially varying weighting matrix. Similar to the non-

separable TV, we solve for the minimum of the equivalent majorized cost function:

f (m+1)(r) = arg min
f
‖A(f)− b‖2 + λ

∫
R2

gn(r)HB(m)
n (r) gn(r) dr. (3.29)

Note that this expression is similar to (3.17). However, the matrix B
(m)
n (r) is very

different from D
(m)
n (r). D

(m)
n (r) is obtained by uniformly weighting all entries of

C by φ(m)(r). In contrast, the entries of B
(m)
n (r) are dependent on the directional

weights φ(m)(r, θ). This weighting ensures anisotropic smoothing at each iteration

of the MM algorithm. We propose to minimize the above quadratic expression

using conjugate gradients algorithm. The gradient of the criterion is given by

∇C(m) = 2A∗ (A(f)− b) + 2λ∂n(r)H
(
B(m)
n (r) gn(r)

)
, (3.30)

where matrix B
(m)
n (r) is re-evaluated at each iteration. We now illustrate the

properties of this matrix in the context of first and second order derivatives.
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Standard TV: Anisotropic MM algorithm

The matrix B
(m)
1 is specified by

B
(m)
1 (r) =

1

2π

 ∫ 2π

0
φ

(m)
1 (r, θ) cos(θ)2dθ

∫ 2π

0
φ

(m)
1 (r, θ) sin(2θ)/2dθ∫ 2π

0
φ

(m)
1 (r, θ) sin(2θ)/2dθ

∫ 2π

0
φ

(m)
1 (r, θ) sin(θ)2dθ

 (3.31)

Unlike the isotropic case, the trigonometric functions within the integrals are

weighted by φ
(m)
n (r, θ). In the first order case, this algorithm gives exactly the same

solution as the isotropic algorithm, since the criterion is the same (see Proposition

2).

To illustrate the algorithm, we consider a voxel, where the gradient is in the

horizontal direction; i.e, fy = 0. We thus have φ
(m)
n (r, θ) = 1/2

√
ε+ |∇f |2 cos2(θ).

Substituting in (3.31) and assuming that ε/|∇f (m)| = 10−15, we get

B
(m)
1 (r) =

1

2|∇f (m)|

 1.27 0

0 43.5

 . (3.32)

Note that the weighting of fyy is approximately 34 times stronger than that of

fxx, which makes it very different from (3.20). We show the matrix B
(m)
1 (r)

corresponding to a Gaussian blurred disk in Fig. 3.3.3 (c). Note that the diagonal

entries are not the same as in the case of D
(m)
1 (r). The weights depend on the

orientation of the edge, resulting in continued smoothing along the edges.

Anisotropic 2nd degree TV

Consider a point along an image ridge, corresponding to f
(m)
xx (r) = 1; f

(m)
yy (r) =

1
100

; f
(m)
xy (r) = 0. Thus, we have φ

(m)
2 (r, θ) = 1/2| cos2(θ) + 1/100 sin2(θ)|. Substi-
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(a) f (m)




(b) D

(m)
1 (r)




(c) B

(m)
1 (r)

Figure 3.1: Illustration of the weighting matrices D
(m)
1 and B

(m)
1 , when f (m)(r) is a simple

blurred disk image as in (a). We show the entries of the matrices as images. Note that D1 is

obtained by uniformly weighting C1 by 1/|∇f (m)|. The gradients are heavily weighted in most

regions, except on the edges. In contrast, the entries of B
(m)
1 (r) depends on the orientation of

the edge. Note that the weights for the horizontal derivatives are not attenuated and horizontal

weights are attenuated in the top and the middle of the disk.

tuting in (3.28), we get

B
(m)
2 (r) =

1

8


0.99 0 0.83

0 2.52 0

0.83 0 17.35

 (3.33)

Compared to D
(m)
2 (r) in (3.21), we find that this matrix weights the partial deriva-

tive along y much more heavily (≈ 17 fold) than the one along x. This results in

increased smoothing along the ridge, thus preserving it.

3.4 Numerical Implementation

3.4.1 Discretization of derivatives

To realize efficient numerical algorithms, TV schemes approximate the signal

derivatives with simple finite difference filters. While longer filters provide im-
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proved approximation, their use in TV regularization will result in ringing and

oscillations (similar to wavelet filters). The finite difference filter can be inter-

preted as the samples of the first derivative of a Bspline of degree 1, evaluated at

the samples k+δ, δ ∈ (0, 1). This convolution can also be interpreted as evaluating

the derivative of f(x) at the locations k + δ; k ∈ Z.

Extending this approach to higher order derivatives, we get:

gn(k) = βnn(k + δ) ∗ f [k], (3.34)

where βnn(x) is the nth derivative of βn(x): the Bspline of degree n. We com-

pared the performance of the corresponding HDTV algorithms for different values

of δ and found that setting δ = 1/4 provides the best results. Hence, we use

this parameter for the rest of the experiments in this chapter. We extend this

definition to multidimensional derivatives using derivatives of tensor product of

Bspline functions. Since tensor product Bspline functions are not isotropic in the

strict sense, its partial derivatives are not steerable. However, Bspline windows

become more isotropic as the order of the Bspline increases, provided the Bspline

orders are the same along different orientations. Thus, derivatives of higher de-

gree Bspline windows are approximately steerable. Hence, we propose to use

Bsplines of same degree along x and y dimensions to enhance the steerability of

the derivative operator.

gn1,n2 [k1, k2] = βdn1
(k1 + δ)⊗ βdn2

(k2 + δ)︸ ︷︷ ︸
ϕ(k1,k2)

∗f [k1, k2], (3.35)

where d = n1 +n2 is the degree of the Bspline. These discrete derivative operators

are only approximately steerable.
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3.4.2 Evaluation of B
(m)
n (r) in (3.28)

We compute B
(m)
n by discretizing φ

(m)
n (r, θ) on a uniform grid and evaluating

the Reimann sum. Since the computation of the matrix at a specified voxel is

independent of its neighbors, these computations can be efficiently parallelized.

Our experiments using different number of samples show that 50-100 angles in the

range 0− π are sufficient for a good approximation. We also use the symmetry of

the directional derivatives to accelerate the computation.

3.4.3 Choice of the parameters to improve convergence

The convergence rate of the algorithm is dependent on the parameter ε. Low

values of ε result in the matrices B2 and D2 being ill-defined. Since this results in

poorly conditioned quadratic subproblems, the corresponding conjugate gradient

algorithms will converge slowly. In contrast, the solution of the quadratic sub-

problems are poor approximations to the solution of the original non-quadratic

problem, when large values of ε are used. To overcome this tradeoff, we rely on a

continuation strategy. Specifically, we initialize ε with a large value and gradually

decrease it to a small value. In this work, we initialize ε with 10−3 and decrease it

by εinc = 0.5 in each outer iteration. We observe that this approach significantly

improves the convergence, while retaining the accuracy of the final result. The

pseudocode for the corresponding isotropic and anisotropic algorithms are shown

below.

We typically use twenty outer iterations (MaxOuterIterations=20) and a max-

imum of fifty CG steps per outer iteration to solve for (3.17) or (3.29). The CG

algorithm is terminated when the relative change in the cost function is less than

a specified threshold. We observe that we need many CG steps for initial outer
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iterations, while the number of CG steps are far smaller (2-3) for the later outer

iterations. The total number of CG steps needed is dependent on the condition-

ing of the problem. In general, we need around 200-500 CG steps for the entire

algorithm to converge.�

�

�

�

Algorithm 3.4.1: IsotropicHDTV(A, b, λ)

i← 1

ε← εinit, f
(1) ← AH(b)

while i < MaxContinuationIterations

do



m← 1

while m < MaxInnerIterations

do



Compute gn(r) using (3.35)

fθ,n(r) = sHn (θ) gn(r)

Set φ
(m)
n (r) = 1

2
√
ε+‖f (m)

θ,n (r)‖2

Compute D
(m)
n (r) using (3.18)

Update f (m+1)(r) using (3.17)

m← m+ 1

ε← ε ∗ εincfactor

i← i+ 1

return (f)
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Algorithm 3.4.2: AnisotropicHDTV(A, b, λ)

i← 1

ε← εinit, f
(1) ← AH(b)

while i < MaxContinuationIterations

do



m← 1

while m < MaxInnerIterations

do



Compute gn(r) using (3.35)

fθ,n(r) = sHn (θ) gn(r)

Set φ
(m)
n (r, θ) = 1

2
√
|f (m)
θ,n (r)|2+ε

Compute B
(m)
n (r) using (3.28)

Update f (m+1)(r) using (3.29)

m← m+ 1

ε← ε ∗ εincfactor

i← i+ 1

return (f)

3.5 Results on Image Recovery Problems

We determine the utility of the isotropic and rotation invariant anisotropic HDTV

schemes in the context of three challenging applications: compressed sensing,

deblurring and image denoising. In all the cases, we choose the regularization

parameter λ such that ‖A(f̂) − b‖2 ≈ σ2. We compute the signal to noise ratio

(SNR) of the reconstructions as

SNR = −10 log10

(
‖forig − f̂‖2

F

‖forig‖2
F

)
, (3.36)
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where f̂ is the reconstructed image; forig is the original image; ‖·‖F is the Frobenius

norm.

We compare the proposed isotropic (IHDTV2) and anisotropic HDTV (AHDTV2)

methods with the following state of the art methods (a) standard TV, (b) Lysaker’s

second degree anisotropic TV [65], specified by JLs1(f) =
∫

Ω
(|fxx|+ |fyy|) dr (c)

sparse Laplacian regularization [57], (d) sparse wavelet regularization, and (e)

sparse curvelet regularization.There are two flavors of second degree regulariza-

tion terms in Lysaker’s method, which are given by

JLs1(f) =

∫
Ω

(|fxx|+ |fyy|) dr, (3.37)

and the Frobenius norm of the Hessian matrix:

JLs2(f) =

∫
Ω

√
|fxx|2 + |fyy|2 + |fxy|2 + |fyx|2dr. (3.38)

We observe that both of the above regularizers give similar results, which is con-

sistent with the observations of Lysaker et al., [65]. We use the definition in

(3.37) for our comparisons. We approximate the partial derivatives in standard

TV, sparse Laplacian, and Lysaker’s method using finite differences, which is the

standard practice [57; 65]. We used iterative reweighted algorithms were used to

implement all of the above methods. Existing MATLAB toolboxes for curvelet

[66] and SURE-let [67] shrinkages were used in the context of denoising.

To ensure fair comparisons between different methods, we optimize the reg-

ularization parameter in each case to obtain ‖A(f̂λ) − b‖2 ≈ σ2. Here fλ is the

reconstructed image with λ as the regularization parameter. We determine the

optimal regularization parameter for each noise level, image, and algorithm us-

ing a simple bisection algorithm. The ground truth and the standard deviation

of the noise process are available to us, since we simulate the image formation.
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The determination of the optimal regularization parameter is challenging when

the ground truth and the noise level are unknown. The choice of regularization

functionals in such settings is a very actively researched area; there are several

strategies including the L-curve method [68], cross-validation [69], and Stein’s

unbiased risk estimator (SURE) [70; 71]. We plan to use one of these methods

to determine the optimal parameters in practical applications, when the ground

truth and standard deviation of the noise process is unknown.

3.5.1 HDTV in Compressed Sensing

The recovery of images from their undersampled Fourier samples is an important

problem in MRI [49; 72]. This approach is often used to reduce the acquisition

time in time-critical scans, reduce motion artifacts, and improve spatio-temporal

resolution. In the experiments in this thesis, we assume the measurements to be

acquired using variable density random Fourier encoding; this sampling pattern is

realized in 3-D MR imaging using random phase-encodes and choosing the readout

axis to be orthogonal to the image plane [49; 72] (see Fig. 3.3 (b) for the pattern in

one k-space plane). We consider four MR images (brain in both sagittal view and

axial view, wrist and angiography) and two natural images (Lena and Peppers)

to illustrate the algorithm. The natural images are used to illustrate the utility

of HDTV scheme in recovering the smoothly varying image regions.

The reconstructions of sagittal brain MR image at accelerations of A=4.35

and A=2 are shown in Fig. 3.2. In (b) to (h), we show the reconstructions

using different methods at an acceleration of 4.35. We observe that standard

TV reconstruction results in patchy artifacts with some loss in fine details, while

the Laplacian method provides reconstructions with blob or point like artifacts.
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All reconstructions are blurred at such high accelerations. However, the differ-

ences between the methods are more evident. The reconstructions using Lysaker’s

penalty provides better results than TV, but results in the loss of details. We ob-

serve that the A-HDTV2 algorithm provides better recovery of the image features,

compared with the I-HDTV2 scheme (see dotted blue arrows in the images in (f)

to (h)). By smoothing along the line-like features, anisotropic penalty preserves

these characteristics more effectively. The A-HDTV3 method (top row) preserves

some of the details that are lost in second degree case (see green arrow), but re-

sults in increased blurring and lower SNR. The reconstructions at an acceleration

of A=2 are shown in the bottom row. We observe that the A-HDTV2 method

preserves the fine features better than the other methods (see blue arrows in (j)

to (l)). In this setting, the A-HDTV2 scheme provides a 1.36 dB improvement in

SNR over standard TV and 2.73 dB improvement over Lysaker’s method.

Fig. 3.3 compares the reconstructions of Lena image at acceleration of A =

4.35. It is seen that the standard TV reconstruction results in painting-like stair-

case artifacts in the smooth facial regions. In addition, it results in the loss of

detail in the hair regions. The Lysaker’s method is not patchy compared with

TV, while it tends to blur the facial and eye area (see blue arrows), resulting in

a lower SNR. The proposed A-HDTV2 method provides reasonably good recon-

structions in these regions, resulting in an improvement of around 0.85dB over the

TV scheme. We observe that the Laplacian penalty results in excessive amplifica-

tion of point-like features.Note that A-HDTV3 method provides visually similar

results as the second degree counterparts. However, the computational cost of

this method is more significant than the second degree methods. See VI.C for

details.
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The SNRs of the recovered images at various acceleration factors and signal

to noise ratios are shown in Table. 3.1. We observe that the A-HDTV2 method

provides the best overall SNR for most of the cases. The TV scheme provides

reconstructions that are 0.06dB better than A-HDTV2 for the axial brain MRI

data in high noise setting. Note that this image is more or less piecewise constant.

We observe that the Lysaker and Laplacian reconstructions have lower SNR than

classical TV in the compressed sensing setting.

Acceleration 2.00 2.85 4.35 2.00 2.85 4.35

Noise level 20dB 40dB 20dB 40dB 20dB 40dB 20dB 40dB 20dB 40dB 20dB 40dB

MR Angiography (512× 512) wrist MRI (256× 256)

TV 23.47 33.42 22.33 30.88 20.99 28.42 19.55 28.71 18.46 25.20 17.30 22.20

I-HDTV2 24.21 34.66 22.58 31.62 20.81 28.15 20.32 29.68 18.91 25.54 17.33 21.88

A-HDTV2 24.52 35.51 23.07 32.58 21.39 29.74 20.45 30.30 19.18 26.36 17.66 22.33

Lysaker 23.01 32.28 21.93 28.75 19.82 26.40 19.86 27.80 18.52 22.82 16.60 18.54

Laplacian 21.90 31.66 20.38 26.25 18.30 24.21 19.06 25.13 17.22 19.84 15.48 16.14

brain MRI axial view (256× 256) Lena (256× 256)

TV 21.71 30.32 20.57 27.75 19.64 25.32 19.88 27.70 18.99 25.25 17.97 22.52

I-HDTV2 21.65 30.65 20.49 27.49 19.30 24.57 20.23 29.00 18.87 26.36 17.83 23.24

A-HDTV2 21.91 31.29 20.85 28.17 19.83 25.25 20.38 29.11 19.20 26.03 18.00 23.37

Lysaker 21.63 29.87 20.42 26.15 19.23 22.59 20.17 27.36 18.51 23.59 16.59 19.30

Laplacian 20.70 26.91 19.81 23.29 18.11 20.28 19.55 24.75 17.49 20.72 15.92 17.20

brain MRI sagittal view(256× 256) Pepper (256× 256)

TV 20.79 29.31 19.49 26.61 18.29 24.23 20.20 30.36 19.22 27.54 18.31 25.20

I-HDTV2 21.56 30.41 20.27 27.12 18.70 23.96 20.43 31.45 19.40 28.20 18.33 25.20

A-HDTV2 21.94 30.67 20.30 27.55 18.87 24.58 20.61 31.65 19.61 28.96 18.31 25.87

Lysaker 21.09 27.94 19.09 22.88 16.85 20.31 20.50 30.80 19.24 26.69 17.65 21.59

Laplacian 20.18 25.35 17.89 20.03 15.26 16.36 19.55 28.19 17.99 23.31 16.49 19.73

Table 3.1: Comparison of compressed sensing algorithms

3.5.2 HDTV in Deblurring

Deblurring or deconvolution is an important problem in many areas, including

microscopy [73; 74], astronomy [75], and motion correction [76]. We illustrate

the utility of the proposed second degree HDTV methods in this inverse problem

and compare the results with the standard TV regularized recovery algorithm.

We consider Gaussian blurring kernels with different standard deviations (σgau =
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0.5 and σgau = 1) and two different noise levels (25dB and 45dB). Quantitative

comparisons for two microscopy images and two natural images (Barbara and

Lena) are shown in Table 3.2. Note that the anisotropic second degree HDTV

provides the best reconstructions, except in one case. The comparison of the

algorithms on a monkey kidney cell image is shown in Fig. 3.4. Note that the

standard TV results in quite patchy results, while the proposed anisotropic second

degree HDTV scheme provides more accurate reconstructions.

σgau 0.5 0.5 1 1 0.5 0.5 1 1

noise level 25dB 45dB 25dB 45dB 25dB 45dB 25dB 45dB

monkey kidney cell Lena

TV 21.37 37.83 16.25 21.28 24.41 37.87 20.58 24.42

I-HDTV2 21.66 37.76 16.43 22.31 24.41 37.99 20.03 24.71

A-HDTV2 21.8 37.84 16.45 22.46 24.58 38.05 20.61 24.76

mongoose skin cell Barbara

TV 21.79 37.65 17.26 21.57 23.56 37.81 20.65 23.6

I-HDTV2 22.05 37.72 17.44 22.38 23.63 37.85 20.33 23.83

A-HDTV2 22.05 37.77 17.45 22.38 23.8 37.96 20.45 23.87

Table 3.2: Comparison of deblurring algorithms

3.5.3 HDTV in Denoising

The removal of noise from images is a very common problem in image processing.

This area has witnessed extensive research with several algorithms that offer very

good performance. As discussed previously, most of the second degree TV exten-

sions were originally introduced for denoising. We compare the denoising perfor-

mance of the HDTV schemes with standard TV, Laplacian, Lysaker’s anisotropic

second order TV, and sparse Laplacian method in Fig. 3.5. The TV scheme ex-
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hibits patchy results, while the Laplacian method results in blob like artifacts in

this high noise setting. The Lysaker scheme provides less patchy reconstructions,

compared to the TV scheme. However, it is observed to result in blurry recon-

structions. The A-HDTV2 scheme is capable of recovering the fine image features

in the facial regions and the details of the camera, compared to the Lysaker’s

penalty, resulting in around 1 dB improvement over the other schemes. We also

observe that the A-HDTV3 scheme preserves more details than the A-HDTV2

scheme.

The quantitative comparisons of the denoising performance of the algorithms

on six test images, corrupted by Gaussian white noise are shown in Table 3.3. We

study the denoising performance for images with different signal to noise ratios;

the standard deviation of the noise process is controlled to obtain an input SNR of

5 dB to 30 dB. In the denoising setting, the current second order methods (Lysaker

and Laplacian) provides images with better signal to noise ratio than the standard

TV scheme; this observation is is consistent with the extensive denoising literature

[65; 77]. We observe that the denoising performance of the proposed penalties

(anisotropic and isotropic HDTV schemes) are better, or at least comparable,

with the state of the art methods. Note that the proposed anisotropic second

degree HDTV provides the best SNR in most cases. These experiments show that

the proposed anisotropic HDTV penalties also work well in the de-noising setting.

3.5.4 Convergence rate

We compare the convergence rate of the different algorithms in Fig. 3.7. All the

methods were implemented using the iterative reweighted least squares algorithm,

implemented in MATLAB on a Linux workstation with two Core 2 quad-core pro-
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input SNR(dB) 5 15 30 5 15 30 5 15 30

Lena Lung carcinoma cell Pepper

TV 15.72 20.47 30.01 13.03 18.50 29.92 16.34 21.66 31.37

I-HDTV2 16.46 22.34 33.67 14.34 20.85 33.51 16.46 23.18 34.41

A-HDTV2 16.53 22.48 33.77 14.41 20.91 33.61 17.13 23.59 34.57

Curvelet 16.20 21.43 30.80 14.28 20.44 31.15 16.99 22.98 31.93

SURE-let 16.29 21.12 31.43 14.37 20.44 31.76 16.85 22.72 32.58

Lysaker 16.17 20.71 30.13 13.80 19.29 30.93 16.59 21.86 31.78

Laplacian 15.11 19.45 29.29 13.25 18.56 29.66 16.13 20.90 31.49

House Medicago cell Cameraman

TV 18.40 23.83 32.21 14.01 18.89 29.17 16.68 21.56 31.47

I-HDTV2 18.85 24.11 34.29 15.41 21.29 32.83 16.46 22.67 34.40

A-HDTV2 18.97 24.46 34.49 15.50 21.44 32.89 16.59 22.91 34.56

Curvelet 18.47 24.55 33.26 15.06 20.59 30.53 16.38 21.80 32.19

SURE-let 18.72 24.19 33.11 10.81 19.59 31.30 16.60 21.92 32.47

Lysaker 18.33 23.52 32.31 14.92 19.86 29.70 16.23 21.14 31.37

Laplacian 18.15 22.39 31.38 14.53 19.88 29.25 15.51 20.15 30.69

Table 3.3: Comparison of denoising algorithms

cessors. The change in SNR vs computation time is plotted in Fig. 3.7. We plot

the SNR of the A-HDTV scheme and standard TV as a function of the CPU time

at different acceleration factors. For acceleration factor of 2, A-HDTV2 method

(red line in (a)) needs about 280 iterations for convergence (75 seconds), compared

with around 150 iterations (29 seconds) using the TV algorithm. In contrast, the

A-HDTV2 method requires around 500 CG steps (127 seconds), compared to ap-

proximately 300 CG steps (61 seconds) for standard TV (blue line in (b)). Thus,

we see that the A-HDTV2 scheme only results in a moderate increase in compu-

tational cost over standard TV, implemented using the lagged diffusivity/IRLS

algorithm. Several fast TV algorithms were introduced in the recent past [78;
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79], which may provide faster convergence than the IRLS implementation.

3.6 Contributions

Yue Hu, Mathews Jacob. Improved Recovery Using Improved Total Variation

Regularization. IEEE International Symposium on Biomedical Imaging: From

Nano to Macro. Pages: 1154-1157, Chicago, USA, 2011.

Yue Hu, Mathews Jacob. Higher Degree Total Variation (HDTV) Regulariza-

tion for Image Recovery. Vol 21, No 5, pp 2559-2571, May 2012.
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(a) actual (b) A-HDTV3

(A=4.35): 23.17dB

(c) Curvelet(A=4.35):

17.55dB

 

(d) Lapla-

cian(A=4.35):

16.36dB

(e) TV(A=4.35):

24.23dB

(f) A-

HDTV2(A=4.35):

24.58dB

 

(g) I-HDTV2

(A=4.35): 23.96dB

(h) Lysaker(A=4.35):

20.31dB

(i) TV (A=2):

29.31dB

 

(j) A-HDTV2 (A=2):

30.67dB

 

(k) I-HDTV2 (A=2):

30.41dB

 

(l) Lysaker (A=2):

27.94dB

Figure 3.2: Compressed sensing recovery of brain sagittal MRI from noisy and undersampled

Fourier data. (a) is the original image. (b) through (h) are reconstructions at acceleration of 4.35

using A-HDTV3, curvelet, Laplacian, TV, A-HDTV2, I-HDTV2, and Lysaker’s method, respec-

tively. The A-HDTV2 (f) scheme provides the best preservation of image features, compared

to the competing methods. The reconstructions at an acceleration of 2 using TV, A-HDTV2,

I-HDTV2, and Lysaker methods are presented in the bottom row ((i) through (l)). Compared

with Lysaker’s scheme in (l), both HDTV2 schemes can preserve the details in image.
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(a) actual (b) sampling pattern (c) TV : 22.52dB

 

(d) Lysaker : 19.30dB

 

(e) A-HDTV2 :

23.37dB

 

(f) I-HDTV2 :

23.24dB

(g) A-HDTV3 :

22.88dB

(h) Laplacian :

17.20dB

Figure 3.3: Compressed sensing recovery of Lena image: we recover the image from its noisy and

under-sampled Fourier measurements. (a) is the actual image and (b) is the sampling pattern

in the Fourier domain, corresponding to an acceleration of 4.35. We added white complex noise

to the measurements such that the signal to noise ratio of the measurements is 40 dB. The

reconstructions using the different methods are shown in (c)-(h). Note that the TV scheme

results in staircase artifacts in the facial regions and results in loss of detail in the hair regions.

The existing second order methods (Lysaker’s anisotropic penalty and Laplacian), which were

originally introduced for denoising, results in poor SNR in the CS setting. Note from the regions

marked by blue arrows in (d) to (f) that the Lysaker scheme results in more blurring of image

features. The HDTV schemes provide better preservation of details and smooth image regions,

thus improving the SNR.
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(a) actual (b) blurred

(c) TV: 16.25dB (d) A-HDTV2: 16.45dB

Figure 3.4: Deblurring of a microscopy monkey kidney cell image shown in (a). (b) is the

blurred image using Gaussian blurring kernel with standard deviation of 1 and 25dB of noise.

(c) shows the deblurred image using standard TV. (d) is the deblurred image using the proposed

anisotropic second degree HDTV scheme. The performance improvement with the A-HDTV2

scheme is clear, compared to the standard TV scheme.
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(a) original

 

(b) noisy image:

SNR=15dB

 

(c) TV: 21.56dB (d) Laplacian:

20.15dB

(e) Lysaker: 21.14dB

 

(f) SURElet: 21.92dB

 

(g) A-HDTV2:

22.9dB

(h) A-HDTV3:

22.99dB

Figure 3.5: Denoising of the cameraman image: (a) is the original image (b) is the noisy image

that is obtained by adding Gaussian white noise to (a). We chose the variance of the noise

process such that the signal to noise ratio of the noisy image is 15 dB. (c) through (h) are the

denoised images using different algorithms. We observe that the TV reconstructions are very

patchy, while the Laplacian method results in blob-like artifacts. We observe that the Lysaker

method results in blurry reconstructions. The SURElet reconstructions exhibit considerable

ringing artifacts. In contrast, the AHDTV reconstructions are smooth and are observed to

preserve the fine features. Note that the A-HDTV3 scheme provides an improvement in image

quality over A-HDTV2 in this case, eventhough the improvement in SNR is only 0.09 dB.
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(a) actual (b) noise level: 15dB

(c) TV: 21.66dB (d) A-HDTV2: 23.5dB

(e) curvelet: 22.98dB (f) SURElet: 22.72dB

Figure 3.6: Denoising of Pepper image (a). The input image with 15dB Gaussian white noise

is shown in (b). (c) through (f) illustrate the denoising results of standard TV, proposed

anisotropic second degree HDTV, curvelet and SURE-let methods. It is seen that the A-HDTV2

scheme minimizes the staircase and ringing artifacts that are seen with TV and x-let schemes.
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(a) Compressed sensing:

Acc=2
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(b) Compressed sensing:

Acc=4.35
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(c) Denoising: input

SNR=15dB

Figure 3.7: SNR vs CPU time of different algorithms in different settings. The blue, red,

and black curves correspond to standard TV, 2nd degree AHDTV, and 3rd degree AHDTV

respectively. We extend the actual plots (shown in solid lines) by dotted lines to facilitate easy

comparison of the final SNR. The algorithms are terminated when the relative change in the

cost function is too small. We observe that the second degree method takes roughly double

the time taken by the standard TV scheme in most cases, while improving the SNR by 1-2 dB.

In contrast, the SNR improvement offered by the 3rd degree AHDTV is not very significant,

considering the increase in computational complexity.
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4 Fast Majorize Minimize

Three-Dimensional Higher

Degree Total Variation

(3D-HDTV)

The total variation (TV) image regularization penalty is widely used in many

image recovery problems, such as denoising, compressed sensing, deblurring, and

others [48; 49; 50]. The TV norm has also been extended to three-dimensional

(3D) image recovery problems. However, TV reconstruction of 3D data, such as

magnetic resonance angiography (MRA), often results in lost of the small details.

In this chapter, we propose a 3D version of HDTV (3D-HDTV) to recover 3D

datasets while preserving the line-like features. One of the challenges associated

with the previous HDTV framework, which impeded the effective implementation

of 3D-HDTV, was the high computational complexity of the algorithm. In this

chapter, we introduce a new computationally efficient algorithm for HDTV regu-

larized image recovery problems. We find that this new algorithm improves the

convergence rate by factor of ten compared to the previous scheme, making the
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framework comparable in run time to the state-of-the-art TV methods. Using

the new fast algorithm, we demonstrate the utility of 3D-HDTV regularization

in the context of denoising, compressed sensing, and deblurring of 3D MRI and

fluorescence microscope datasets. We show that 3D-HDTV routinely outperforms

3D-TV in terms of the SNR of reconstructed images and in its ability to preserve

ridge-like details in 3D datasets.

4.1 Introduction

4.1.1 Generalized 2-D HDTV regularization penalty

The standard TV regularization penalty is the L1 norm of the image gradient,

specified as TV(f) =
∫

Ω
|∇f |dr. We define the generalized HDTV regularization

in 2D as

HDTVn(f) =

∫
Ω

(
1

2π

∫ 2π

0

|Dθ,n f(r)|dθ
)
dr, (4.1)

whereDθ,n is the rotated version of an nth degree derivative operator along the unit

vector uθ = (cos θ, sin θ). If Dθ,nf = fθ,n, the nth degree directional derivative,

then the generalized HDTV penalty simplifies to the HDTV regularization penalty

introduced in [80]. Thus, (4.1) is essentially a generalization of the functional in

[80].

4.1.2 3D-HDTV Penalties

The HDTV penalty may easily be extended to 3D images by penalizing the L1-L1

of all directional derivatives in R3. Specifically, for f a continuously differentiable
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complex-valued image defined on Ω ⊂ R3, we define the nth degree HDTV penalty

in 3D to be

HDTVn(f) =

∫
Ω

∫
S2
|fu,n(r)| du dr, (4.2)

where S2 = {u ∈ R3 : |u| = 1} and fu,n(r) is the nth degree directional derivative

defined as

fu,n(r) =
∂n

∂γn
f(r + γu)

∣∣∣∣
γ=0

; u ∈ S2. (4.3)

We may unify both the 2D and 3D HDTV penalties into a general d-dimensional

penalty

HDTVn(f) =

∫
Ω

∫
Sd−1

|fu,n(r)| du dr, (4.4)

where the directional derivative fu,n is defined similarly as in (4.3) but with

u ∈ Sd−1 = {u ∈ Rd : |u| = 1}. The new algorithm we derive below for solving

HDTV regularized inverse problems applies to this general case.

4.1.3 Steerability of Directional Derivatives

Note that the first degree directional derivatives fu,1 have the equivalent expression

fu,1(r) = uT∇f(r). (4.5)

By recursively applying (4.5) we may also express higher degree directional deriva-

tives fu,n(r) as a separable vector product:

fu,n(r) = sTn (u)Dnf(r), (4.6)

where, sn(u) is vector of polynomials in the components of u and Dnf(r) is the

vector of all nth degree partial derivatives of f . For example, in 2nd degree case

(n = 2) in 3D, we may choose

s2(u) =
[
u2
x, u

2
y, u

2
z, 2uxuy, 2uyuz, 2uxuz

]T
; (4.7)
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D2f(r) =
[
fxx(r), fyy(r), fzz(r), fxy(r), fyz(r), fxz(r)

]T
. (4.8)

Equation (4.6) demonstrates that nth order directional derivatives are steerable

operators, in the sense that they can written as a finite linear combination of a

few fixed operators with coefficients dependent only on the orientations u ∈ Sd−1.

This useful property affords us to make many simplifications in the derivation and

numerical implementation of our new algorithm.

4.2 Fast MM Algorithm for HDTV Regularized

Inverse Problems

The recovery of a d-dimensional image f : Ω → C, Ω ⊂ Rd, from its degraded

measurements b = A(f) + n using HDTV regularization requires us to minimize

the following cost function:

C(f) = ‖A(f)− b‖2 + λ

∫
Ω

∫
Sd−1

|fu,n(r)| du dr. (4.9)

Since the absolute function | · | is not continuously differentiable, we approximate

it by the Huber function:

ϕβ(x) =

 |x| − 1/2β if |x| ≥ 1
β

β |x|2 /2 else .
(4.10)

The approximate cost function is thus specified by

Cβ(f) = ‖A(f)− b‖2 + λ

∫
Ω

∫
Sd−1

ϕβ (|fu,n(r)|) du dr. (4.11)

Note that this approximation tends to the original HDTV penalty when β →∞.

To realize computationally efficient solutions, we majorize the Huber function

in the above expression by the quadratic function [81]:

ϕβ (|fu,n(r)|) = min
g(u,r)

{
β

2
|fu,n(r)− g(u, r)|2 + ψ (|g(u, r)|)

}
(4.12)
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where g : Sd−1×Rd → C is an auxiliary function. Using convex conjugates, it can

be shown the quadratic function majorizes the original penalty when ψ (|g(u, r)|) =

|g(u, r)|; see proof in [80]. With this majorization, the cost function (4.12) can

now be expressed as

Cβ(f) = min
g
‖A(f)− b‖2 + λ

∫
Ω

∫
Sd−1

{
β

2
|fu,n(r)− g(u, r)|2 + |g(u, r)|

}
du dr

(4.13)

Note that the optimization algorithm now involves the minimization of the

right hand side of the above expression with respect to both functions f : Ω→ C

and g : Sd−1×Ω→ C. We rely on an alternating minimization algorithm to solve

for the two functions. Specifically, we alternate between the minimization with

respect to f and g as shown below.

4.2.1 Step one: Minimization with respect to g, assuming

f fixed

Assuming f to be fixed, we minimize the cost function in (4.13) with respect to

g. Since the integrand in (4.13) is positive, the minimization at each (u, r) can be

decoupled as

min
g(u,r)

β

2
|fu,n(r)− g(u, r)|2 + |g(u, r)|, (4.14)

whose solution is given by the shrinkage formula,

g(u, r) = max

(
|fu,n(r)| − 1

β
, 0

)
fu,n(r)

|fu,n(r)|
; ∀r ∈ Rd; u ∈ Sd−1. (4.15)

The above equation implies that g(u, r) has to be evaluated for all unit directions

u. While the computation of this term is not computationally expensive, the need

to store this term will make the algorithm very memory demanding. However, we
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will see in the next subsection that the rest of the algorithm does not need g(u, r)

for all u ∈ Sd−1, but only its projection to the space spanned by sn(u), specified

by qn(r) =
∫
Sd−1 s(u)g(u, r)du. This simplification results in an algorithm with

considerably less memory demand.

4.2.2 Step two: Minimization with respect to f , assuming

g to be fixed

Assuming that g is fixed, we now minimize (4.13) with respect to f . This can be

reformulated as

min
f
Cg(f), (4.16)

where

Cg(f) = ‖A(f)−b‖2+λ

∫
Ω

∫
Sd−1

{
β

2

(
‖fu,n(r)‖2 − 2 〈fu,n(r), g(u, r)〉+ ‖g(u, r)‖2

)}
dudr.

(4.17)

Ignoring the constant term
∫

Ω

∫
Sd−1 ‖g(u, r)‖2 du dr in the above expression, we

obtain:

Cg(f) = ‖A(f)− b‖2 +
λβ

2

∫
Ω

∫
Sd−1

{
‖fu,n(r)‖2 − 2 〈fu,n(r), g(u, r)〉

}
dudr

= ‖A(f)− b‖2+

λβ

2

∫
Ω

Dnf(r)H
(∫

Sd−1

sn(u)sTn (u)du

)
︸ ︷︷ ︸

Cn

Dnf(r)− 2

〈
Dnf(r),

∫
Sd−1

sn(u)g(u, r)du︸ ︷︷ ︸
qn(r)

〉 dr

(4.18)

In the last step, we used the steerability relationship of the directional derivatives

from (4.6) to simplify the expression. Note that the criterion Cg(f) does not
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depend on g(u, r), but only its projections to the space spanned by sn(u), specified

by qn(r). Since we do not have to store the variable g(u, r) for all u ∈ Sd−1,

this simplification considerably reduces the memory demand of the algorithm. In

addition, the above expression is independent of the directional derivatives fu,n(r);

it is only dependent on the partial derivatives of f , thanks to the steerability of

the directional derivatives in terms of the partial derivatives. From the Euler-

Lagrange equation for Cg(f) we obtain:

(
2ATA+ λβ DTnCnDn

)
f = 2ATb + λβ DTnqn (4.19)

The operator DTnCnDn has a simple expression in the discrete Fourier domain.

The following are the discrete Fourier domain expressions in 1st and 2nd degree

case:

1st degree operator

F [DT1 C1D1] = ω2
x + ω2

y (4.20)

2nd degree operator

F [DT2 C2D2] =
1

8

{
3ω2

xx + 3ω2
yy + 4ωxy + 2ωxxωyy

}
(4.21)

Here, F denotes the discrete Fourier transform operator. These equations will get

modified by the discrete approximation of the derivatives (e.g. finite differences).

• Fourier sampling: If the measurements are Fourier samples on a Cartesian

grid (i.e, A = SF), (4.19) can be simplified by evaluating the discrete Fourier

transform of both sides. Here, S is the sampling operator that picks the
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appropriate Fourier samples. Computing the discrete Fourier transform of

both sides of (4.19), we get

(
2STS + λβ F [DTnCDn]

)
f = 2STb + λβF [DTnqn]. (4.22)

Thus, we obtain the analytical expression for f as:

f = F−1

{
2 STSb + λβ F [DTnqn]

2 S + λβF [DTnCDn]

}
. (4.23)

When the Fourier samples are not on the Cartesian grid (for example, in

parallel imaging), where the one step solution is not applicable, we could still

solve the minimization problem using a preconditioned conjugate gradient

algorithm.

• Deconvolution: Convolution can be considered as a multiplication in the

Fourier domain. Taking the Fourier transform on both sides, (4.19) can be

solved as:

f = F−1

{
2Ĥ∗b + λβ F [DTnqn]

2|Ĥ|2 + λβF [DTnCDn]

}
. (4.24)

Here H is the transfer function of the convolution filter.

4.3 Implementation Details

4.3.1 Discretization of the derivative operators

The TV and HDTV penalties are essentially defined in a continuous domain. In

practice, a standard scheme is to approximate the derivatives with finite difference

operators. For example, the derivative of a 2D signal along the x dimension is

approximated as q[k, l] = f [k+ 1, l]− f [k, l] = ∆1 ∗ f . This approximation can be

viewed as the convolution of f by ∆1[k] = ϕ(k+ 1
2
), where ϕ(x) = ∂β1(x)/∂x and
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β1(x) is the first degree cardinal B-spline. [53]. However, this approximation does

not possess rotation steerability, i.e, the directional derivative can not be expressed

as the linear combination of the finite differences along x and y directions.

To obtain discrete operators that are approximately rotation steerable, in the

2D case we approximate the nth order partial derivatives, ∂n1,n2 := ∂n1
x ∂

n2
y for all

n1 +n2 = n, as the convolution of the signal with the tensor product of derivatives

of one-dimensional B-spline functions:

∂n1,n2f [k1, k2] =
[
β(n1)
n (k1 + δ)⊗ β(n2)

n (k2 + δ)
]
∗ f [k1, k2], ∀ k1, k2 ∈ N (4.25)

where β
(m)
n (x) denotes the mth order derivative of a nth degree B-spline. In order

to obtain filters with small spacial support, we choose the shift δ according to the

rule

δ =


1
2

if n is odd

0 else
(4.26)

The shift δ implies that we are evaluating the image derivatives at the intersection

of the voxels and not at the voxel midpoints. This scheme will result in filters

that are spatially supported in a (n+ 1)× (n+ 1) pixel window.

Likewise, in the 3D case we approximate the nth order partial derivatives,

∂n1,n2,n3 := ∂n1
x ∂

n2
y ∂

n3
z for all n1 + n2 + n3 = n, as

∂n1,n2,n3f [k1, k2, k3] =
[
β(n1)
n (k1 + δ)⊗ β(n2)

n (k2 + δ)⊗ β(n3)
n (k3 + δ)

]
∗ f [k1, k2, k3],

(4.27)

for all k1, k2, k3 ∈ N with the same rule for choosing δ.

While the tensor product of B-spline functions are not strictly rotation steer-

able, B-splines approximate Gaussian functions as their degree increases, and the

tensor product of Gaussians is exactly steerable. Thus, the approximation of

derivatives we define above is approximately rotation steerable; see Fig. 4.1. We



71

also observe in practice that using B-spline approximations to derivatives results

in better image reconstructions than simple finite difference approximations.

(a) 2D: 0◦ (b) 2D: 30◦ (c) 2D: 45◦

Figure 4.1: 2D operators

(a) 3D:0◦(z=1) (b) 3D:0◦(z=2) (c) 3D:0◦(z=3)

(d) 3D:45◦(z=1) (e) 3D:45◦(z=2) (f) 3D:45◦(z=3)

Figure 4.2: 3D operators for different slices along z directions
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(a) 3D:θ = 0◦ (b) 3D:θ = 45◦ (c) 3D:θ = φ = 45◦

Figure 4.3: 3D operators

4.3.2 Numerical Integration over S2

Our algorithm requires us to compute the quantities

Cn =

∫
Sd−1

sn(u)sTn (u)du and qn(r) =

∫
Sd−1

sn(u)g(u, r)du, (4.28)

which involve an integration over the unit sphere Sd−1 in d-dimensions. We ap-

proximate these integrals with Riemann sums by uniformly sampling points in

Sd−1. In the 2D case, this can easily be achieved by parameterizing u as u(θ) =

(cos(θ), sin(θ)), then discretizing the parameter θ as θk = k 2π
K

, for k = 1, ..., K,

where K is the specified number of sample points.

However, in the 3D case, if we discretize the the usual parameterization of S2

given by

u(θ, φ) = (sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)), for φ ∈ [0, 2π], θ ∈ [0, π] (4.29)

by uniformly discretizing θ and φ, the samples we obtain are heavily biased towards

the poles of the sphere, providing a poor approximation of the integral. Instead, we

make use of the ISOI software package [82], [83] based on the HEALPix spherical

sampling method [84] to deterministically generate uniformly spaced samples of
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S2. We find in practice that K ≈ 35 samples are sufficient to approximate the

integrals in (4.28). Note that these sample points may be computed in advance

and stored in memory to reduce the computational overhead.

4.3.3 Algorithm Overview

�

�

�

�

Algorithm 4.3.1: 3D-HDTV(A, b, λ)

i← 1

β ← βinit, f
(1) ← A∗(b)

while i < MaxOuterIterations

do



ii← 1

while ii < MaxInnerIterations

do



Compute partial derivatives using (4.27)

Compute directional derivatives fu,n(r) using (4.6)

Update g(u, r) based on fu,n(r) using (4.15)

Determine f (i+1)(r) based on g(u, r) using (4.23) or (4.24)

ii← ii+ 1

β ← β ∗ βincfactor

i← i+ 1

return (f)

The pseudocode for the 3D HDTV fast MM algorithms is shown in 4.3.1. We

typically use 10 outer iterations (MaxOuterIterations = 10) and a maximum 10

MM iterations (MaxInnerIterations = 10) per outer iterations. The MM algorithm

is terminated when the relative change in the cost function is less than a specified

threshold.
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4.4 Results on Image Recovery Problems

4.4.1 Convergence of the fast HDTV algorithm

We study the effect of the parameter β and the increment rate of β, i.e. βinc, on the

convergence and the accuracy of the algorithm. We consider the reconstruction

of a MRI brain image with the acceleration factor of 1.65 using the fast HDTV

algorithm. We plot the cost as a function of the number of iterations and the

SNR as a function of the CPU time in Fig. 4.4. It is observed that with different

combinations of starting values of β and increment rate βinc, the convergence rates

of the algorithms are approximately the same and the SNRs of the reconstructed

image are around the same value. However, when we choose the parameters as

β = 15 and βinc = 2, which are the smallest among the parameters chosen in

the experiments, the SNR of the recovered image is comparatively lower than the

others. This implies that in order to enforce full convergence the final value of β

needs to be sufficiently large.

4.4.2 Comparison of the fast HDTV algorithm with iter-

atively reweighted HDTV algorithm

In this experiment, we compare the proposed fast HDTV algorithm with the

IRMM algorithm in the context of the recovery of a brain MR image with ac-

celeration factor of 4 in Fig. 4.5. Here we plot the SNR as a function of the

CPU time using TV and 2nd degree HDTV with the IRMM algorithm and the

proposed algorithm, respectively. We observe that the proposed algorithm (blue

curve) takes around 20 seconds to converge compared to 120 seconds by IRMM

algorithm (blue dotted curve) using TV penalty, and 30 seconds (red curve) com-



75

0 20 40 60 80
0.9

1

1.1

1.2

1.3

1.4

1.5
x 10

4

iterations

e
rr

o
r

 

 

β=15;β
inc

=2

β=15;β
inc

=5

β=50;β
inc

=2

β=50;β
inc

=5

(a) cost function to iterations

0 10 20 30 40
22

23

24

25

26

27

28

29

CPU time(sec)

S
N

R
(d

B
)

 

 

β=15;β
inc

=2

β=15;β
inc

=5

β=50;β
inc

=2

β=50;β
inc

=5

(b) SNR to CPU time

Figure 4.4: Performance of the continuation scheme. We plot the cost as a function of the

number of iterations in (a) and SNR as a function of CPU time in (b). We study four different

combinations of the parameters β and βinc. It is shown in (a) that the convergence rates of

different combinations are almost the same. We also observe in (b) that the SNRs of the

reconstructed images in four settings are similar except that when the final value of β is not

large enough (β = 15, βinc = 2) the SNR is comparatively lower than the others.

pared to 300 seconds (red dotted curve) using 2nd degree HDTV regularization.

Thus, we see that the proposed algorithm accelerates the problem significantly

(10-fold) compared to IRMM method.

4.4.3 Three-Dimensional HDTV using fast MM algorithm

We determine the utility of the 3D HDTV schemes in the context of compressed

sensing, deconvolution and denoising. In each case we optimize the regularization

parameters to obtain the optimized SNR to ensure fair comparisons between dif-

ferent schemes. The signal to noise ratio (SNR) of the reconstruction is computed

as:

SNR = −10 log10

(
‖forig − f̂‖2

F

‖forig‖2
f

)
, (4.30)
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Figure 4.5: IRMM algorithm versus proposed fast HDTV algorithm in different settings. The

blue, blue dotted, red, red dotted curves correspond to TV using proposed algorithm, TV using

IRMM, HDTV2 using proposed algorithm, HDTV2 using IRMM algorithm, respectively. We

extend (solid lines) the original plot by dotted lines for easier comparisons of the final SNRs.

We see that the proposed algorithm takes 1/6 of the time taken by IRMM for standard TV, and

1/10 of the time taken by IRMM for HDTV2.

where f̂ is the reconstructed image, forig is the original image, and ‖ · ‖F is the

Frobenius norm.

We compare the 3D-HDTV method with 3D-TV. In the case of 3D-TV we

approximate the partial derivatives as finite differences, and as B-splines operators

in the case of 3D-HDTV, as discussed above. Fast MM algorithms were used to

implement all of the above methods.
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Compressed Sensing

We consider two 3D MR datasets to demonstrate the utility of the algorithm. In

the experiments in this chapter, we assume the measurements to be acquired using

variable density random Fourier encoding; the sampling pattern is realized in 3D

MRI using random phase encodes and choosing the readout axis to be orthogonal

to the image plane. The reconstructions in maximum intensity projection (MIP)

of a 3D MR angiography of cardiopulmonary vasculature (512×512×76) are shown

in Fig. 4.6 [85]. The acceleration is 1.5 and 5dB of Gaussian noise with standard

deviation of σ = 0.53 is added. We observe that there is a 0.4dB improvement

in 3D-HDTV over standard 3D-TV. We also see that 3D-HDTV preserves more

line details compared with standard 3D-TV. We have zoomed the three marked

regions in Fig. 4.7. It is observed that 3D-HDTV provides more accurate and

natural-looking reconstructed image, while 3D-TV has some patchy artifacts that

blur some of the details in the image.

The reconstructions of a cardiac MR dataset are shown in Fig. 4.8. The

acceleration is 2 and 15dB of Gaussian noise with standard deviation 0.22 is added.

Compared with 3D-TV, the reconstructions using 3D-HDTV scheme improves

the SNR by 0.4dB. In addition, the 3D-HDTV method provides more accurate

reconstruction, which overcomes the blurring in the regions pointed by the arrows.

Deconvolution

Deconvolution is an important problem in image processing. We compare the

deconvolution performance of the 3D-HDTV with 3D-TV. Fig. 4.9 shows the

decovolution results of a 3D fluorescence microscope dataset (1024× 1024× 17).

The original image is blurred with a Gaussian filter with standard deviation of
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(c) 3DTV 13.69dB
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(d) 3DHDTV

14.05dB

Figure 4.6: Compressed sensing recovery of MR angiography data from noisy and undersampled

Fourier data (acceleration of 1.5 with 5dB additive Gaussian noise). (a) through (d) are the

maximum density projection image of the dataset. (a) is the original image. (b) is the direct

inverse Fourier reconstruction. (c) is the reconstruction using 3D-TV method; (d) is the 3D-

HDTV reconstruction image. We observe that 3D-HDTV method preserves more details that

are lost in 3D-TV reconstruction. The arrows point out the three regions that are zoomed in

Fig. 4.7.

1 (5 × 5 × 5), with additive Gaussian noise of standard deviation of 0.01 added.

The results show that 3D-HDTV scheme is capable of recovering the fine image

features of the cell image, resulting in a 0.3dB improvement in SNR over 3D-TV.

Denoising

The removal of noise from microscope images is a common problem in image

processing. We compare the 3D-HDTV and 3D-TV using the fast MM algorithm

in the context of image denoising. In Fig. 4.10, we are showing the denoising

performance of the algorithms using a 3D fluorescence microscope dataset (1024×

1024 × 19), corrupted by 15dB Gaussian white noise. We observe that 3D-TV

results patchy image, while 3D-HDTV preserves the features of the image better.
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(i) actual
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(j) inverse FFT
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(k) 3DTV

c 

(l) 3DHDTV

Figure 4.7: The zoomed images of the three regions pointed in Fig. 4.6. The three rows

indicate the three different regions reconstructed by inverse Fourier transform, 3D-TV, 3D-

HDTV, separately. We observe that 3D-HDTV preserves more line-like features compared with

3D-TV (see green arrows).

4.5 Contributions

Yue Hu, Mathews Jacob. A fast majorize minimize algorithm for higher degree to-

tal variation regularization. IEEE International Symposium on Biomedical Imag-
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(a) actual (b) zoomed region (c) 3DTV 18.17dB (d) 3DHDTV

18.56dB

Figure 4.8: Compressed sensing recovery of cardiac MR dataset from noisy and undersampled

Fourier data. (acceleration of 2 with 15dB additive Gaussian noise.) (a) is the actual image.

(b) is the zoomed region indicated in the green box in (a). (c) and (d) are the reconstructions

by 3D-TV and 3D-HDTV schemes separately. It is shown that 3D-HDTV provides images with

more details preserved (indicated in green arrows), compared with 3D-TV. There is a 0.4dB

improvement in SNR of 3D-HDTV over 3D-TV.

ing: From Nano to Macro. San Francisco, USA, 2013.

Yue Hu, Mathews Jacob. Improved higher degree total variation regulariza-

tion. IEEE International Symposium on Biomedical Imaging: From Nano to

Macro. Barcelona, Spain, 2012.
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(a) actual (b) zoomed region (c) blurred image

(d) 3D-TV 15.5dB (e) 3D-HDTV

15.88dB

(f) 3D-TV error im-

age

(g) 3D-HDTV error

image

Figure 4.9: Deconvolution of a 3D fluorescence microscope dataset. (a) is the original image.

(b) is the zoomed region indicated in the green box in (a). (c) is the blurred image using a

Gaussian filter with standard deviation of 1 and size of 5× 5× 5 with additive Gaussian noise

added (σ = 0.01). (d) and (e) are deblurred images using 3D-TV and 3D-HDTV separately. (f)

and (g) are the error images of 3D-TV and 3D-HDTV recovery. We observe that the 3D-TV

recovery is very patchy and some small details are lost. While 3D-HDTV preserves the line-like

features (pointed with green arrow) with a 0.38dB improvement in SNR. The error images show

that 3D-HDTV captures more details and provides more accurate results.
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(a) actual (b) zoomed region (c) noisy image

(d) 3DTV 17.76dB (e) 3DHDTV 17.99dB (f) 3DTV error image (g) 3DHDTV error

image

Figure 4.10: Denoising of 3D fluorescence microscope data. (a) is the actual image. (b) is the

zoomed region indicated in the green box of (a). (c) is the noisy image corrupted by a 15dB

Gaussian white noise. (d) and (e) are the denoised images using 3D-TV and 3D-HDTV schemes

separately. (f) and (g) are the error images of the 3D-TV and 3D-HDTV results. It is observed

that 3D-TV gives more patchy and blurred results compared with 3D-HDTV, which improves

the SNR of the denoised image by 0.23dB. The error images show that 3D-HDTV provides more

accurate results and preserves more details compared with 3D-TV (see green arrow).
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5 TV Sparsity and Low Rank

(TV-SLR) Algorithm

Dynamic MRI plays an important role in many MRI applications including car-

diac, brain, breast, and perfusion imaging. Recently, it is demonstrated that

dynamic imaging dataset could be modeled as a sparse and low-rank Casoratti

matrix. It is also known that the sparsity and low rank properties are some-

what complementary. In this context, another contribution of the proposal is to

develop an efficient algorithm for the recovery of sparse and low rank matrices,

especially dynamic MRI reconstruction. In this chapter, we introduce an efficient

majorize-minimize (MM) based combined TV Sparsity penalty and Low Rank

penalty (TV-SLR) algorithm for sparse and low rank matrix recovery. To demon-

strate the utility of the algorithm, an arbitrary low-rank and sparse matrix (MIT

logo image) is recovered under different number of measurements. It is seen that

compared to only low-rank penalty or TV sparsity penalty, the combined TV-SLR

algorithm is able to perfectly reconstruct the matrix using far less number of mea-

surements. Followed by this experiment, we consider the recovery of a dynamic

MRI dataset and the number of measurements required for accurate recovery is

significantly reduced, which enables accelerated MRI.
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5.1 Introduction

5.1.1 Dynamic imaging using matrix recovery schemes

Our motivation in developing this algorithm is to use it in dynamic imaging and

video restoration. We denote the spatio-temporal signal as γ(x, t), where x is the

spatial location and t denotes time. We denote the sparse and noisy measurements

to be related to γ as b = A(γ)+n, where A is the measurement operator and n is

the noise process. The vectors corresponding to the temporal profiles of the voxels

are often highly correlated or linearly dependent. The spatio-temporal signal

γ(x, t) can be re-arranged as a Casoratti matrix to exploit the correlations [86;

87; 88; 89]:

Γ =


γ (x0, t0) . . . γ (x0, tn−1)

...

γ (xm−1, t0) . . . γ (xm−1, tn−1)

 (5.1)

The ith row of Γ corresponds to the temporal intensity variations of the voxel xi.

Similarly, the jth column of Γ represents the image at the time point tj. Since

the rows of this m × n matrix are linearly dependent, the rank of Γ is given by

r < min (m,n). We will refer to the dynamic imaging dataset either as γ(x, t)

or as Γ in the remaining sections. The low-rank structure of dynamic imaging

datasets was used to recover them from undersampled Fourier measurements by

several authors[86; 87; 88; 90; 89]. These schemes either rely on simpler two-step

algorithms, which are relatively inefficient at high acceleration factors, or greedy

low-rank decomposition schemes. In contrast to these methods, the proposed

scheme is computationally efficient, accurate, highly flexible, and is capable of

using multiple non-convex spectral and sparsity priors.
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5.1.2 Matrix recovery using nuclear norm minimization

Current theoretical results indicate that a matrix Γ ∈ Rm×n of rank r; r ≤

min(m,n) can be perfectly recovered from its linear measurements b = A (Γ) [91;

92]. This recovery can be formulated as the constrained optimization problem:

Γ∗ = arg min
Γ
‖A (Γ)− b‖2 such that rank (Γ) ≤ r. (5.2)

To realize computationally efficient algorithms, the above problem is often refor-

mulated as an unconstrained convex optimization scheme

Γ∗ = arg min
Γ
‖A (Γ)− b‖2 + λ ‖Γ‖∗︸ ︷︷ ︸

C(Γ)

, (5.3)

where ‖Γ‖∗ is the nuclear norm of the matrix Γ =
∑min(m,n)

i=1 σiui v
H
i . This penalty

is the convex relaxation of the rank and is defined as the sum of the singular values

of Γ: ‖Γ‖∗ =
∑min(m,n)

i=1 σi.

5.1.3 Matrix recovery using iterative singular value thresh-

olding

The common approaches to solve for (5.3) involve different flavors of iterative

singular value thresholding (IST) [93; 94; 95]. These schemes majorize the data-

consistency term in (5.3) with a quadratic expression:

‖A (Γ)− b‖2 ≤ τ‖Γ− Zn‖2 + cn.

Here, τ is a constant such that τ I ≥ AtA, cn is a constant that is independent

of Γ, and Zn = Γn − At(A(Γn) − b)/τ . Here, I is the identity operator. Thus,

we have

C(Γ) ≤ τ‖Γ− Zn‖2 + λ‖Γ‖∗︸ ︷︷ ︸
Cmaj(Γ)

+cn (5.4)
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The minimization of the above expression is termed as the proximal mapping of

Zn, associated with the nuclear norm penalty [96]. This proximal mapping has

an analytical solution [93]:

Γn+1 =

min(m,n)∑
i=1

(σi − λ/2τ)+ ui v
H
i , (5.5)

where, ui, vi are the singular vectors and σi are the singular values of Zn. The

thresholding function in (5.5) is defined as

(σ)+ =

 σ if σ ≥ 0

0 else .
(5.6)

Unfortunately, it is not straightforward to adapt this algorithm to optimization

schemes with multiple non-differentiable penalty terms (e.g. spectral and sparsity

penalties), as discussed previously.

5.2 Combined TV Sparsity and Low Rank Reg-

ularized Algorithm

We introduce the problem formulation and the algorithm in this section. The

details of the numerical implementation are covered in Section 5.3.

5.2.1 Matrix recovery using sparsity and spectral penal-

ties

To exploit the low-rank and sparsity of the matrix in the transform domain (spec-

ified by R and C), we formulate the matrix recovery as the constrained optimiza-
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tion scheme:

Γ∗ = arg min
Γ
‖A (Γ)− b‖2 (5.7)

such that
{

rank(Γ) ≤ r, ‖RHΓC‖`0 < K
}

We rewrite the above constrained optimization problem using Lagrange’s multi-

pliers and relax the penalties to obtain

Γ∗ = arg min
Γ
‖A (Γ)− b‖2 + λ1 φ (Γ) + λ2 ψ (Γ) . (5.8)

Here, the spectral penalty φ is the relaxation of the rank constraint. We choose

it as the class of Schatten p matrix penalties (µ(σ) = |σ|p), specified by

φ(Γ) =

min(m,n)∑
i=1

σi(Γ)p1 . (5.9)

Similarly, we specify the sparsity penalty as ψ (Γ) = ‖RHΓC‖p2`p2 , which is the `p2

norm of the matrix entries, specified by:

‖Γ‖p`p =
∑
i,j

|Γi,j|p . (5.10)

When p1, p2 ≥ 1, the cost function (5.8) is convex and hence has a unique mini-

mum. We now generalize the sparsity penalty to account for non-separable convex

and non-convex total variation-like penalties:

ψ(γ) =

∫
R3

‖∇γ(x, t)‖p22 dxdt, (5.11)

which are widely used in imaging applications [97; 98]. The above penalty is often

implemented using finite difference operators. Rewriting the above expression in

terms of the matrix Γ, we get

ψ(Γ) = ϕ (P) = ‖P‖p2`p2 , (5.12)
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where, P =
√∑q

i=1 |RH
i ΓCi|

2
. Here Ri,Ci, i = 1, .., q are matrices that operate

on the rows and columns of Γ, respectively. The non-separable gradient penalty in

(5.11) is thus obtained when P1, P2, and P3 correspond to the finite differences

of γ(x, t) along x, y and t respectively; Ri and Ci are the corresponding finite

difference matrices.

Gao et al., have recently used a linear combination of sparse and a low-rank

matrices [99] to model dynamic imaging dataset and recover it from undersampled

measurements. They chose the regularization parameters such that the low-rank

component is the static background signal. The dynamic components are assumed

to be sparse in a pre-selected basis/frame, which is enforced by a convex sparsity

prior. The use of a sparse model to capture the dynamic components is concep-

tually similar to classical compressed sensing dynamic imaging schemes [100; 101;

102]. We have shown that the basis functions estimated from the data itself (using

low-rank recovery) are more effective in representing the data compared to pres-

elected basis functions, especially when significant respiratory motion is present

[88]. We plan to compare the proposed scheme with the model in [99] and other

state of the art dynamic imaging schemes in the future.

5.2.2 Algorithm formulation

We now derive a fast MM algorithm to solve (5.8). Specifically, we majorize the

penalty terms by quadratic functions of Γ:

φ(Γ) = min
W

β1

2
‖Γ−W‖2

F + η(W), (5.13)

ψ(Γ) = min
{Qi,i=1,..,q}

β2

2

q∑
i=1

‖RiΓCi −Qi‖2
F + θ

√√√√ q∑
i=1

|Qi|2

 (5.14)
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Here, W and Qi, i = 1, .., q, are auxiliary matrix variables and ‖Γ‖F is the Frobe-

nius norm of Γ. By definition, η(W) and θ(
√∑

i |Qi|2) are matrix functions that

are dependent on φ(W) and ϕ(P) respectively.

Analytical expressions for η and θ can be derived in many cases as shown

below. However, we find in Section 5.3 that analytical expressions for η and θ

are not required for efficient implementation. Using the above majorizations, we

simplify the original cost function in (5.8) as

(Γ,W, {Qi})opt = arg min
Γ,W,{Qi}

C (Γ,W,Qi) (5.15)

where

C = ‖A (Γ)− y‖2 +
λ1β1

2
‖Γ−W‖2

F +
λ2β2

2

q∑
i=1

‖RiΓCi −Qi‖2
F

+ λ1 η (W) + λ2 θ

√√√√ q∑
i=1

|Qi|2

 (5.16)

We propose to use an iterative alternating minimization scheme to minimize the

above criterion. Specifically, we alternatively minimize (5.16) with respect to each

of the variables, assuming others to be fixed. We denote the nth iterate of these

variables as Γn, Wn, and Qi,n; i = 1, .., q, respectively. One iteration of this

scheme is described below.

1. Derive Γn+1, assuming W = Wn,Qi = Qi,n:

Γn+1 = arg min
Γ
‖A (Γ)− y‖2 +

λ1β1

2
‖Γ−Wn‖2

F

+
λ2β2

2

q∑
i=1

‖RiΓCi −Qi,n‖2
F (5.17)

Since this expression is quadratic in Γ, we derive the analytical solutions for

many measurement operators in Section 5.3.
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2. Derive Wn+1, assuming Γ = Γn+1:

Wn+1 = arg min
W

β1

2
‖Γn+1 −W‖2

F + η (W) (5.18)

The optimal W is thus obtained as the proximal mapping of Γn+1, corre-

sponding to the spectral penalty η. We derive analytical expressions for this

step for the widely used nuclear norm and Schatten-p functionals in Section

5.3.

3. Derive Qi,n+1, assuming Γ = Γn+1:

Qi,n+1 = arg min
Qi

β2

2

q∑
i=1

‖RiΓn+1Ci −Qi‖2
F + θ

√√√√ q∑
i=1

|Qi|2

(5.19)

The optimal {Q, i = 1, .., q} is thus the proximal mapping of {RiΓn+1Ci; i = 1, .., q},

associated with the matrix penalty θ. Since θ is non-separable, the corre-

sponding shrinkage involves the simultaneous processing of the component

matrices RiΓn+1Ci; i = 1, .., q. This step also has analytical expressions, as

shown in section 5.3.

5.2.3 Expression of η(W)

We now focus on determining the function η, such that the majorization of the

spectral penalty term in (5.13) holds. Since analytical expressions for η and θ are

not essential to realize an efficient algorithm, readers may skip this section and

go directly to Section 5.3.

We reorder the terms in (5.13) to obtain

‖Γ‖2
F

2
− φ(Γ)

β1︸ ︷︷ ︸
g(Γ)

= max
W

〈Γ,W〉 − (‖W‖2
F/2 + η(W)/β1

)︸ ︷︷ ︸
f(W)

 (5.20)
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Here, 〈W,Γ〉 = trace
(
WTΓ

)
is the innerproduct of two matrices. From the

theory in [103], the above relation is satisfied if g(Γ) is a convex function and

f = g∗ is the convex dual of g:

g∗(W) = max
Γ

(〈W,Γ〉 − g(Γ)) . (5.21)

Note that φ need not be convex for the above relation to hold. This majorization

is valid if g(Γ) is convex, which is possible even when φ is concave. Thanks to the

property of unitarily invariant functions, the dual of a specified matrix function

g(Γ) =
∑
µg(σi (Γ)) is obtained as

f(W) =
∑

µ∗g(σi (W)). (5.22)

Thus, µf (·) = µ∗g(·) is the convex conjugate of µg(·). From the above relations, we

have η(W) =
∑
µη(σi (W)), where µη(x) = β1 (µf (x)− x2/2).

We now approximate the non-differentiable φ penalties by continuously dif-

ferentiable Huber functionals. These approximations are required to ensure that

g(Γ) is convex. In addition, differentiability of φ also provides additional simpli-

fications.

1. Nuclear norm: We approximate the nuclear norm penalty ‖Γ‖∗ =
∑

i σi(Γ)

as φβ1(Γ) =
∑

i µφβ1 (σi(Γ)). Here, µφβ1 (x) is the standard scalar Huber

function

µφβ1 (x) =

 |x| − 1/2β1 if x ≥ 1
β1

β1 |x|2 /2 else .
(5.23)

Note that φβ1(Γ) → ‖Γ‖∗ as β1 → ∞. With this choice, the corresponding

g(Γ) =
∑
µg(σi (Γ)) is given by

µg(x) =


1
2

(
x− 1

β1

)2

if x ≥ 1
β

0 else
(5.24)
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Note that g is convex for any β1. Using the property of convex conjugate

functions described earlier, we find in the Appendix that µη = w. Thus, we

have η(W) = ‖W‖∗, ∀β1.

2. Schatten p norm: We approximate the Schatten p matrix norm by the cor-

responding Huber matrix function:

µφβ1 (x) =


xp

p
− 1/ (2αβα1 ) if x ≥ β

1/(p−2)
1

β1x
2/2 else

(5.25)

Here, α = p/(2 − p). The threshold specified by β
1/(p−2)
1 and the constant

1/ (2αβα1 ) is chosen such that µφβ1 is continuously differentiable and µg is

convex. The above formula is essentially an extension of the generalization

proposed by [97] to matrix functionals. It is difficult to derive analytical

expressions for µη(w) for arbitrary p < 1. However, we can numerically

solve for x = ∂xµg and evaluate µη(w) for specific values of w, as shown

in Fig. 5.1. We show in the next section that analytical expressions for

the proximal mapping, specified by (5.18), can be derived even if analytical

expressions for η are not available.

We plot µφ, µη and xp/p for p = 1 and p = 0.5 for different values of β1 in Fig.

5.1. Note that µη(x) = |x| ,∀β1, when p = 1. However, µη(x) is different from

|x|p /p when p < 1. This implies that the variable splitting interpretation of the

majorize minimize algorithm breaks down when p < 1, as explained in Section

5.3.
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Figure 5.1: Huber approximation of the spectral penalty and the corresponding η function. Note

that the approximation of the original spectral penalty by the Huber function improves with

increasing values of β. Clearly, large values of β are required to approximate Schatten p-norms;

p < 1. It is observed that η(x) = |x|,∀β when p = 1. Hence, the variable splitting interpretation

(see Section 5.3.5) is equivalent to the MM scheme. However, this equivalence breaks down

when p < 1. Specifically, η(Γ)→ ‖Γ‖pp only when β →∞.

5.2.4 Expression for θ

The Huber approximation of the total variation norm (p2 = 1) was considered in

[104], where they showed that

θ

√√√√ q∑
i=1

|Qi|2

 =

√√√√ q∑
i=1

|Qi|2; ∀β2 (5.26)

Analytical expressions of θ cannot be obtained when p2 < 1. However, we derive

the analytical expression for the shrinkage in Section 5.3, which will enable the

efficient implementation.
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5.3 Numerical Implementation of Three Subprob-

lems

We now focus on the numerical implementation of the three main subproblems.

Specifically, we show that all of the three steps can be either solved analytically

or using efficient algorithms for most penalties and measurement operators of

practical interest. This enables us to realize a computationally efficient algorithm.

We also introduce a continuation scheme to accelerate the convergence of the

algorithm.

5.3.1 Quadratic subproblem, specified by (5.17)

Since the subproblem (5.17) is entirely quadratic, we rewrite it as a Tikhnonov

regularized image recovery problem:

γn+1 = arg min
γ
‖A (γ)− y‖2 +

λ1β1

2
‖γ −wn‖2 +

λ2β2

2

q∑
i=1

‖Gi (γ)− qn,i‖2(5.27)

Here, γ ↔ Γ and qi ↔ Qi are the 3-D datasets, corresponding to the cor-

responding Casoratti matrices. Similarly, Gi is the linear operator such that

Gi(γ)↔ R∗iΓCi. We obtain the Euler-Lagrange equation of this variational prob-

lem as(
A∗A+ λ1β1I + λ2β2

q∑
i=1

G∗i Gi

)
γn+1 = A∗y + λ1β1 wn + λ2β2

q∑
i=1

G∗i qn,i.(5.28)

Here I is the identity operator. Note that the variables in the right hand side of

(5.28) are fixed. Thus, this step involves the solution to a linear system of equa-

tions. In the general setting, this system of equations can be solved efficiently

using iterative algorithms such as conjugate gradient (CG). A few CG steps are
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often sufficient for good convergence since the algorithm is initialized by the previ-

ous iterate γn. We now show that analytical solutions of (5.27) do exist for many

measurement operators. When the TV penalty is used, the above equation can

be rewritten as

(A∗A+ λ1β1 I + λ2β24)γn+1 = A∗y + λ1β1 wn + λ2β2 pn. (5.29)

Here, 4γn+1 is the 3-D Laplacian of γn+1 and pn = ∇·qn is the divergence of the

vector field qn.

• Fourier sampling: An analytical expression can be derived for (5.27), when

the measurements are Fourier samples of γ on a Cartesian grid. Specifically,

we assume that the index set corresponding to the measured samples to be

indicated by Λ and the corresponding measurements to be bi; i.e., (bi =

γ̂ (ωi), where γ̂ is the discrete Fourier transform of γ). We split the frequency

samples, specified by ω, into two sets Λ and Λc and evaluate the discrete

Fourier transform of both sides of (5.29) to obtain:

γ̂n+1 (ωi) =


bi+λ1β1 ŵn(ωi)+λ2β2 p̂n(ωi)

1+λ1β1+λ2β2‖ωi‖2 if ωi ∈ Λ

λ1β1 ŵn(ωi)+λ2β2 p̂n(ωi)
λ1β1+λ2β2‖ωi‖2 else .

(5.30)

Here, pn = ∇ · qn.

• Deconvolution: Convolution can be posed as a multiplication in the Fourier

domain. Considering the Fourier transform of the matrix, (5.29) can be

solved in the Fourier domain as

γ̂n+1 (ω) =
Ĥ (ω)∗ b̂ (ω) + λ1β1 ŵn (ω) + λ2β2 p̂n (ω)

|Ĥ (ω) |2 + λ1β1 + λ2β2‖ω‖2
. (5.31)

Here, H(ω) is the transfer function of the blurring filter, ω is the frequency,

b̂(ω) is the Fourier transform of the measured blurred image dataset and

p̂n(ω) is the Fourier transform of ∇ · qn.
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5.3.2 Subproblem 2, specified by (5.18)

We will now focus on (5.18) and derive the analytical expression for Wn+1:

Wn+1 = arg min
W

β
2
‖Γn−W‖2F︷ ︸︸ ︷

β‖Γn+1‖2/2 + β‖W‖2
F/2− β 〈Γn+1,W〉 + η (W)

= arg max
W

β 〈Γn+1,W〉 − β
(
‖W‖2

F/2 + η(W)/β
)︸ ︷︷ ︸

f(W)

(5.32)

The minimizer of this expression satisfies

Γn+1 = β ∇f(Wn+1). (5.33)

We used the differentiability of φ, and hence f to obtain the above expression.

This is valid for the Huber approximations of the spectral penalties. Since f and

g are convex conjugates, ∇f and ∇g are inverse functions [96; 105]. Thus, we

obtain the optimal W that solves (5.32) as

Wn+1 = ∇f−1(Γn+1) = ∇g(Γn+1) = Γn+1 − ∂φ(Γn+1)/β. (5.34)

We used the relation g(Γ) = ‖Γ‖2
F/2−φ(Γ)/β in the second step. Thus, analytical

expressions for η are not required to derive the shrinkage step, thanks to the

property of convex conjugate functions. We now derive the shrinkage steps for

specific spectral penalties.

• Special case: nuclear norm

∂µφ(x) =

 sign(x) if |x| ≥ 1
β1

β1x else .
(5.35)

We assume Γ =
∑min(m,n)

i=1 σiui v
H
i to be the singular value decomposition of

Γ. Substituting in (5.34), we get

W∗ =

min(m,n)∑
i=1

(σi − 1/β1)+ ui v
H
i , (5.36)

where, ui,vi, σi are the singular vectors and singular values of Γ.
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• Schatten p-norms Following the same steps, we obtain the shrinkage step

for Schatten p-norms as ,

W∗ = ∂g(Γ) =

min(m,n)∑
i=1

(
σi − σ(p1−1)

i /β1

)
+

ui v
H
i . (5.37)

5.3.3 Solving the subproblem 3, specified by (5.19)

Problems similar to (5.19) has been addressed in the context of iterative algo-

rithms for total variation minimization [104] and its non-convex variants [97].

The generalized shrinkage rule to derive Qi; i = 1, .., q is specified by

Qi,n+1 =

(
P−P(p2−1)/β2

)
P

RiΓCi, (5.38)

where P =
√∑q

i=1 |RiΓn+1Ci|2. Pp is the matrix whose elements are the pth

power of the entries of P.

5.3.4 Continuation to improve the convergence

The three-step alternating minimization algorithm involves a tradeoff between

convergence and accuracy. Specifically, when β1 = β2 = 0, (5.16) simplifies to

three decoupled problems in Γ,W and {Qi, i = 1, ..q}. Since all of these problems

have analytical solutions, the entire algorithm converges in a single step to the

minimum norm solution, which is a poor approximation of (5.8); this is expected

since the corresponding Huber function is a poor approximation to the original cost

function. In contrast, the approximation is exact when β1 = β2 = ∞. However,

it is easy to see that the algorithm fails to converge in this case.

The above mentioned tradeoff between convergence and accuracy can be un-

derstood in terms of (i) the ability of the Huber function to approximate the
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original penalty and (ii) the proximity of the majorizing function to the Huber

approximation. We illustrate this issue in Fig. 5.2 in the context of the nu-

clear norm penalty. Note that for small values of β, the Huber approximation

µφ(σ) of |σ| is poor. However, the corresponding quadratic majorizing function

β(x − w)2 + µη(σ) closely approximates µφ. Hence, the MM scheme converges

fast to the minimum of the approximate penalty. In contrast, when β → ∞, the

Huber function approximates the spectral penalty well, resulting in good accu-

racy of the final solution. However, the convergence is poor in this case since

the approximation of the Huber function by the majorizing quadratic function is

poor.
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Figure 5.2: Effect of β1 on convergence and accuracy: We demonstrate the approximation

of |x| by the corresponding Huber penalty. Note that for β = 0.1, the majorizing function

approximates the Huber function well, resulting in fast convergence to the minimum of the

corresponding penalty. However, in this case the approximation of |x| by the Huber function is

poor resulting in poor accuracy. In contrast, the approximation of |x| by the Huber function

is good when β = 5. In this case, the majorizing function of the Huber function is a poor

approximation. Specifically, it is too narrow, resulting in slow convergence.

To overcome the above mentioned tradeoff, we introduce a continuation scheme.
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Specifically, we initialize β1 and β2 with small values and progressively increase

them, until convergence. The algorithm converges very fast for small values of

β1 and β2, as discussed before. We use the solution at each step to initialize the

next step. For each choice of continuation parameters, we iterate the algorithm

to convergence (i.e., until the relative change in the cost function in (5.8) is less

than a pre-specified threshold). In all the experiments considered in this chapter,

we initialize the continuation parameters as β1 = β2 = 5 and increase them by a

factor of five for each iteration of the outer loop.

5.3.5 Interpretation as a variable splitting scheme

The majorize-minimize scheme to solve for the spectrally regularized matrix re-

covery may be interpreted as a variable splitting (VS) strategy [88], similar to

such schemes in compressed sensing [106; 107]:

Γ∗ = arg min
Γ,W
‖A (Γ)− b‖2 + λ1 φ (W)

s.t. Γ = W (5.39)

Here, W is an auxiliary variable and the above constrained optimization problem

is equivalent to (5.8), when λ2 = 0. VS algorithms convert the above constrained

optimization problem to an unconstrained problem by introducing an additional

quadratic penalty:

(Γ,W)∗ = arg min
Γ,W
‖A (Γ)− b‖2 + λ1 φ (W) + λ1

β1

2
‖Γ−W‖2

F (5.40)

This unconstrained problem is equivalent to (5.39), when β1 → ∞. Note that

(5.40) is very similar to (5.16) with λ2 = 0, except that the φ is used instead of

η. The VS scheme and the MM scheme are exactly the same for p = 1, since
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η(W) = ‖W‖∗,∀β1. However, η(W) 6= ‖W‖pp when p < 1 (see Fig. 5.1). Hence,

the two schemes are not equivalent for general Schatten p-norms.

The standard practice in VS compressed sensing schemes is to alternatively

minimize the criterion with respect to each of the unknowns, assuming the other

variable to be fixed [106; 107]. Thus, we obtain Wn+1 as

Wn+1 = arg min
W

β1

2
‖Γn+1 −W‖2

F + φ (W)

When φ(Γ) = ‖Γ‖∗ [92], this proximal mapping can be efficiently implemented

using singular value soft-thresholding. However, analytical closed form expressions

for the above proximal mapping do not exist when non-convex spectral penalties

(e.g. Schatten p norms; φ(Γ) = ‖Γ‖pp) are used. To realize efficient algorithms,

Ehler introduced approximate hard thresholding shrinkage rules for non-convex `p

penalties [108]. Adapting these approximate rules to non-convex matrix penalties,

we get

Wn+1 =

min(m,n)∑
i=1

χ(σi)ui v
H
i , (5.41)

The thresholding function in (5.41) is defined as

χ(σi) =

 σi − 2p cp
β1

if σi >
2cp
β1

0 else .
(5.42)

where cp = 2p−2
(

(2−p)2−p
(1−p)1−p

)
and ui,vi and σi are the singular vectors and values of

Γn+1, respectively. A similar approximate rule can be used for the non-convex TV

penalty. In contrast to these approximate rules, analytical shrinkage formulas can

be derived for most spectral penalties η(Γ) in the MM framework (see (5.34)). We

compare the MM algorithm and the VS scheme with the approximate shrinkage

rule in the results section; we observe that the proposed MM scheme provides

faster convergence, thanks to the exact shrinkage rule.
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The MM scheme in the non-convex (p1 < 1; p2 < 1) case may be alterna-

tively interpreted as an approximate VS algorithm, where (5.37) and (5.38) are

used to approximate the corresponding proximal mappings. Note that these ap-

proximations are not reported before and is only inspired by the MM framework.

The above approximate variable splitting scheme (with approximate MM-inspired

proximal mappings) can be further accelerated using augmented-Lagrangian (AL)

or split-Bregman (SB) methods [109; 110] as we have shown in [111]. Unlike

conventional AL or SB methods (originally developed for convex penalties), the

proposed non-convex schemes still require continuation since the approximation

is only exact as β →∞ (see Fig. 5.1.)

5.4 Results

We will demonstrate the utility of the combined non-convex penalty in reliably

recovering a sparse and low-rank matrix in Section 5.4.1. The convergence of

the algorithm and the utility of continuation will be studied in Section 5.4.3. In

Section 5.4.2, we demonstrate the utility of the combined non-convex penalty

in recovering dynamic contrast enhanced MR images from their undersampled

Fourier measurements. The dynamic MRI dataset is only approximately low-rank

and sparse.

5.4.1 Recovery of a Low-rank and Sparse Matrix

We first demonstrate the benefits in using the combination of two non-convex

penalties, compared to widely used nuclear norm scheme. We consider the recov-

ery of the MIT logo from its sparse measurements to illustrate the algorithm. This
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image (size of 46× 81 with 3726 pixels) is ideal for our study since it is low-rank

(rank = 5) and also has sparse gradients. We use random measurement matri-

ces and vary the number of measurements M from 100 to 1500 as in [112]. The

matrix was then recovered from these measurements using (5.8) with six different

parameter settings:

1. nuclear norm penalty alone (p1 = 1;λ2 = 0).

2. non-convex spectral penalty alone (p1 = 0.5;λ2 = 0).

3. standard TV penalty alone (λ1 = 0; p2 = 1).
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Figure 5.3: Utility of the combination of non-convex penalties. We plot the SNR as a function

of the number of measurements on the MIT logo, recovered using the six algorithms. Note that

the SNR increases abruptly when the number of measurements exceeds a specified threshold.

It is seen that the algorithms using the non-convex spectral (red solid curve) and non-convex

TV penalty (blue solid curve) alone reduce the number of measurements required to recover

the image considerably over their convex counterparts (blue dotted and black dotted curves,

respectively). We also observe that the combination of the convex (red dotted) and non-convex

(black solid) penalties work much better than the individual penalties.
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4. non-convex gradient penalty alone (λ1 = 0; p2 = 0.5).

5. combination of both convex penalties (p1 = p2 = 1;).

6. combination of both non-convex penalties (p1 = p2 = 0.5).

We repeat each experiment for ten different random measurement ensembles

and evaluate the average signal to noise ratio (SNR), specified as

SNR = 20 log

(
‖Γorig‖F

‖Γrec − Γorig‖F

)
. (5.43)

For each setting, we optimize the regularization parameters (λ1 and λ2) with

respect to SNR. Fig. 5.3 shows the SNR of the recovered image as a function

of the number of measurements. It is seen that the SNR rises abruptly when

the number of measurements exceeds a specified threshold. An SNR of 80 dB

corresponds to almost perfect reconstruction.

We observe that the algorithm with the conventional nuclear norm scheme

can perfectly recover the image, if the number of measurements is greater than

1300; these findings are consistent with the results in [112]. In contrast, the

non-convex spectral penalty alone requires only 900 measurements. Similarly, the

algorithm with the non-convex TV penalty alone requires only 400 measurements

to perfectly recover the image, compared to 800 with standard TV. These results

demonstrate the benefit in using non-convex penalties over convex schemes. We

did not encounter any local minima issues. We believe that the continuation strat-

egy, where the cost function is initialized as a quadratic criterion and gradually

made non-convex, minimizes the local minima problems.

It is seen that the combined convex penalty (TV and nuclear norm) requires

approximately 700 measurements, compared to 1300 with nuclear norm alone and
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M p1 = 0.5 p2 = 1 p1 = p2 = 1 p1 = p2 = 0.5

200

700

800

900

Figure 5.4: Sample recovered images for four different number of measurements using: Non-

convex spectral penalty (p1 = 0.5), standard TV (p2 = 1), combination of convex penalties

(p1 = p2 = 1), combination of non-convex penalties (p1 = p2 = 0.5). The rows correspond to

different number of measurements. The results show that almost perfect reconstruction can be

obtained when the number of measurements is larger than 200 by using the combination of both

non-convex penalties (p1 = p2 = 0.5). Note that this is 6 times lower than using only the nuclear

norm penalty (1300 measurements) and 4 times lower than standard TV (800 measurements).

Similarly, we obtain a four fold improvement over non-convex spectral penalty alone.

800 with TV alone. Similarly, the combination of the non-convex penalties re-

quires only 200 measurements, compared to 900 with non-convex spectral penalty

alone and 400 with non-convex gradient penalty alone. These experiments demon-

strate a significant reduction in the number of measurements required to recover a
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matrix, when sparsity and spectral penalties are combined. As described earlier,

sparsity and low-rank properties are complementary; since the degrees of free-

dom of matrices that are simultaneously sparse and low-rank are small, the joint

penalty is capable of significantly reducing the number of measurements. Sample

images of recovered matrices for four different number of measurements are shown

in Fig. 5.4.

5.4.2 Accelerated Dynamic Contrast Enhanced (DCE) MRI

In this section, we illustrate the utility of the proposed algorithm in accelerating

dynamic contrast enhanced (DCE) MRI. DCE MRI tracks the dynamic variations

in the image intensity, resulting from the passage of a tracer bolus. Specifically,

the paramagnetic tracer within the vasculature results in spin dephasing, hence

resulting in decreased signal intensity. DCE MRI has shown great potential in

diagnosing malignant lesions in the brain, breast and other organs. High tempo-

ral resolution is required to accurately estimate the kinetic parameters, while high

spatial resolution is required to visualize the lesion morphology. In addition, accel-

erated imaging can enable the simultaneous acquisition of two echoes (T1 weighted

and T2* weighted), thus enabling the accurate quantification of microvascular den-

sity and vascular permeability; these parameters are highly correlated with ma-

lignancy and have been suggested as surrogate markers for angiogenesis. Several

acceleration schemes have been proposed to accelerate DCE MRI (e.g. methods

that assume the contrast dynamics to mostly contain low spatial frequencies [22;

113], approaches that exploit the signal structure in the Fourier space [114], and

parallel imaging schemes [115; 116]). The accelerations offered by these schemes

are modest (2-3 fold), leaving room for further improvement.
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We demonstrate the utility of the proposed non-convex scheme in significantly

accelerating DCE MRI. The dynamic MRI measurements correspond to the sam-

ples of the signal in Fourier (k − t) space, corrupted by noise:

bi =

∫
x

γ(x, ti) exp
(
−jkTi x

)
dx + ni; i = 1, .., s.

Here, (ki, ti) indicates the ith sampling location. We denote the set of sampling

locations as Ξ = {(ki, ti), i = 1, .., s}. The fully sampled 3-D dataset of a single

slice is shown in Fig. 5.6.(a); the data corresponds to sixty time points, separated

by TR=2 sec; the matrix size is 128× 128× 60. We retrospectively resample each

slice of the data in the Fourier domain using a uniform radial trajectory. The

trajectory is rotated by a random angle for each frame to obtain an incoherent

pattern (see Fig. 5.6.(b)). The number of lines per slice is chosen depending on the

specified acceleration. For example, 20 k-space lines approximately corresponds

to the acceleration factor of A = 7. We recover the dynamic imaging dataset from

its undersampled Fourier measurements using the proposed scheme. We use a few

steps of conjugate gradients algorithm to solve for (5.17) at each iteration, since

the samples are not on the 3-D Cartesian grid. We use the previous iterate as

an initial guess, thus the CG algorithm converges to the solution of (5.17) in a

few steps. The recovery of the DCE MRI dataset using the MATLAB implemen-

tation of the proposed algorithm takes approximately eight minutes on an Intel

quad core processor with an NVDIA Tesla graphical processing unit (GPU). The

computationally expensive components of the algorithm are implemented using

Jacket [117].

The SNR of the recovered 3-D dataset as a function of the acceleration is

plotted in Fig. 5.5. We observe that the best SNR is obtained when both the

non-convex penalties are used, which is around 1.5 dB better than nuclear norm
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alone and 6 dB superior than TV alone. It is also seen that the combined non-

convex penalty (solid black curve) gives reconstructions that are approximately

1-2 dB better than its convex counterpart (dotted red curve), especially at higher

accelerations. These experiments demonstrate the utility of the combination of

non-convex penalties in challenging practical applications. We show the slice cor-

responding to the peak of the perfusion contrast, recovered using TV, nuclear norm

and the combined non-convex penalties, in Fig. 5.6.(c)-(e). The corresponding

error images are shown in Fig. 5.6.(f)-(h), respectively. Here, we consider A = 7,

which corresponds to 20 k-space lines/frame. We plot the average intensity vari-

ations of the recovered images from 5 pixels in the tumor region (green dot) and

5 pixels of the healthy tissue (red dot) in Fig. 5.6.(i)-(k), respectively. Note that

the curve from the tumor region has a larger dip and a larger width compared

to that of the healthy tissue. This is due to the higher microvessel density and

the increased tortuosity of the vessels in the tumor regions. We observe that the

combination of non-convex penalties gives good fit to the measured data. The

seven fold acceleration without significant degradation in image quality is quite

remarkable, especially since we are only assuming a single channel acquisition; we

expect to further improve the signal quality and/or acceleration using 12 or 32

channel head arrays that are now available.

5.4.3 Discussion on Convergence Rate

We now study the effect of the parameters β1 and β2 on the convergence of the

algorithm and the accuracy of the solution. We consider the recovery of the MIT

logo from M = 1000 measurements using the combined non-convex penalties

(p1 = p2 = 0.5). We plot the evolution of the original cost function in (5.8) and
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Figure 5.5: SNR of the dynamic MRI dataset as a function to acceleration factor. We reconstruct

the dataset from its Fourier samples using six methods: Nuclear Norm (p1 = 1); non-convex

spectral penalty (p1 = 0.5); TV (p2 = 1); non-convex gradient penalty (p2 = 0.5), combined

convex penalties (p1 = p2 = 1) and combined non-convex penalties (p1 = p2 = 0.5). Note that

the combined non-convex penalty provides significant gains in SNR at almost all acceleration

factors.

SNR with respect to the number of iterations In Fig. 5.7.(a) and (b), respectively.

It is observed that lower values of β1 and β2 result in fast convergence, but yield

solutions with higher cost and lower SNR. This is expected since (5.16) is a poor

approximation to (5.8). In contrast, higher values of β1 and β2 approximate the

original cost function well, but result in slow convergence. We observe that the

proposed continuation scheme, where β1 and β2 are initialized with small values

and are gradually increased, offers the best compromise. In this specific example,

the continuation scheme converged in 599 iterations. In contrast, the schemes

with fixed values of β1 and β2 require far more number of iterations. The images

recovered after 500 iterations using different parameter choices are shown in Fig.
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Figure 5.6: Reconstruction of dynamic MRI data from undersampled Fourier samples. We

consider 20 radial lines/image, which corresponds to an acceleration factor of A = 7. The images

corresponding to the peak of the bolus (dotted line in the bottom row), which are recovered using

TV (p2 = 1), nuclear norm (p1 = 1), and combination of non-convex penalties (p1 = p2 = 0.5)

are shown in (c)-(e). The corresponding error images are shown in (f)-(h), respectively. (e),

(h) and (k) correspond to the reconstructions using the proposed combination of non-convex

penalties. The SNRs of the reconstructions using TV, Nuclear Norm, and combination of non-

convex penalties are 23.81dB, 26.77dB, and 27.92dB, respectively.
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Figure 5.7: Utility of the continuation scheme: We plot the cost and SNR as a function of the

number of iterations. We observe that lower values of the parameters (β1 = β2 = 5) result in

a very fast convergence, but yield a solution with higher cost and lower SNR. Higher values of

the parameters improve the accuracy at the expense of the number of iterations. Note that the

continuation strategy, where the parameters are initialized with β1 = β2 = 5 and increased by a

factor of 5 within the outer loop, results in fast convergence and solutions with good SNR. We

terminate the algorithm when the cost does not change, where the convergence is achieved with

β1 = β2 = 5e7. We observe that the algorithm fails to converge if it is initialized with these

parameters.
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Figure 5.8: Utility of continuation schemes in matrix recovery. We reconstruct the MIT logo with

continuation and different fixed values of β. We show the reconstructions using (a) continuation

scheme (initialzed with β1 = β2 = 5 and gradually increased by a factor of 5) SNR=100.64; (b)

β1 = β2 = 5, SNR=22.41; (c) β1 = β2 = 50, SNR=12.14; (d) β1 = β2 = 150, SNR=5.98 after

500 iterations. Note that the continuation scheme provides almost perfect recovery, while the

other methods result in artifacts.
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6 Conclusion

MRI is an important imaging modality. Compared to some other imaging meth-

ods, one of the advantages of MRI is that it uses non-ionizing radiation, and thus

it poses minimal risk on human body. By changing the pulse sequences and the

protocols of MR scanning, images with different contrasts can be obtained. How-

ever, the main challenge of MRI is the acquisition speed, which limits the clinical

application of MRI. One way to improve the speed of MR acquisition is to collect

less measurement samples in k-space. According to the recently developed math-

ematical theory of compressed sensing, images that are sparse under a certain

transform can be accurately reconstructed using a subset of the k-space samples

instead of the full dataset.

This thesis proposes novel approaches in the compressed sensing framework to

recover 2D and multi-dimensional MR images in order to accelerate MRI while

preserving the image quality. We developed novel regularized image reconstruction

algorithms to utilize the sparsity and the low rank properties of the dataset. The

main contributions of this work include:

1. The development of two families of higher degree total variation regular-
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ization penalties, which are essentially non-quadratic norms of directional

image derivatives. We observe that the anisotropic HDTV penalties, which

rely on separable L1 norms, provide better preservation of elongated image

features and better SNR than isotropic penalties that use non-separable L1-

L2 mixed norms. We exploited the steerability of directional derivatives to

derive efficient majorize-minimize algorithms to solve the resulting optimiza-

tion problems. Comparisons of the proposed regularization functionals with

classical TV penalty, current second degree functionals, and sparse wavelet

schemes in a range of practical applications demonstrated the significant

improvement in performance.

2. The development of a three-dimensional higher degree total variation (3D-

HDTV) penalty. We introduce a fast majorize-minimize algorithm that can

be solved efficiently using an alternating minimization method, which im-

proves the convergence speed compared to the previously used scheme. We

implement the 3D-HDTV method using the proposed algorithm on com-

pressed sensing, image denoising, and deblurring. The results demonstrate

the improvement in SNR and image qualities compared with standard 3D-

TV and some other current methods.

3. The development of a novel majorize-minimize algorithm to recover sparse

and low-rank matrices from its noisy and undersampled measurements. We

majorize the non-convex spectral and sparsity penalties in the cost function

using quadratic matrix functions, resulting in an iterative three-step alter-

nating minimization scheme. Since each of the steps in the algorithm has

computationally efficient implementations, the algorithm provides fast con-

vergence. We verified the utility of the combination of non-convex spectral
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and sparsity penalties to significantly reduce the number of measurements

required for perfect recovery in dynamic MRI data, compared to current

matrix recovery schemes.

In current research for MRI, exploiting the novel image regularizations has

become significant for accelerating and improving the image quality of MRI. In

this thesis, we focus on the regularizations in two aspects: a) sparsity regulariza-

tion, specifically, total variation based penalties, which enforce the sparse image

gradients, and b) low-rank regularization, which enforces the low rank property

of a matrix/image. In this work, we have exploited the combined penalties of TV

and low rank, which obtained good performance. We have also proposed higher

degree TV to improve the standard TV. The future directions of this work include

using HDTV and low rank regularizations in MR data reconstruction to further

improve the performance of the algorithms. However, there are a number of other

prior information that can be used as the regularization in order to improve MRI,

which we still need to further explore.

The famous American major league baseball catcher Yogi Berra said: “It is

difficult to make predictions, especially about the future.” There could be one day,

when an MR scanning can be finished in seconds, and the data reconstruction can

be obtained in real-time. Though it is a long way to pursue this objective, as

Peter Drucker put it, “The best way to predict the future is to create it.” I would

like to continue contributing in creating the bright future of MRI research.
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Appendix A

We derive the conjugate of the function µg, specified by (5.24) in this section.

Specifically, µ∗g is defined as

µ∗g(w) = max
x

(wx− µg(x)) = max

(
max
x;x< 1

β

wx, max
x;x> 1

β

(
wx− 1

2
(x− 1/β)2

))

The maximum value of the first term (wx;x < 1/β) is given by w/β. The second

term inside the bracket is true if x = w + 1/β, when the value of the function is

given by w2/2 + w/β. Since the second term is always greater than the first, we

obtain

µ∗g(w) =
w2

2
+
w

β
(1)

Since µη(w) = β (µg(w)− w2/2), we have µη(w) = w.
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