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Multiple Degree Total Variation (MDTV)
Regularization for Image Restoration

Yue Hu, Member, IEEE, Mathews Jacob, Senior Member, IEEE

Abstract—We introduce a novel image regularization termed as
multiple degree total variation (MDTV). This type of regulariza-
tion combines the first and second degree directional derivatives,
thus providing a good balance between preservation of edges and
region smoothness. In order to solve the resulting optimization
problem, we proposed a fast majorize minimize algorithm. We
demonstrate the utility of the MDTV regularization in the context
of image denoising and compressed sensing. We compare the
proposed method with standard TV, and the state of the art
higher degree methods, including higher degree total variation
(HDTV) and total generalized variation (TGV) based schemes.
Numerical results indicate that MDTV penalty provides improved
image recovery performance.

I. INTRODUCTION

Image recovery from their noisy partial measurements has
been a significant research topic in a wide range of imaging
applications including medical imaging, remote sensing, and
microscopy. The common approach is to formulate the image
recovery problem as an optimization problem which is the
combination of data consistency and regularization term. Total
variation (TV) is one of the most commonly used regulariza-
tion penalty in many inverse problems [1]. The main reason
for the good performance of TV regularization is due to its
capability to preserve sharp edges in the image. However, the
main limitation of TV penalty is that it generates patchy or
staitcasing artifacts in the reconstructed images since TV pro-
motes gradient sparsity. To overcome the problem associated
with TV penalty, researchers have proposed different modi-
fications of TV promoting higher order derivatives sparsity.
Among them there are regularizations using derivatives of a
single higher order degree. For example, the Laplacian penalty
[2], [3], the anisotropic second order regularization [4], [5], the
Hessian Schatten-norm regularizations [6]. However, the L1

norm of the Laplacian has a high-dimensional null space [7],
which tends to preserve pointlike features rather than sharp
edges. The anisotropic second order penalty is not rotation
invariant, which makes it not ideal for the regularization of
the image recovery problem. Moreover, it has been proved
that many of the second degree TV penalties are special
cases or equal to the HDTV regularization [8]. Another family
of functionals involve image derivatves of different degrees,
including the infimal-convolution functional which combines
TV with higher order derivatives [9], and total generalized
variation (TGV) [10].
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We recently proposed a family of convex functionals named
higher degree TV (HDTV), which are defined as the L1-Lp
norm (p ≥ 1) of the nth degree directional derivatives [8],
[11]. HDTV penalties possess the desirable properties of TV,
such as rotation invariance, preservation of edges. Moreover,
HDTV scheme overcomes the problems associated with TV,
while enhances the line like features of an image. Numerical
experiments have demonstrated that HDTV penalties provide
desirable image reconstruction results and improve the image
quality significantly compared with TV. However, since HDTV
focuses on derivatives of a single degree, it still has some
limitations in accurately recovering an image.

In this work, we propose a family of image regulariza-
tions which combine the first and second degree directional
derivative to improve the performance of HDTV penalties.
The novel type of image regularizations are termed as mul-
tiple degree TV (MDTV), which are defined as the L1-
Lp (p ≥ 1) norm of all rotations of the weighted norm
of the 1st and 2nd degree derivative operator. The MDTV
penalties have the similar properties as TV and HDTV, such
as rotation invariance, translation invariance, convexity, and
scale covariance. Furthermore, by balancing the weights of
the first and second degree directional derivatives, MDTV
selectively regularizes the image based on various features,
which lead to a more natural recovery of the images. In order
to solve the resulting optimization problem, we propose an
iteratively reweighted majorize minimize algorithm similar as
in [11], which successively approximates the optimal solution
by minimizing a sequence of quadratic surrogate functions.
We demonstrate the utility of MDTV in the context of image
denoising and compressed sensing. Numerical results show
that the proposed method yields improved image quality over
standard TV penalty, the state of the art HDTV regularization,
and the TGV scheme.

II. BACKGROUND

A. Regularized inverse problems for image recovery
We consider the recovery of a continuously differential

complex image f : Ω → C from its noisy measurments
b. Here, Ω is the spatial support of the complex image f .
The measurements b is modeled as: b = A(f) + n, where
n is the Gaussian distributed white noise and A is a linear
operator representing the image acquisition process. Under
most practical scenarios, the operator A is ill-conditioned.
In such cased, in order to make the problem well-posed,
the image recovery problem is generally formulated as a
constrained optimization problem:

f̂ = arg min
f
‖A(f)− b‖2 + αR(f) (1)
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where ‖A(f) − b‖2 represents data fidelity, R(f) is the
regularization term, and we choose the parameter α to obtain
the optimal solution, i.e., the maximized signal to noise ratio.

B. Generalized higher degree total variation

We have shown in [11] that by reinterpreting the standard
two-dimensional total variation (TV) regularization as a mixed
norm of image directional derivatives, we could obtain higher
degree total variation (HDTV) regularizations, defined as

HDTV =

∫
Ω

(
1

2π

∫ 2π

0

|fθ,n(r)|pdθ
) 1

p

dr, p = 1, 2 (2)

where fθ,n(r) is the nth degree directional derivative of f
along the direction uθ = (cos(θ), sin(θ)), defined as

fθ,n(r) =
∂n

∂nγ
f(r + γuθ)

∣∣∣∣
γ=0

. (3)

The HDTV penalty (2) is termed as isotropic and anisotropic
HDTV, when p = 2 and p = 1, respectively.

According to the property of rotation steerability of the
directional derivative, fθ,n(r) can be expressed as

fθ,n(r) = s∗n(θ)gn(r) (4)

where sn(θ) is the vector of trigonometric polynomials, and
gn(r) is the vector of nth degree partial derivatives.

III. MULTIPLE DEGREE TOTAL VARIATION (MDTV)
REGULARIZED IMAGE RESTORATION

A. MDTV regularization

We use the combination of the first and second order
derivative to obtain a new type of regularization penalty,
termed as MDTV penalty, which is defined as

RM (f) =

∫
Ω

(
1

2π

∫ 2π

0

√
λ1|fθ,1(r)|2 + λ2|fθ,2(r)|2dθ

)
dr

(5)
where fθ,1(r), fθ,2(r) are the first and second order directional
derivative separately, and λ1, λ2 are the weighting coefficients
for balancing the first and second order directional derivatives.
For simplicity purpose, we define λ1 + λ2 = 1.

Note that the MDTV penalty is the L1-L1 norm of the
directional derivatives similar as the anisotropic type of HDTV
penalties proposed in [11]. However, instead of using a single
higher degree derivative, MDTV uses the combined weighted
L2 norm of the first and second degree directional derivatives.
By tuning λ1 and λ2, the optimal performance of MDTV
penalty can be achieved for image recovery. The tuning of the
balancing parameters will be discussed in the later section.
According to the definition of MDTV (5), TV and HDTV
penalties are two special cases of the MDTV regularization.
When λ1 = 1, λ2 = 0, MDTV becomes standard TV penalty.
Similarly, when λ1 = 0, λ2 = 1, MDTV becomes the HDTV
penalty.

Therefore, the MDTV regularized image recovery scheme
is specified by

f̂ = arg min
f
‖A(f)− b‖2 + αRM (f) (6)

B. Numerical algorithm

We apply the fast majorize minimze algorithm to solve
the optimization problem [11]. In the first step, the original
optimization function is majorized as:

RM (f) ≤ RM (f (m)) +R(m)
1 (f) +R(m)

2 (f) (7)

where R(m)
1 (f) and R(m)

2 (f) represent the first and second
degree derivative majorization terms separately. Specifically,

R(m)
1 (f) =

1

2π

∫
Ω

∫ 2π

0

λ1ω
(m)(r, θ)|fθ,1(r)|2dθdr (8)

R(m)
2 (f) =

1

2π

∫
Ω

∫ 2π

0

λ2ω
(m)(r, θ)|fθ,2(r)|2dθdr (9)

where ω(m)(r, θ) is the weighting matrix, which is comput-
ed at each iteration using the values of f (m)

θ,n (r)(n = 1, 2) at
the current mth iteration.

ω(m)(r, θ) =
1

2
√
λ1|f (m)

θ,1 (r)|2 + λ2|f (m)
θ,2 (r)|2 + ε

(10)

The small constant ε is included to ensure that the weighting
matrix is finite in smooth image regions where the directional
derivatives tend to be zeros. Using the steerability of the
directional derivatives (4), R(m)

n (f)(n = 1, 2) in (8) and (9)
can be rewritten as

R(m)
n (f) = λn

∫
Ω

g∗
n(r)

1

2π

∫ 2π

0

sn(θ)ω(m)(r, θ)s∗n(θ)dθgn(r)dr

(11)
Here, the spatially varying weighting matrix could be defined
as

W(m)
n (r) =

1

2π

∫ 2π

0

sn(θ)ω(m)(r, θ)s∗n(θ)dθ (12)

The first and second degree derivative majorization terms (11)
thus become

R(m)
n (f) = λn

∫
Ω

g∗
n(r)W(m)

n (r)gn(r)dr (13)

Substituting (13) and (7) in (6), and ignoring the constant
terms, we could solve for the following majorization cost
function iteratively to obtain the optimal image recovery
results:

f (m+1) = arg min
f
‖A(f)−b‖2+α

2∑
n=1

λn

∫
Ω

g∗
n(r)W(m)

n (r)gn(r)dr

(14)
We propose to use conjugate gradient algorithm to solve

(14), with the corresponding gradient expressed as

∇G(m) = 2AT (Af − b)+2α

2∑
n=1

λn∂
T
n (r)

(
W(m)

n (r)gn(r)
)

(15)



3

C. Discretization of the derivative operator

The above introduced MDTV penalties are defined for con-
tinuous images. In practical implementations, The derivatives
are approximated using finite difference. For example, the
derivative of the 2D signal along the x dimension is approxi-
mated as q[k, l] = f [k+ 1, l]− f [k, l] = ∆1 ∗ f , which can be
viewed as the convolution of f by ∆1[k] = ψ(k + 1

2 ),where
ψ(x) = ∂β1(x)/∂x and β1(x) is the first degree B-spline
function [12]. In order to further obtain discrete operators that
are approximately rotation steerable, we approximate the nth
degree partial derivatives as follows:

∂n1,n2f [k1, k2] = [βn1

d (k1+δ)⊗βn2

d (k2+δ)]∗f [k1, k2] (16)

for all k1, k2 ∈ N, where βnd denotes the nth order derivative
of the dth (d = n1 + n2) degree B-spline and δ is chosen
based on the following rule:

δ =

{
1
2 if n is odd
0 else (17)

The shift δ is chosen so that the image derivatives are evaluated
at the intersection of the pixels instead of the midpoint of
the pixels. Since B-spline functions approximate Gaussian
functions as the degree increases, the tensor product of B-
spline functions are approximately rotation steerable.

D. Choice of the parameters

MDTV regularized optimization problem requires optimized
regularization parameters to ensure ideal image recovery re-
sults. In addition, MDTV needs a proper balancing between
the first and second order directional derivatives. For each
noise level and A operator, we determine the optimal parame-
ters to obtain the optimized signal to noise ratio (SNR), which
is computed as

SNR = −10 log10

(
‖forig − f̂‖

2
F

‖forig‖2F

)
. (18)

where f̂ is the reconstructed image, forig is the original image,
and ‖ · ‖F is the Frobenius norm.

In order to check how the SNR values of the recovered im-
ages behave as a function of the regularization parameter α and
the weighting parameters λ1 and λ2, we plot the parameters
optimization results in Fig. 1. Specifically, we tuned for the
parameters for the denoising of the Lena image with additive
Gaussian noise with standard deviation σ = 0.04. We choose
α = 0.01, 0.02, 0.03, ..., 0.19 and λ1 = 0, 0.1, 0.2, ..., 1. Note
that λ2 = 1, 0.9, . . . , 1 correspondingly. The plot indicates
that the SNR has a global maximum for different values of
the parameters. We also observe that the optimal parameters
are mostly dependent on each setting, but not much on the
specific image.

IV. RESULTS

The performance of the proposed MDTV regularized
method is investigated in the context of image denoising and
compressed sensing. We use the signal to noise ratio (SNR)
to assess the quality of the recovered images.
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Fig. 1. SNR values of the denoised Lena image as function of the parameters
α and λ1. The original image was contaminated with Gaussian white noise
with standard deviation σ = 0.04. The dotted region corresponds to the
maximum SNR value, where the optimal parameters were chosen, i.e.,λ1 =
0.4, α = 0.13. Note that the first and the last column corresponds to HDTV
denoising and TV denoising, respectively.

 

(a) Actual image (b) Noisy image

 

(c) TV:24.71dB

 

(d) HDTV:24.75dB (e) TGV:24.90dB

 

(f) MDTV:25.02dB

 

(g) error HDTV

 

(h) error TGV

 

(i) error MDTV

Fig. 2. Denoising results of the Lena image. (a) and (b) show the actual
image and the noisy version containing Gaussian white noise of standard
deviation σ = 0.04. (c)-(f): Denoised images using TV, HDTV, TGV, and
MDTV methods, respectively. (g)-(i): Error images of the denoised results
using HDTV, TGV, and MDTV schemes.

A. Denoising

We compare the denoising performance of MDTV method
with standard TV, HDTV, and TGV regularized schemes using
the Lena image in Fig. 2. The image is corrupted with additive
Gaussian whilte noise of standard deviation of σ = 0.04.
We show the zoomed image for better visual comparison.
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TABLE I
COMPARISON OF DENOISING ALGORITHMS

Lena Peppers
σ 0.02 0.04 0.06 0.02 0.04 0.06

TV 29.02 24.71 22.28 31.42 27.18 24.89
HDTV 29.10 24.75 22.39 31.85 27.42 25.27
TGV 29.22 24.90 22.59 31.91 27.61 25.21

MDTV 29.31 25.02 22.58 32.05 27.73 25.40
Cameraman Microscopy

σ 0.02 0.04 0.06 0.02 0.04 0.06
TV 31.58 26.60 24.27 33.26 28.10 26.78

HDTV 31.73 26.72 24.46 33.49 28.38 26.95
TGV 31.80 26.68 24.56 33.65 28.42 26.12

MDTV 31.98 27.05 24.70 33.75 28.61 26.29

The results show that TV leads to patchy recovered image,
indicated in red dotted arrow. The HDTV method overcomes
the patchy artifacts and preserves more details. Compared
with HDTV, TGV scheme provides smoother and more natural
recovered image. The proposed MDTV method preserves most
of the details, indicated in green arrow. The red arrows in the
error images show that MDTV scheme is capable of preserving
the linelike features, compared with the other methods.

The denoising results on four 256× 256 images using TV,
HDTV, TGV, and the proposed MDTV methods with different
noise levels are reported in Table I. The standard deviation
of the noise is chosen to be 0.02-0.06. We observe from the
results that the proposed methods consistently outperforms the
other methods with an improvement of the SNR around 0.5dB.

B. Compressed sensing

In this section, we consider the reconstruction of MR images
from incomplete compressed sensing measurements. We use
four MR images, including brain, wrist, angiography, and
ankle MR image to validate the proposed method. In the
experiments, we assume that the measurements are acquired
using radial undersampling pattern. Fig. 3 shows the recon-
structions of the brain MR image using HDTV, TGV, and the
proposed MDTV methods from 60 radial sampling lines. We
observe that the proposed method is capable of recovering the
details and the linelike features most accurately compared with
HDTV and TGV schemes, indicated by the green arrows.

The SNRs of the reconstructed images using TV, HDTV,
TGV, and MDTV methods with different number of radial
lines are showed in Table II. One can see that the propose
MDTV methods consistently provides results with highest
SNR among all of the algorithms.

V. CONCLUSION

We proposed a MDTV regularization penalty for image
recovery, which is the L1-L1 norm of the balanced combina-
tion of the first and the second degree directional derivatives.
We used an efficient majorize minimize algorithm to solve
the resulting optimization problem. Numerical comparisons of
the proposed method with the standard TV, HDTV, and TGV
regularization schemes show that MDTV regularized method
leads to an improved image recovery performance.

(a) Actual image (b) Radial sampling

 

(c) Zoomed image

 

(d) TGV:26.11dB

 

(e) HDTV:26.25dB

 

(f) MDTV:26.43dB

(g) error TGV (h) error HDTV (i) error MDTV

Fig. 3. Recovery of the brain MR image from the undersampled measure-
ments. (a)-(c): The actual image, the radial undersampling pattern, and the
zoomed version of the original image. (d)-(f): Reconstructions using HDTV,
TGV, and the proposed MDTV method. (g)-(i): Error images.

TABLE II
COMPARISON OF COMPRESSED SENSING ALGORITHMS

Brain Angiography
Lines 40 60 100 40 60 100
TV 22.38 25.93 30.96 19.35 23.31 28.60

HDTV 22.66 26.25 31.30 19.61 23.46 28.87
TGV 22.53 26.11 31.23 19.50 23.32 28.81

MDTV 22.76 26.33 31.35 19.73 23.68 28.95
Wrist Ankle

Lines 40 60 100 40 60 100
TV 20.35 23.70 28.89 17.55 20.03 24.30

HDTV 20.65 23.86 29.12 17.59 20.01 24.35
TGV 20.59 23.73 29.03 17.80 20.15 24.51

MDTV 20.75 24.07 29.25 17.74 20.32 24.64

REFERENCES

[1] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based
noise removal algorithms,” Physica D: Nonlinear Phenomena, vol. 60,
no. 1, pp. 259–268, 1992.

[2] T. Chan, A. Marquina, and P. Mulet, “High-order total variation-based
image restoration,” SIAM Journal on Scientific Computing, vol. 22, no. 2,
pp. 503–516, 2000.

[3] Y.-L. You and M. Kaveh, “Fourth-order partial differential equations for
noise removal,” Image Processing, IEEE Transactions on, vol. 9, no. 10,
pp. 1723–1730, 2000.

[4] M. Lysaker, A. Lundervold, and X.-C. Tai, “Noise removal using
fourth-order partial differential equation with applications to medical
magnetic resonance images in space and time,” Image Processing, IEEE
Transactions on, vol. 12, no. 12, pp. 1579–1590, 2003.

[5] S. Esedoglu and S. J. Osher, “Decomposition of images by the anisotrop-
ic rudin-osher-fatemi model,” Communications on pure and applied
mathematics, vol. 57, no. 12, pp. 1609–1626, 2004.

[6] S. Lefkimmiatis, J. P. Ward, and M. Unser, “Hessian schatten-norm
regularization for linear inverse problems,” Image Processing, IEEE
Transactions on, vol. 22, no. 5, pp. 1873–1888, 2013.



5

[7] J. Kybic, T. Blu, and M. Unser, “Generalized sampling: A variational
approach,” in Proc. 2001 Intl Conf. Sampl. Theory and Appl, 2001, pp.
151–154.

[8] Y. Hu, G. Ongie, S. Ramani, and M. Jacob, “Generalized higher
degree total variation (HDTV) regularization,” Image Processing, IEEE
Transactions on, vol. 23, no. 6, pp. 2423–2435, 2014.

[9] A. Chambolle and P.-L. Lions, “Image recovery via total variation
minimization and related problems,” Numerische Mathematik, vol. 76,
no. 2, pp. 167–188, 1997.

[10] K. Bredies, K. Kunisch, and T. Pock, “Total generalized variation,” SIAM
Journal on Imaging Sciences, vol. 3, no. 3, pp. 492–526, 2010.

[11] Y. Hu and M. Jacob, “Higher degree total variation (HDTV) regular-
ization for image recovery,” Image Processing, IEEE Transactions on,
vol. 21, no. 5, pp. 2559–2571, 2012.

[12] M. Unser and T. Blu, “Wavelet theory demystified,” Signal Processing,
IEEE Transactions on, vol. 51, no. 2, pp. 470–483, 2003.


	Introduction
	Background
	Regularized inverse problems for image recovery
	Generalized higher degree total variation

	Multiple degree total variation (MDTV) regularized image restoration
	MDTV regularization
	Numerical algorithm
	Discretization of the derivative operator
	Choice of the parameters

	Results
	Denoising
	Compressed sensing

	Conclusion 
	References

