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Hands dataset ADNI dataset

http://web.mit.edu/cocosci/isomap/datasets.html On the manifold structure of the space of brain images, Gerber et al



VIR images parametrized by cardiac and respiratory phases

'.— :
Recovery from few . '
measurements
.

Subspace based models:
1. XD-GRASP: Golden-angle radial MRI with reconstruction of extra motion-state dimensions using compressed sensing. L. Feng et al MRM 2015
2. Accelerated high-dimensional MR imaging with sparse sampling using low-rank tensors. J. He et al TMI 2016
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Rich enough to capture complex surfaces

Curve complexity increases with increase in bandwidth Moving to higher dimensions
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Y(z,y) =0 Y(x,y,2z) =0

Y(x,y, 2z)

7x9 coefficients 13x13 coefficients 5x5x5 coefficients



Aim of this work

» Problem 1: Recovery of curves from sampled points



Model property: filter coefticients annihilate feature matrix

For N points{x;},%2 = 1,..., N on the curve: ¥(x;) =0
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Recovery of curve from samples

Model property: Filter ¢ annihilates Feature matrix ¢’ ®(X) =0

Step-1

Step-2

Step-3

Step-4

Aim: Recover curve ¥(r) = 0 from samples x1,X2,...,XN

Form feature matrix ®(X)

¥

Find null-space vector ¢

\ 4

Inverse Fourier transform gives polynomial ¥ (r)

¥

Take zero level-set to get ¥ (r) = 0




Polynomial % (r) with Fourier support A K,

K>

N points lying on ] - -
P(r) =0 oW many points required to

recover curve uniquely?

Case-1 Case-2
is i ' J irreducible factors
¥ (r) isirreducible | k. [ A2 ks . Kl,J
P(r) = Pa(r)h2(r) ... vy(r) 'K, Ko, Ko,
N > (K1 + K2)*
samples
N; > (K1 + K2)(K1,; + K2,5) samples on 5t factor
Proof uses

Bezout’s inequality



Proposition-1: Number of samples for perfect recovery

Fourier co-efficients: 5x5 support P(z,y) =0

Recovery of curve from samples

5 points 10 points | 25 points - 50 points



Probability of failure

9

1 a9

Al

121

225

361
800500300200 100 50 30 20 10 5

Number of points

Are |A| points sufficient?

Counter-example

o

P1(x,y) = cos(2m(x + y))

”

’1,02(38, y)

cos(2m(x — y))

12 intersection points

e

“1(o) =0
$a(z,y) = 0
Al =9

Fourier
co-efficients:
3x3 support

but > 12 samples for

unique recovery



Filter support over-estimated

Minimal filter support

Required A is unknown! In practice
N points lying on 1 (r) isirreducible
P(r) =0
Multiple solutions of form:
. Common zeros of
N > (L1 + L2) (K1 + K2) :> p(r) = p(r)n(r) :> all solutions give

for arbitrary n(r) P(r) =0

Reducible polynomials: N; > (L1 + L2)(K1,; + K2 ;)



Proposition-2: Recovery using over- estlmated ﬂlter

P (x, y)—O

Fourier co-efficients: 5x5 support

Recovered polynomials
from 100 samples using
11x11 support

Sum-of-squares
combined
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Solving inverse problems using model

Problem: Recover points {xX;} from corrupted measurements:

b; = Ai(x;) + s

Example: Denoising problem
{b;} lie near curve {r € R"|v(r) = 0}

(1) : Bandlimited function

Solution: Use model properties



Proposition-3: Rank of the feature matrix

Minimal filter support

With sufficient points IN:
Unique null-space vector ¢

¥

rank (®(X)) = |A| — 1

Feature matrix is rank-deficient

Over-estimated filter support

With sufficient points IN:

¥

rank (®(X)) = |T'| — |T : A|

1

Number of valid
shiftsof AinT



Enforcing low rank feature matrix to solve inverse problems

min [|A(X) — bl + X[ (X)]].
‘ lterative reweighted
least squares scheme
C X = arg min || A(X) — b||2 + X trace[)C(X)Q(™ V)] D

Q™ = [IK(X(™) + ~™71]~2

' Gradient linearization

X(™) = arg m)én |LA(X) — b||Z + A trace(XTL("~DX)

where T,(n—1) — f(]C(X('n—l)),Q(n—l))

Introduced for Polynomial Kernels in “Algebraic Variety Models for High-Rank Matrix Completion”, G. Ongie et al MLR 2017



Denoising synthetic data

Circle
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Noisy points 15t iteration 50t iteration



Feature matrix

‘I)(X) — [¢(X1) ﬁb(xz) oo Cb(XN)}

Size: IT'| X N IT'| increases exponentially with number of dimensions

Computing the Gram matrix

K(X) = ®(X)?®(X) m) Kernel matrix

Size: N X NN Size independent of ambient dimension Dirichlet kernel



Navigators

By
“Dynamic MRI using SToRM” - - %E

S. Poddar et al, TMI 2016 L .J P P
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Frame -1 Frame - 2

Estimate Laplacian from navigators
using proposed scheme

<

minx [|A(X) — b||2 + ATr(XTLX)



Improvec

estimation of Laplacian eigen vectors
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Exponential weights

¥

Thresholded
exponential weights
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Proposed

< Respiratory motion

<« Cardiac motion

» Depends on threshold
» Does not capture physiological signal
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SR———— Only r basis images to be reconstructed

r = 30 basis functions

Exponential weights gy, Weights + UV factorization Proposed
20 min 2 min 2 min

Slow Motion artefact
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_ 4-chamber view |
2-chamber view Short axis view Short axis view

10 patients recruited at the University of lowa Hospitals and Clinics



Summary
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» Solving inverse problems using low-rank feature matrix
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| T Questions?
» Connection to kernels and graph Laplacian ° Y



