Recovery of noisy points on band-limited surfaces

Sunrita Poddar, Mathews Jacob

THE UNIVERSITY OF IOWA

Many datasets of points lie on a surface

Hands dataset

http://web.mit.edu/cocosci/isomap/datasets.html

ADNI dataset

On the manifold structure of the space of brain images, Gerber et al

MR images parametrized by cardiac and respiratory phases

Subspace based models:

- 1. XD-GRASP: Golden-angle radial MRI with reconstruction of extra motion-state dimensions using compressed sensing. L. Feng et al MRM 2015
- 2. Accelerated high-dimensional MR imaging with sparse sampling using low-rank tensors. J. He et al TMI 2016

Outline

> Union of curves model

➢ Recovery of curves from samples

> Solving inverse problems using model

➢ Summary

Outline

> Union of curves model

Recovery of curves from samples

Solving inverse problems using model

➢ Summary

Model: Zero-level set of bandlimited function

Rich enough to capture complex surfaces

Curve complexity increases with increase in bandwidth

 $\psi(x,y)=0$

7x9 coefficients

13x13 coefficients

Moving to higher dimensions

 $\psi(x,y,z)=0$

 $\psi(x,y,z)$

5x5x5 coefficients

Aim of this work

> Problem 1: Recovery of curves from sampled points

> Problem 2: Recovery of points on the curve from corrupted measurements

Model property: filter coefficients annihilate feature matrix

For N points $\{\mathbf{x}_i\}, i=1,\ldots,N$ on the curve: $\psi(\mathbf{x}_i)=0$

Outline

> Union of curves model

Recovery of curves from samples

Solving inverse problems using model

➢ Summary

Recovery of curve from samples

Model property: Filter **c** annihilates Feature matrix $\mathbf{c}^T \Phi(\mathbf{X}) = \mathbf{0}$

Aim: Recover curve $\psi(\mathbf{r}) = \mathbf{0}$ from samples $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N$

Proposition-1: Number of samples for perfect recovery Polynomial $\psi(\mathbf{r})$ with Fourier support Λ K_1 Λ K_2 $oldsymbol{N}$ points lying on How many points required to $\psi(\mathbf{r}) = 0$

recover curve uniquely?

Case-1 $\psi(\mathbf{r})$ is irreducible

 $N \ge (K_1 + K_2)^2$

Case-2

J irreducible factors $\psi(\mathbf{r}) = \psi_1(\mathbf{r})\psi_2(\mathbf{r})\ldots\psi_J(\mathbf{r})$

 $N_j \geq (K_1 + K_2)(K_{1,j} + K_{2,j})$ samples on j^{th} factor

Proof uses Beźout's inequality

samples

Proposition-1: Number of samples for perfect recovery

Fourier co-efficients: 5x5 support

 $\psi(x,y)$

Recovery of curve from samples

Proposition-1: Comparing to a degrees of freedom argument

V

Proposition-2: Recovery using over-estimated filter

N points lying on $\psi({f r})=0$

$\psi(\mathbf{r})$ is irreducible

Multiple solutions of form:

$$N \geq (L_1 + L_2)(K_1 + K_2)$$

$$\hat{\psi}({
m r})=\psi({
m r})\eta({
m r})$$

for arbitrary $\eta(\mathbf{r})$

Common zeros of all solutions give $\psi(\mathbf{r}) = \mathbf{0}$

Reducible polynomials: $N_j \ge (L_1 + L_2)(K_{1,j} + K_{2,j})$

Proposition-2: Recovery using over-estimated filter

Fourier co-efficients: 5x5 support

 $\psi(x,y)$

 $\psi(x,y)=0$

Recovered polynomials from 100 samples using 11x11 support

Outline

> Union of curves model

- Recovery of curves from samples
- > Solving inverse problems using model

➢ Summary

Solving inverse problems using model

Problem: Recover points $\{x_i\}$ from corrupted measurements:

 $\mathbf{b}_i = \mathcal{A}_i(\mathbf{x}_i) + \eta_i$

Example: Denoising problem $\{\mathbf{b}_i\}$ lie near curve $\{\mathbf{r} \in \mathbf{R}^n | \psi(\mathbf{r}) = 0\}$ $\psi(\mathbf{r})$: Bandlimited function

Solution: Use model properties

Proposition-3: Rank of the feature matrix

Introduced for Polynomial Kernels in "Algebraic Variety Models for High-Rank Matrix Completion", G. Ongie et al MLR 2017

Denoising synthetic data

Relation between model and kernel low-rank methods

Feature matrix

$$\Phi(\mathbf{X}) = \left[\phi(\mathbf{x}_1) \ \phi(\mathbf{x}_2) \ \dots \ \phi(\mathbf{x}_N)\right]$$

Size: $|\Gamma| imes N$ $|\Gamma|$ increases exponentially with number of dimensions

Computing the Gram matrix

 $\mathcal{K}(\mathbf{X}) = \Phi(\mathbf{X})^H \Phi(\mathbf{X})$ \blacksquare Kernel matrix

Size: $N \times N$ Size independent of ambient dimension

Dirichlet kernel

Free-breathing cardiac MR reconstruction

"Dynamic MRI using SToRM" S. Poddar et al, TMI 2016

 $\min_X \|\mathcal{A}(\mathbf{X}) - \mathbf{b}\|^2 + \lambda \mathrm{Tr}(\mathbf{X}^{\mathrm{T}}\mathbf{L}\mathbf{X})$

Improved estimation of Laplacian eigen vectors

Approximation of image series using few basis functions

							-
- '	1		1	1			-
\sim	\sim	\sim	\sim	\sim	\sim	\sim	\sim
		_			_		
-		\AAAAA			www	www	-
-							-
- '	1	-	1	,	-	1	
www	www	www	www	www	www	mm	
-							-
- '		1	1			1	
HAMMANNAN	NWANAANA	AMMANNAN AN	NANWAW,	iniminishinaki	www.hw	www.www.w	ndestannikliondes
							. 1

Only r basis images to be reconstructed

r = 30 basis functions

Proposed

2 min

Exponential weights 20 min Slow

Exp Weights + UV factorization 2 min Motion artefact

Reconstructed free-breathing cardiac datasets

2-chamber view

4-chamber view

Short axis view

Short axis view

10 patients recruited at the University of Iowa Hospitals and Clinics

Summary

Union of curves model

$$\psi(\mathbf{r})$$
 $(\mathbf{r} \in \mathbf{R}^n | \psi(\mathbf{r}) = 0\}$

Guarantees for recovery of curves from their samples

Solving inverse problems using low-rank feature matrix

Questions?

> Connection to kernels and graph Laplacian

