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Many datasets of points lie on a surface

Hands dataset
http://web.mit.edu/cocosci/isomap/datasets.html

ADNI dataset
On the manifold structure of the space of brain images, Gerber et al



MR images parametrized by cardiac and respiratory phases

Recovery from few 
measurements

Subspace based models:
1. XD-GRASP: Golden-angle radial MRI with reconstruction of extra motion-state dimensions using compressed sensing. L. Feng et al MRM 2015
2. Accelerated high-dimensional MR imaging with sparse sampling using low-rank tensors. J. He et al TMI 2016
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Model: Zero-level set of bandlimited function

Zero-level set

Fourier coefficients
Band-limited function



Rich enough to capture complex surfaces

13x13 coefficients7x9 coefficients

Curve complexity increases with increase in bandwidth Moving to higher dimensions

5x5x5 coefficients



Aim of this work

➢ Problem 1: Recovery of curves from sampled points

➢ Problem 2: Recovery of points on the curve from corrupted measurements



Model property: filter coefficients annihilate feature matrix

For      points                                     on the curve:

Feature vector

Feature matrix

Filter    annihilates Feature matrix
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Recovery of curve from samples

Filter    annihilates Feature matrix 

Aim: Recover curve                    from samples 

Form feature matrix

Find null-space vector 

Inverse Fourier transform gives polynomial 

Take zero level-set to get 

Model property:

Step-1

Step-2

Step-3

Step-4



Proposition-1: Number of samples for perfect recovery

irreducible factorsis irreducible

points lying on 

Proof uses 
Beźout’s inequality

Polynomial          with Fourier support 

samples
samples on         factor 

How many points required to 
recover curve uniquely?

Case-1 Case-2



Proposition-1: Number of samples for perfect recovery

Fourier co-efficients: 5x5 support

Recovery of curve from samples

5 points 10 points 25 points 50 points



Proposition-1: Comparing to a degrees of freedom argument

Fourier 
co-efficients:
3x3 support

Counter-example

but > 12 samples for 
unique recovery

𝐾1𝐾2
= |Λ|

(𝐾1+𝐾2)
2

Are |Λ| points sufficient?

12 intersection points

Λ = 9

Probability of failure



Proposition-2: Recovery using over-estimated filter

Minimal filter support

Required      is unknown!

Filter support over-estimated
in practice

is irreducible

𝚲

𝚪

Reducible polynomials:

points lying on 

Multiple solutions of form:

for arbitrary    

Common zeros of 
all solutions give    



Proposition-2: Recovery using over-estimated filter

Fourier co-efficients: 5x5 support

Sum-of-squares
combined

Recovered polynomials 
from 100 samples using 

11x11 support
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Solving inverse problems using model

Example: Denoising problem

: Bandlimited function

lie near curve

Problem: Recover points           from corrupted measurements: 

Solution: Use model properties



Proposition-3: Rank of the feature matrix

Minimal filter support

With sufficient points
Unique null-space vector

Over-estimated filter support𝚲

𝚪: 𝚲

𝚪

With sufficient points

Feature matrix is rank-deficient
Number of valid 

shifts of     in



Enforcing low rank feature matrix to solve inverse problems

Iterative reweighted 
least squares scheme

Gradient linearization

where

Introduced for Polynomial Kernels in “Algebraic Variety Models for High-Rank Matrix Completion”, G. Ongie et al MLR 2017



Denoising synthetic data

1st iterationNoisy points 50th iteration

Circle

Tigerhawk
logo



Relation between model and kernel low-rank methods

Feature matrix

Computing the Gram matrix

Size:

Size:

increases exponentially with number of dimensions

Kernel matrix

Dirichlet kernelSize independent of ambient dimension



“Dynamic MRI using SToRM”
S. Poddar et al, TMI 2016

Navigators

Frame - 1 Frame - 2

Free-breathing cardiac MR reconstruction

Estimate Laplacian from navigators
using proposed scheme



Improved estimation of Laplacian eigen vectors

Thresholded
exponential weights

Proposed

Respiratory motion

Cardiac motion

Exponential weights

➢ Depends on threshold
➢ Does not capture physiological signal 



Approximation of image series using few basis functions

r = 30 basis functions

.

.

.

.     .     .

Only r basis images to be reconstructed

Proposed
2 min

Exponential weights
20 min
Slow

Exp Weights + UV factorization 
2 min

Motion artefact



Reconstructed free-breathing cardiac datasets

2-chamber view
4-chamber view

Short axis view Short axis view

10 patients recruited at the University of Iowa Hospitals and Clinics



Summary
➢ Union of curves model

➢ Guarantees for recovery of curves from their samples

➢ Solving inverse problems using low-rank feature matrix

➢ Connection to kernels and graph Laplacian
Questions?


