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MRI: Versatile tissue contrasts

There is nothing nuclear spins will not do for you, as long as you treat them as human beings
                                                               Erwin Hahn



Slow acquisition: tradeoffs in static MRI
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Slow acquisition: tradeoffs in cardiac MRI
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Inconsistencies between excitations
k-space acquired in different time points: inconsistencies

• Patient/physiological motion (cardiac/respiratory pulsation)
• Eddy currents
• Field inhomogeneity artifacts
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Lift to a high-dimensional space, where solution is simple !!

             Input Space                    Lifted Space            

Learning in lifted spaces 

Complexity/type of lifting: shallow vs deep learning



Lift to a high-dimensional space, where solution is simple !!

Linear lifting operations
• Continuous domain compressed sensing

• Auto-calibration: account for inconsistencies in acquisition

Non-linear lifting: data living on surface
• Recovery of data in high dimensional spaces
• Learning functions in high dimensional spaces: links to deep learning

Model based deep learning
• Using learning based models in imaging



Lift to a high-dimensional space, where solution is simple !!
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1-D Example:

Linear lifting: general idea



Lift

Toeplitz1-D Example:

Missing data

Linear lifting: general idea



Toeplitz1-D Example:

Complete matrix

Structured matrix is often low-rank



Project

Toeplitz1-D Example:

Structured low-rank matrix completion: general idea



NP-Hard!

Recovery as a structured low-rank matrix completion



Convex Relaxation

Nuclear norm – sum of singular values

Recovery as a structured low-rank matrix completion

Ongie & Jacob, ICIP 16 
Ongie, Biswas & Jacob,TSP,2018 



Lift

Toeplitz1-D Example:

Missing data

Lifting: potential for high computational complexity



Exploit convolutional structure of the matrix

Fast evaluation using FFT
Direct computation of small Gram matrix: avoid storage

Ongie & Jacob, IEEE TCI 17 
Software available at https://research.engineering.uiowa.edu/cbig/software



Table: iterations/CPU time to reach 
convergence tolerance of NMSE < 
10-4.

GSLR: fast algorithms with similar complexity as TV

Ongie & Jacob, IEEE TCI 17 
Software available at https://research.engineering.uiowa.edu/cbig/software



Lift to a high-dimensional space where solution is simple !!

Linear lifting operations

• Recovery of exponential signals: EPI correction & parameter mapping

• Auto-calibration: account for inconsistencies in acquisition

Non-linear lifting 
• Recovery of data in high dimensional spaces
• Learning functions in high dimensional spaces: links to deep learning

Model based deep learning
• Using learning based models in imaging

• Continuous domain compressed sensing



2-D PWC function

Continuous domain CS: piecewise constant signals

Edges specified by zero 
set of a BL function
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Fig. 2. Illustration of the type of curves that can be represented as the level
set of bandlimited functions. We note that a wide variety of closed curves can
be represented, which demonstrates that the representation is not restrictive.

set ⇤, which we denote by |⇤|. This is the number of free
parameters in the curve representation. We also assume that
{ck : k 2 ⇤} is the smallest set of coefficients (minimal set)
that satisfies the above relation. We note that in the 1-D setting
(n = 1), there is a one-to-one correspondence between the
number of points satisfying (1) and the bandwidth |⇤| [16],
[27]; this relation enabled the use of |⇤| in [16], [26] as a
surrogate for sparsity in signal recovery. In higher dimensions,
|⇤| can still serve as a complexity measure, when the recovery
of isolated Diracs is considered. However, we emphasize that
(3) can provide a significantly richer representation, even when
the signal is not isolated and consists of points on a curve.

C. Relation between bandlimited functions & polynomials

We now briefly introduce the relation between bandlimited
functions and complex polynomials, which we will use in the
rest of the paper. We define a one-to-one mapping P from
trigonometric polynomials to complex polynomials, using the
change of variables: ej2⇡xi 7! zi; i = 1, ..n. This maps
each xi 2 [0, 1) to the unit circle in the complex plane zi 2
C; |zi| = 1. This mapping allows us to rewrite (3) as a complex
polynomial

{P[ ](z) : P[ ](z) =
X

k2⇤

ck zk1
1 zk2

2 }.

We note that P is a one-to-one mapping from [0, 1)2 to {z =
(z1, z2) : zi 2 C; |zi| = 1}. Accordingly, we can say that the
two sets

{ (x) :  (x) =
X

k2⇤

ck exp(j 2⇡kTx); x 2 [0, 1)n}

and

{P[ ] : the complex polynomial for  under the map P}

are isomorphic. Thus, we can analyze the properties of P[ ]
(including the number of zeros) to obtain the corresponding
properties of the trigonometric polynomial (3).

Definition 1 (Irreducible polynomials). A trigonometric poly-

nomial ⌘(x) is termed as irreducible, if the polynomial spec-

ified by P[⌘] is irreducible. A polynomial µ is irreducible

over a field of complex numbers, if it cannot be expressed

as the product of two non-constant polynomials with complex

coefficients.

Definition 2 (Irreducible curve). A curve is termed as irre-

ducible, if it is the zero level set of an irreducible polynomial.

III. SAMPLING OF BANDLIMITED CURVES

A. Annihilation relations for points on the curve

Consider an arbitrary point x on the curve specified by (1)
and (2). By definition, we have  (x) = 0, which translates to:

 (x) =
X

k2⇤

ck 'k(x)

= cT

2

64
'k1(x)

...
'k|⇤|(x)

3

75

| {z }
�⇤(x)

= 0 (4)

Note that �⇤ : Rn ! C|⇤| is a non-linear mapping or lifting
of a point x to a high dimensional space, whose dimension is
given by the cardinality of the set ⇤, denoted by |⇤|. Note that
this non-linear lifting strategy is similar to feature maps used
in kernel methods. We hence term �⇤(x) as the feature map
of the point x. Note that every point on the curve satisfies (4),
which we term as the annihilation relation.

Let us now consider a set of N points on the curve, denoted
by x1, · · · ,xN . Note that the feature maps of each one of the
points satisfy the above annihilation relations, which can be
compactly represented as:

cT
⇥
�⇤(x1) �⇤(x2) . . . �⇤(xN )

⇤
| {z }

�⇤(X)

= 0. (5)

Here, �⇤(X) is the feature matrix of the points and X =
[x1 x2 . . . xN ].

When �⇤ is rank-deficient by one, the coefficient vector c
can be identified as the unique null-space vector of �⇤(X).
This implies that the features lie in an |⇤| � 1 dimensional
subspace, whose normal is specified by c. This annihilation
relation is illustrated in Fig 1, in the context of bandlimited
curves considered in the next subsection. We will show that
there exists a unique nullspace vector when complex exponen-
tial basis functions are chosen as in Section II-B.

In practice, the points are often corrupted by noise. In
the presence of noise, the null-space conditions are often
not satisfied exactly. In this case, we can pose the least
square estimation of the coefficients from the noisy data points
{xi}Ni=1 as the minimization of the criterion:

C(c) =
NX

i=1

k (xi)k2 = cTQ⇤c (6)

where Q⇤ =
P

N

i=1 �⇤(xi)�⇤(xi)T . To eliminate the trivial
solution c = 0, we pose the recovery as the constrained
optimization scheme:

c⇤ = argmin
c

cT Q⇤ c such that kck2 = 1 (7)

The solution is the minimum eigenvector of Q⇤.

BL curves can represent complex shapes 



spatial domain multiplication

Annihilation relations & structured low-rank matrix



spatial domain

Annihilation relation:

Fourier domain

multiplication

annihilating filter

convolution

Annihilation relations & structured low-rank matrix



Matrix representation of annihilation

2-D convolution matrix
(block Toeplitz)

2(#shifts) x (filter size)

gridded center
Fourier samples

vector of filter coefficients



Fourier domain  

Assumed filter: 33x25

Samples: 65x49 Rank     300

Example:  
Shepp-Logan

Basis of algorithms: Annihilation matrix is low-rank



Annihilation matrix is low-rank: Basis of algorithms

Prop: If the level-set function is bandlimited to  
and the assumed filter support                     then                                

   

Spatial domain

Fourier domain



Convex Relaxation

Nuclear norm – sum of singular values

Recovery as a structured low-rank matrix completion

Ongie & Jacob, ICIP 16 
Ongie, Biswas & Jacob,TSP,2018 



Performance guarantee

Assume that f is sampled uniformly at m locations random 
on a Fourier domain grid     . Then, f can be recovered from 
the samples using SLR if

Ongie & Jacob, ICIP 16 
Ongie, Biswas & Jacob,TSP,2018 



Phase transition plot

• 10 trials
• Uniform random Fourier samples
• 64x64 Fourier sampling window

Randomly generated  
synthetic PWC images

Ongie & Jacob, ICIP 16 
Ongie, Biswas & Jacob,TSP,2018 



  Fully sampled           TV (SNR=17.8dB)        GIRAF (SNR=19.0)

50% Fourier samples
Random uniform                                                 error                                     error

Ongie, Biswas & Jacob, IEEE TSP, 2017



Generalized SLR: PWC + PWL image representation

Hu, Liu & Jacob,TMI, 2019

⇢̂2

⇢̂1

{⇢1, ⇢2}| {z }
⇢

= argmin
⇢

kA(⇢1 + ⇢2)� bk2 + kH1(⇢1)k⇤ + kH2(⇢2)k⇤



GSLR: results
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Fig. 6: Recovery of a brain MR image from 4.85-fold undersampled measurements. (a): The actual image. (b)-(h): The recovery images using GSLR, 1st and
2nd SLA with 51⇥ 51 filter size, S-LORAKS, G-LORAKS, TGV, and the standard TV, respectively. (i)-(p): Zoomed versions of the red rectangular area for
different methods. (q): the undersampling pattern. (r)-(x): Error images of the corresponding methods.

Fig. 7: Recovery of a multi-coil brain MR dataset from 8-fold undersampled measurements. (a): The actual image. (b)-(g): The reconstructions using GSLR,
the first and second order SLA with 31 ⇥ 31 filter size, S-LORAKS and G-LORAKS method, and the standard TV. (h)-(n): The zoomed regions. (o): The
undersampling pattern. (p)-(u): The error images. Note that GLSR provides the most accurate reconstruction result compared with the other methods, indicated
by red arrows.
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Lift to a high-dimensional space where solution is simple !!

Linear lifting operations

• Auto-calibration: account for inconsistencies in acquisition

Non-linear lifting 
• Recovery of data in high dimensional spaces
• Learning functions in high dimensional spaces: links to deep learning

Model based deep learning
• Using learning based models in imaging

• Continuous domain compressed sensing



Auto-calibration in diffusion MRI

FT

Second shot

First shot

IFFT

θ2

θ1

I1 (r)= I (r) !1(r)

artifacts

IFFT



⇢

⇢ · s1

⇢ · s2

⇢ · s1 · s2

= 0

Image domain annihilation relation

⇢1 · s2 � ⇢2 · s1 = 0

Morrison, Jacob & Do, ISBI 2007

⇢ · s2

⇢ · s2 · s1
⇢ · s1

Linear prediction/annihilation of multichannel data



Multichannel annihilation relations 

Fourier domain convolution relation

⇢

⇢ · s1

⇢ · s2 ⇢ · s2 · s1

⇢ · s1 · s2

= 0

⇢̂1 ⇤ ŝ2 � ⇢̂2 ⇤ ŝ1 = 0

Shin et al, MRM, 2014, Uecker et al, MRM 2014



Multichannel annihilation relations 

Convolution: multiplication with Toeplitz matrix

⇢

⇢ · s1

⇢ · s2 ⇢ · s2 · s1

⇢ · s1 · s2

= 0

T (⇢̂1) ŝ2 � T (⇢̂2) ŝ1 = 0

Shin et al, MRM, 2014, Uecker et al, MRM 2014



Multichannel annihilation relations 

Matrix form

Blind recovery from under sampled multi-multi-channel data

⇥
T (⇢̂1) T (⇢̂2)

⇤
| {z }

H(⇢)


ŝ2
�ŝ1

�
= 0

{⇢1, ⇢2}| {z }
⇢

= argmin
⇢

kA(⇢)� bk2 + kH(⇢)k⇤

Mani et al, MUSSELS, MRM 2017, MRM 2018
Shin et al, MRM, 2014, Uecker et al, MRM 2014



Recovery using structured low-rank optimization 

MUSSELS
argmin

⇢
kA(⇢)� bk2 + kH(⇢)k⇤



High resolution diffusion MRI on 3T

Red: Fibers oriented left-right
Green: Fibers oriented anterior-posterior

Blue: Fibers oriented inferior-superior

Single shot: 2mm 4 shot: 0.8 mmField inhomogeneity 
distortion



High resolution diffusion MRI on 3T

Red: Fibers oriented left-right
Green: Fibers oriented anterior-posterior

Blue: Fibers oriented inferior-superior



Lift to a high-dimensional space where solution is simple !!

Linear lifting operations

• Auto-calibration: account for inconsistencies in acquisition

Non-linear lifting 
• Recovery of data in high dimensional spaces
• Learning functions in high dimensional spaces: links to deep learning

Model based deep learning
• Using learning based models in imaging

• Continuous domain compressed sensing



Non-linear SLR: Union of Surfaces Model

• Free breathing & ungated cardiac MRI data

• MRI is slow: every frame is undersampled by x50 or more
Challenges

Many subjects cannot tolerate breath-held MRI

Model images as points on a smooth surface



Fourier 
coefficients

Lowpass function

Level set

Poddar & Jacob, ICASSP, 2018, TCI in press,  
https://arxiv.org/abs/1810.11575

Non-linear generalization of Union of Subspaces model

Union of Surfaces model



Annihilation conditions

Any point on the curve: Low pass function is zero



High dimensional feature vector

Annihilation conditions

Any point on the curve: Low pass function is zero

Fourier coefficients



Any point on the curve:

Feature matrix

Feature matrix is low-rank

Rank of feature matrix is at most N-1

Poddar & Jacob, ICASSP, 2018, TCI in press,  
https://arxiv.org/abs/1810.11575



Rank of feature matrix is rank is N-1

When is curve recovery well-posed ?

1.How many points are needed to recover the curve ?

2. How should the points be distributed guarantee recovery ?



Result: High probability recovery in 2D and beyond

Let {x1, · · · ,xN} are independent random samples from the zero level set
of  (x) whose bandwidth is given by ⇤. The curve can be recovered with
probability 1, if

N � |⇤|� 1.

 

 

While the direct computation of the feature vectors is feasible in lower dimensional spaces, it is
infeasible in high dimensions due to the curse of dimensionality. The extension of this algorithm to
higher dimensions is an objective of Aim 1. We will also study the convergence and geometry of the
cost function (e.g. local minima & saddle points) in Aim 1.

C.2.1.3: Clustering from missing data using fusion penalties: Motivated by recent convex relaxations
of k-means clustering [83], we introduced a non-convex fusion penalty to recover signals generated
from clusters from measurements with missing entries [23, 29]:

{u⇤
i } = arg min

{ui}

NX

i=1

0

@kSi (xi � ui)k
2
2 + �

NX

j=1

kui � ujk
p
2

1

A , i 2 {1 . . . N} (13)

Here, xi; i = 1, .., N are the original data points and Si are the sampling matrices that are di↵erent
for each i. ui are surrogates that approximate the cluster centers. We have shown theoretically that
a constrained version of (13) correctly recovers the cluster centers with high probability under fairly
general conditions, even when a significant number of entries of xi are missing. This is also confirmed
by our empirical results in [23,29]. The iterative algorithm to solve (13) bears a remarkable similarity
with the one for solving (12) [23, 29]. We note that the zero set of bandlimited functions can be
isolated points [83], which correspond to clustered data; we expect the priors in (12) to also yield
similar results. We will extend the analysis from [23,29] to this general setting in Aim 1.

C.2.2 Main research thrusts

C.2.2.1: Recovery of a high-dimensional surface from few sparse and noisy samples: We are motivated
by our preliminary results described in Section C.2.1.1, which demonstrates good recovery of planar
(2-D) curves both in theory and practice. Our main focus is to extend the theory to higher dimen-
sions. Our empirical results show the ability to recover a surface in 3-D from few samples; see Fig. 5.
Specifically, we obtain good empirical recovery in 3-D as the number of samples exceed the degrees of
freedom (k1 · k2 · k3).

(a) True surface
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Figure 5: Empirical recovery of the surface in 3-D. We consider a
random 3-D surface with bandwidth 3x3x3, shown in (a). We consider
its recovery from K1.K2.K3 = 27 samples, which is the degrees of
freedom, denoted by the red dots in (b). The recovered surface from
noiseless measurements is shown in (c). This demonstrates that the
recovery from K1.K2.K3 is feasible most of the time, as seen from
the 2-D setting in Fig. 3. One of the goals of Aim.3. is to establish a
worst-case and average case result for union of irreducible surfaces in
3-D and beyond.

The mathematical proof of this result
in high dimension is not a straight-
forward extension of the planar results
in [22, 28], described above. Specifi-
cally, Bezout’s theorem in N dimen-
sions states that the number of zeros of
N trigonometric polynomials µ1, .., µN

of bandwidth k1 ⇥k2 ⇥kN is either less
than (k1+· · ·+kN )N or infinite. In the
latter case, the zeros may be isolated
to components of dimension N � 2 or
lower (e.g.curves). This makes it dif-
ficult to directly use the same proof
techniques in higher dimensions. We
also propose to use the sophisticated
mathematical tools from projective ge-
ometry to derive the result. Rather
than relying on deterministic worst-
case proofs, we also will approach the
proof from a probabilistic approach. Specifically, the probability that randomly drawn points on a
surface overlapping with a low-degree curve/surface is expected to be small.
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From Union of Surfaces to Union of Subspaces

Nonlinear lifting

C.1 Intellectual Merit

We now provide a brief overview of the intellectual merits of the proposal, before describing the aims.

C.1.1 Union of bandlimited surfaces & exponential lifting to union of subspaces

We consider the signals to be points on a surface or union of surfaces, denoted by S ⇢ Rn. We
represent S as the zero level-set (see Fig. 1) of a bandlimited function  (x)

(a) Surface

(b) Level set function

c

(d) Subspace

 

 
 
 

(c) Support of regions

�⇤

Non-linear lifting

Figure 1: Illustration of non-linear lifting and subspace relations
in 2-D. We assume that the signals are points on a curve (see
(a)), which is the zero level set of a bandlimited function shown
in (b). The Fourier coe�cients of the curve are support limited
to the red region in (c), denoted by ⇤. The non-linear lifting
of the points in (5), denoted by �⇤, results in the points in (d)
residing in a |⇤|-dimensional space. As seen from (5), all of these
points are orthogonal to c, which shows that c is the normal to
the plane. If one overestimate the support to �, denoted by the
green box in (c), there are |� : ⇤| possible shifts, which imply
that the lifted points �(�)(x) lie in a |�| � |� : ⇤| dimensional
space, which corresponds to the volume of the gray region in (c).

(i.e. S = {x| (x) = 0}) where

 (x) =
X

k2⇤

ck exp
�
j2⇡kTx

�

= cT

2

664

exp
�
j2⇡kT

1 x
�

...

exp
⇣
j2⇡kT

|⇤|x
⌘

3

775

| {z }
�⇤(x)

(4)

Here, ⇤ denotes the bandwidth of  , de-
noted by the red square in Fig. 1.c.

The key observation is that any point x 2 S

satisfies  (x) = cT�⇤(x) = 0. Here, �⇤(x)
is the non-linear lifting of the points x 2

Rn to the high-dimensional space C|⇤|, as
shown in Fig.1.d. We can view �⇤(x) as
the feature vector of the point x. Here, |⇤|

denotes the cardinality of the set ⇤. When
multiple points on the S are known, we have

cT
⇥
�⇤(x1) . . . �⇤(xN )

⇤
| {z }

�⇤(X)

= 0 (5)

This shows that the feature vectors lie on a plane of dimension |⇤| � 1, as shown in Fig. 1.

C.1.1.1. Exponential lifting: transformation from irreducible surface to subspace model: We term the
surface irreducible if the bandlimited polynomial  is irreducible over real values. In the above
description, we assumed the support ⇤ to define the lifting. When the support is not known, we
overestimate the support as � � ⇤, denoted by the green square in Fig. 1.c. We note that if  (x) = 0,
we also have ⌘l(x) = exp(j2⇡lTx)  (x) = 0; 8x 2 S, where for any l 2 Zn. Note that the coe�cients

of  
F
$ ck and ⌘l

F
$ ck�l are linearly independent. Thus, the dimension of the null-space is the number

of possible shifts of the set ck within �, which we denote by the set � : ⇤; see the blue box in Fig.
1.(c). This implies that the dimension of the null space is |� : ⇤|, or equivalently

rank (��(X)) = |�| � |� : ⇤|, (6)

which is the size of the gray box in Fig. 1.(c). We use (6) to determine the number of samples needed
for perfect recovery of the surface, the recovery of the signal from undersampled measurements, and
inference discussed in Section C.1.2. We note that the low-rank fitting of the data facilitates automatic
kernel selection, where the model with the smallest rank, and hence smallest bandwidth, is determined.

This work is inspired by PhaseLift [26], Blind Deconvolution [27], and super-resolution methods [61,62],
which relies on lifting to simplify the original problem to a low-rank problem in high-dimensional
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Feature matrix is low-rank

Fourier support is fully known

Overestimated Fourier support
 
 

 

Rank of feature matrix is rank is N-1

Poddar & Jacob, ICASSP, 2018, TCI in press,  
https://arxiv.org/abs/1810.11575



Problem: Recover points           from corrupted measurements: 

Use low-rank property to denoise/recover points ?

Low-rank minimization

bi = A(xi) + ⌘i



Iterative reweighed least-squares algorithm

Graph smoothness regularization

IRLS

Gradient 
linearization

where
Laplacian of graph



IRLS denoising: illustration
11

(a) Original #1 (b) Noisy #1, SNR = 31.85 dB (c) GLR, SNR = 32.09 dB (d) KLR, SNR = 35.21 dB

(e) Original #2 (f) Noisy #2, SNR = 29.94 dB (g) GLR, SNR = 30.01 dB (h) KLR, SNR = 33.01 dB

(i) Original #3 (j) Noisy #3, SNR= 28.33 dB (k) GLR, SNR = 28.95 dB (l) KLR, SNR = 31.84 dB

Fig. 10. Comparison between proposed denoising algorithm (KLR) and Garph Laplacian Regularized denoising algorithm (GLR) introduced in [45].

form: µ(x) =  (x) ⌘(x). Alternatively, in the Fourier domain, the
filters are of the form:

cµ[k] =
X

l2�:⇤

dlcl[k] (45)

where dl are the Fourier coefficients of the arbitrary polynomial ⌘(x).
Thus, all the null-space filters can be represented in terms of the
basis set {cl}. This leads to the relation: rank (��(X)) = |�|� |� :
⇤|.
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[9] O. Bernard, D. Friboulet, P. Thévenaz, and M. Unser, “Variational B-
spline level-set: a linear filtering approach for fast deformable model
evolution.,” IEEE Trans. Image Process., vol. 18, no. 6, pp. 1179–1191,
2009.

[10] G. Turk and J. F. O’Brien, “Shape transformation using variational
implicit functions,” Proc. 26th Annu. Conf. Comput. Graph. Interact.
Tech. SIGGRAPH 99, vol. 33, no. Annual Conference Series, pp. 335–
342, 1999.

[11] K. Crane, U. Pinkall, and P. Schröder, “Robust fairing via conformal
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Comparable to Breath-held CINE
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Figure 8: Visual comparison of whole-heart data recovered by SToRM:Iterative against breath-held CINE data.
(i) First two rows show the Cartesian SSFP based breath-hold results. (ii) Last two rows show the GRE
based SToRM:Iterative reconstruction results. End-diastole frames are shown across all slices. Most slices of
SToRM:Iterative reconstruction show the good agreement with breath-hold images in terms of image quality. How-
ever, we observe mild blurring in the SToRM:Iterative reconstruction in slices close to the apex.
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Figure 9: (i) Image quality assessment is done in a blinded fashion by two experts on five whole heart data sets (Both
breath-hold and SToRM: Iterative reconstructed images).Breath-hold mean score=4.6 ± 0.32 and SToRM:Iterative
mean score= 3.95± 0.38. (ii) Second figure shows the ejection fraction comparison between breath-hold and SToRM:
Iterative results. Left ventricular ejection fraction (LVEF) is calculated by two experts. LVEF results show that free-
breathing LVEF is slightly over-estimated (LVEF=58.02±2.5) as compared to the breath-hold LVEF (EF=57.15±2.1).
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Comparison with Low-Rank (PSF)

7

Fig. 3: Visualization of the basis images and temporal functions. We compare the matrices Ur and Vr defined in (22) obtained using
different methods that employ factorization of the Casorati matrix. (a) corresponds to b-SToRM, while (b) & (c) correspond to the SToRM
approach (exponential weight matrix, followed by truncation) of estimating the Laplacian matrix, where 2 and 5 neighbours per node are
retained. The temporal basis functions are the eigen vectors V of the estimated Laplacian matrix with the smallest eigen values. For the
PSF scheme, the temporal basis functions are the eigen vectors of the navigator signal matrix with the smallest eigen values. These are
shown in (d). It is observed that b-SToRM provides more accurate estimates of cardiac and respiratory motion than the other schemes, thus
facilitating the recovery of smooth signals on the manifold. Moreover, by comparing (b) and (c), it is observed that the basis functions are
quite sensitive to the choice of the threshold used to compute the SToRM exponential weight matrix.

Fig. 4: Comparison with other methods. Few frames and temporal profiles are shown from two datasets reconstructed using (a) b-SToRM
(b) SToRM using few basis functions (c) SToRM [13] (d) PSF scheme [23]. It is observed that b-SToRM yields the best overall results,
followed by SToRM that shows some degradation in image quality indicated by the red arrows. Note that b-SToRM also benefits from a
speed-up due to the factorization of the Casorati matrix. It is also observed from (b) that using a few basis functions of the SToRM Laplacian
matrix results in artefacts in the images and the temporal profile. Specifically, the approximation of the SToRM Laplacian matrix using few
basis functions is poor, which translates to poor recovery. The PSF method also shows some image artefacts as compared to b-SToRM,
which shows the benefit of the non-linear manifold modeling over subspace approximation. The red arrows in the figure point to artefacts
in the images reconstructed using the competing methods.

b-SToRM dataset, we used the cardiac and respiratory signals
that were estimated using XD-GRASP from the centre k-
space temporal profile. It is observed that the images obtained
using b-SToRM have less artefacts due to motion and noise,
especially in cardiac and respiratory phases which only have a
few k-space samples (bottom row). The frames reconstructed
using XD-GRASP are also re-arranged to recover a temporal
profile. It is observed that the temporal profile is quite noisy
and motion is also suppressed, which is due to the discrete

segmentation of the frames into phases.
The datasets in Fig. 6 have a high amount of respiratory

and out-of plane motion, compared to the other datasets that
we have collected. The first dataset shows a normal cardiac
rate (68 beats/min) accompanied by a very irregular breathing
pattern, characterized by several large gasps of breath. We
show a few reconstructed frames from different time points,
at various states of motion. The reconstruction quality is better
in presence of less respiratory motion since there are frames
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Lift to a high-dimensional space where solution is simple !!

Linear lifting operations

• Recovery of exponential signals: EPI correction & parameter mapping

• Auto-calibration: account for inconsistencies in acquisition

Non-linear lifting 
• Recovery of data in high dimensional spaces
• Learning functions in high dimensional spaces: links to deep learning

Model based deep learning
• Using learning based models in imaging

• Continuous domain compressed sensing



Learning functions on Union of Surfaces

Machine learning: learn functions in high dimensions

Challenges in learning complex multidimensional functions
• Curse of dimensionality: functions with too many parameters
•  Difficult to learn from limited data
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Denoising using noise predictor Nw
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images. Classical choices include norms of wavelet coeffi-
cients [27], total variation [28], as well as their combinations.
Recently, several authors have also recently introduced struc-
tured low-rank based priors that encourage super-resolution
image recovery [26], [29]–[31]. Plug-and-play approaches
that also rely on off-the-shelf image denoisers have been
introduced as regularizers [32].

B. Deep learned image reconstruction: the state-of-the-art

Many of the current deep learning based algorithms recover
the images as

xrec = Tw
�
AH b

�
, (3)

where Tw is a learned CNN [33]. The operator AH(·) trans-
forms the measurement data to the image domain, since CNNs
are designed to work in the image domain. We thus have the
relation

xrec = Tw
�
AHAx

�
, (4)

Thus, the CNN network is learned to invert the normal
operator AHA; i.e., Tw ⇡

�
AHA

��1 for signals living in
the image set.

For many measurement operators (e.g Fourier sampling,
blurring, projection imaging), AHA is a translation-invariant
operator; the convolutional structure makes it possible for
CNNs to solve such problems [34]. However, the receptive
field of the CNN has to be comparable to the support of the
point spread function corresponding to

�
AHA

�
. In applica-

tions involving Fourier sampling or projection imaging, the
receptive field of the CNNs has to be the same as that of the
image; large networks such as UNET with several layers are
required to obtain such a large receptive field. A challenge
with such large network with many free parameters is the
need for extensive training data to reliably train the parameters.
Another challenge is that the CNN structure may not be well-
suited for problems such as parallel MRI, where AHA is not
translational-invariant.

An alternate approach is to unroll an iterative algorithm
involving a CNN-based regularizer [16], [35], [36], which is
similar to the proposed scheme; we will discuss the differences
between these schemes and the proposed method in the next
section.

III. PROPOSED METHOD

We formulate the reconstruction of the image x 2 Cn as
the optimization problem:

xrec = argmin
x

kA(x)� bk22| {z }
data consistency

+� kNw(x)k2| {z }
regularization

. (5)

Here, Nw is a learned CNN estimator of noise and alias
patterns, which depends on the learned parameters w. We
express Nw(x) as

Nw(x) = (I �Dw) (x) = x�Dw(x). (6)

where Dw(x) is the ”denoised” version of x, after the removal
of alias artifacts and noise. The use of the CNN-based prior
kNw(x)k2, which gives high values when x is contaminated

(a) The Residual learning based denoiser

Iterate

CNN-based 
  Denoiser

Conjugate Gradient

(b) Proposed Model-based Deep Learning (MoDL) architecture

(c) Unrolled architecture as described in Eq. 4 and 5.

Fig. 1. MoDL: Proposed MOdel-based Deep Learning framework for image
reconstruction. (a) shows the CNN based denoising block Dw . (b) is the
recursive MoDL framework that alternates between denoiser Dw in (10b)
and the data-consistency (DC) layer in (11). (c) is the unrolled architecture
for K iterations. The denoising blocks Dw share the weights across all the
K iterations.

with noise and alias patterns, results in solutions that are
data-consistent and are minimally contaminated by noise and
alias patterns. Here, � is a trainable regularization parameter.
Substituting from (6), in (5), we obtain

xrec = argmin
x

kA(x)� bk22 + � kx�Dw(x)k2 (7)

Since these schemes rely on forward models, the receptive
field of the networks need not be the full image size. In
addition, since the network only needs to capture the redun-
dancies in the images, a network consisting of many fewer
parameters is sufficient to obtain good results. Note that the
above formulation is very similar to the plug-and-play prior
approach in [37]; the main difference is the denoiser is a
deep CNN in our setting, similar to [16]. Unlike [16], that
uses networks pre-trained for denoising, we rely on end-to-
end training as described in the next subsection. We set �
as a trainable parameter. If the constrained setting can yield
improved reconstructions, high values of � would be selected
during the training process.

A. Unrolling the recursive network

We note that the non-linear mapping Dw (xn +�x) can be
approximated using Taylor series around the nth iterate as

Dw (xn +�x) ⇡ Dw (xn)| {z }
zn

+JT

n
rx, (8)

where Jn is the Jacobian matrix. Setting xn + �x = x, the
penalty term can be approximated as

kx�Dw(xn +rx)k2 ⇡ kx� znk2 + kJn�xk2 (9)
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images. Classical choices include norms of wavelet coeffi-
cients [27], total variation [28], as well as their combinations.
Recently, several authors have also recently introduced struc-
tured low-rank based priors that encourage super-resolution
image recovery [26], [29]–[31]. Plug-and-play approaches
that also rely on off-the-shelf image denoisers have been
introduced as regularizers [32].

B. Deep learned image reconstruction: the state-of-the-art

Many of the current deep learning based algorithms recover
the images as

xrec = Tw
�
AH b

�
, (3)

where Tw is a learned CNN [33]. The operator AH(·) trans-
forms the measurement data to the image domain, since CNNs
are designed to work in the image domain. We thus have the
relation

xrec = Tw
�
AHAx

�
, (4)

Thus, the CNN network is learned to invert the normal
operator AHA; i.e., Tw ⇡

�
AHA

��1 for signals living in
the image set.

For many measurement operators (e.g Fourier sampling,
blurring, projection imaging), AHA is a translation-invariant
operator; the convolutional structure makes it possible for
CNNs to solve such problems [34]. However, the receptive
field of the CNN has to be comparable to the support of the
point spread function corresponding to

�
AHA

�
. In applica-

tions involving Fourier sampling or projection imaging, the
receptive field of the CNNs has to be the same as that of the
image; large networks such as UNET with several layers are
required to obtain such a large receptive field. A challenge
with such large network with many free parameters is the
need for extensive training data to reliably train the parameters.
Another challenge is that the CNN structure may not be well-
suited for problems such as parallel MRI, where AHA is not
translational-invariant.

An alternate approach is to unroll an iterative algorithm
involving a CNN-based regularizer [16], [35], [36], which is
similar to the proposed scheme; we will discuss the differences
between these schemes and the proposed method in the next
section.

III. PROPOSED METHOD

We formulate the reconstruction of the image x 2 Cn as
the optimization problem:

xrec = argmin
x

kA(x)� bk22| {z }
data consistency

+� kNw(x)k2| {z }
regularization

. (5)

Here, Nw is a learned CNN estimator of noise and alias
patterns, which depends on the learned parameters w. We
express Nw(x) as

Nw(x) = (I �Dw) (x) = x�Dw(x). (6)

where Dw(x) is the ”denoised” version of x, after the removal
of alias artifacts and noise. The use of the CNN-based prior
kNw(x)k2, which gives high values when x is contaminated
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Fig. 1. MoDL: Proposed MOdel-based Deep Learning framework for image
reconstruction. (a) shows the CNN based denoising block Dw . (b) is the
recursive MoDL framework that alternates between denoiser Dw in (10b)
and the data-consistency (DC) layer in (11). (c) is the unrolled architecture
for K iterations. The denoising blocks Dw share the weights across all the
K iterations.

with noise and alias patterns, results in solutions that are
data-consistent and are minimally contaminated by noise and
alias patterns. Here, � is a trainable regularization parameter.
Substituting from (6), in (5), we obtain

xrec = argmin
x

kA(x)� bk22 + � kx�Dw(x)k2 (7)

Since these schemes rely on forward models, the receptive
field of the networks need not be the full image size. In
addition, since the network only needs to capture the redun-
dancies in the images, a network consisting of many fewer
parameters is sufficient to obtain good results. Note that the
above formulation is very similar to the plug-and-play prior
approach in [37]; the main difference is the denoiser is a
deep CNN in our setting, similar to [16]. Unlike [16], that
uses networks pre-trained for denoising, we rely on end-to-
end training as described in the next subsection. We set �
as a trainable parameter. If the constrained setting can yield
improved reconstructions, high values of � would be selected
during the training process.

A. Unrolling the recursive network

We note that the non-linear mapping Dw (xn +�x) can be
approximated using Taylor series around the nth iterate as

Dw (xn +�x) ⇡ Dw (xn)| {z }
zn

+JT

n
rx, (8)

where Jn is the Jacobian matrix. Setting xn + �x = x, the
penalty term can be approximated as

kx�Dw(xn +rx)k2 ⇡ kx� znk2 + kJn�xk2 (9)
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images. Classical choices include norms of wavelet coeffi-
cients [27], total variation [28], as well as their combinations.
Recently, several authors have also recently introduced struc-
tured low-rank based priors that encourage super-resolution
image recovery [26], [29]–[31]. Plug-and-play approaches
that also rely on off-the-shelf image denoisers have been
introduced as regularizers [32].

B. Deep learned image reconstruction: the state-of-the-art

Many of the current deep learning based algorithms recover
the images as

xrec = Tw
�
AH b
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, (3)

where Tw is a learned CNN [33]. The operator AH(·) trans-
forms the measurement data to the image domain, since CNNs
are designed to work in the image domain. We thus have the
relation

xrec = Tw
�
AHAx

�
, (4)

Thus, the CNN network is learned to invert the normal
operator AHA; i.e., Tw ⇡

�
AHA

��1 for signals living in
the image set.

For many measurement operators (e.g Fourier sampling,
blurring, projection imaging), AHA is a translation-invariant
operator; the convolutional structure makes it possible for
CNNs to solve such problems [34]. However, the receptive
field of the CNN has to be comparable to the support of the
point spread function corresponding to

�
AHA

�
. In applica-

tions involving Fourier sampling or projection imaging, the
receptive field of the CNNs has to be the same as that of the
image; large networks such as UNET with several layers are
required to obtain such a large receptive field. A challenge
with such large network with many free parameters is the
need for extensive training data to reliably train the parameters.
Another challenge is that the CNN structure may not be well-
suited for problems such as parallel MRI, where AHA is not
translational-invariant.

An alternate approach is to unroll an iterative algorithm
involving a CNN-based regularizer [16], [35], [36], which is
similar to the proposed scheme; we will discuss the differences
between these schemes and the proposed method in the next
section.

III. PROPOSED METHOD

We formulate the reconstruction of the image x 2 Cn as
the optimization problem:

xrec = argmin
x

kA(x)� bk22| {z }
data consistency

+� kNw(x)k2| {z }
regularization

. (5)

Here, Nw is a learned CNN estimator of noise and alias
patterns, which depends on the learned parameters w. We
express Nw(x) as

Nw(x) = (I �Dw) (x) = x�Dw(x). (6)

where Dw(x) is the ”denoised” version of x, after the removal
of alias artifacts and noise. The use of the CNN-based prior
kNw(x)k2, which gives high values when x is contaminated
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Fig. 1. MoDL: Proposed MOdel-based Deep Learning framework for image
reconstruction. (a) shows the CNN based denoising block Dw . (b) is the
recursive MoDL framework that alternates between denoiser Dw in (10b)
and the data-consistency (DC) layer in (11). (c) is the unrolled architecture
for K iterations. The denoising blocks Dw share the weights across all the
K iterations.

with noise and alias patterns, results in solutions that are
data-consistent and are minimally contaminated by noise and
alias patterns. Here, � is a trainable regularization parameter.
Substituting from (6), in (5), we obtain

xrec = argmin
x

kA(x)� bk22 + � kx�Dw(x)k2 (7)

Since these schemes rely on forward models, the receptive
field of the networks need not be the full image size. In
addition, since the network only needs to capture the redun-
dancies in the images, a network consisting of many fewer
parameters is sufficient to obtain good results. Note that the
above formulation is very similar to the plug-and-play prior
approach in [37]; the main difference is the denoiser is a
deep CNN in our setting, similar to [16]. Unlike [16], that
uses networks pre-trained for denoising, we rely on end-to-
end training as described in the next subsection. We set �
as a trainable parameter. If the constrained setting can yield
improved reconstructions, high values of � would be selected
during the training process.

A. Unrolling the recursive network

We note that the non-linear mapping Dw (xn +�x) can be
approximated using Taylor series around the nth iterate as

Dw (xn +�x) ⇡ Dw (xn)| {z }
zn

+JT

n
rx, (8)

where Jn is the Jacobian matrix. Setting xn + �x = x, the
penalty term can be approximated as

kx�Dw(xn +rx)k2 ⇡ kx� znk2 + kJn�xk2 (9)
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MoDL: benefits

Weight sharing 
• Need less training data

Generative adversarial networks, Mardani et al, 17

Cascade networks, Schlemper et al. 17

Data-consistency: CG within network 
• SENSE forward model 
• Faster convergence: better performance

Variational networks, Hammernik
et al. 17

Steepest descent: Hammernick et al.

Code & data: https://github.com/hkaggarwal/modl
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images. Classical choices include norms of wavelet coeffi-
cients [27], total variation [28], as well as their combinations.
Recently, several authors have also recently introduced struc-
tured low-rank based priors that encourage super-resolution
image recovery [26], [29]–[31]. Plug-and-play approaches
that also rely on off-the-shelf image denoisers have been
introduced as regularizers [32].

B. Deep learned image reconstruction: the state-of-the-art

Many of the current deep learning based algorithms recover
the images as

xrec = Tw
�
AH b

�
, (3)

where Tw is a learned CNN [33]. The operator AH(·) trans-
forms the measurement data to the image domain, since CNNs
are designed to work in the image domain. We thus have the
relation

xrec = Tw
�
AHAx

�
, (4)

Thus, the CNN network is learned to invert the normal
operator AHA; i.e., Tw ⇡

�
AHA

��1 for signals living in
the image set.

For many measurement operators (e.g Fourier sampling,
blurring, projection imaging), AHA is a translation-invariant
operator; the convolutional structure makes it possible for
CNNs to solve such problems [34]. However, the receptive
field of the CNN has to be comparable to the support of the
point spread function corresponding to

�
AHA

�
. In applica-

tions involving Fourier sampling or projection imaging, the
receptive field of the CNNs has to be the same as that of the
image; large networks such as UNET with several layers are
required to obtain such a large receptive field. A challenge
with such large network with many free parameters is the
need for extensive training data to reliably train the parameters.
Another challenge is that the CNN structure may not be well-
suited for problems such as parallel MRI, where AHA is not
translational-invariant.

An alternate approach is to unroll an iterative algorithm
involving a CNN-based regularizer [16], [35], [36], which is
similar to the proposed scheme; we will discuss the differences
between these schemes and the proposed method in the next
section.

III. PROPOSED METHOD

We formulate the reconstruction of the image x 2 Cn as
the optimization problem:

xrec = argmin
x

kA(x)� bk22| {z }
data consistency

+� kNw(x)k2| {z }
regularization

. (5)

Here, Nw is a learned CNN estimator of noise and alias
patterns, which depends on the learned parameters w. We
express Nw(x) as

Nw(x) = (I �Dw) (x) = x�Dw(x). (6)

where Dw(x) is the ”denoised” version of x, after the removal
of alias artifacts and noise. The use of the CNN-based prior
kNw(x)k2, which gives high values when x is contaminated

(a) The Residual learning based denoiser

(b) Proposed Model-based Deep Learning (MoDL) architecture

IterationKthIteration1st Iterationthk

(c) Unrolled architecture as described in Eq. 4 and 5.

Fig. 1. MoDL: Proposed MOdel-based Deep Learning framework for image
reconstruction. (a) shows the CNN based denoising block Dw . (b) is the
recursive MoDL framework that alternates between denoiser Dw in (10b)
and the data-consistency (DC) layer in (11). (c) is the unrolled architecture
for K iterations. The denoising blocks Dw share the weights across all the
K iterations.

with noise and alias patterns, results in solutions that are
data-consistent and are minimally contaminated by noise and
alias patterns. Here, � is a trainable regularization parameter.
Substituting from (6), in (5), we obtain

xrec = argmin
x

kA(x)� bk22 + � kx�Dw(x)k2 (7)

Since these schemes rely on forward models, the receptive
field of the networks need not be the full image size. In
addition, since the network only needs to capture the redun-
dancies in the images, a network consisting of many fewer
parameters is sufficient to obtain good results. Note that the
above formulation is very similar to the plug-and-play prior
approach in [37]; the main difference is the denoiser is a
deep CNN in our setting, similar to [16]. Unlike [16], that
uses networks pre-trained for denoising, we rely on end-to-
end training as described in the next subsection. We set �
as a trainable parameter. If the constrained setting can yield
improved reconstructions, high values of � would be selected
during the training process.

A. Unrolling the recursive network

We note that the non-linear mapping Dw (xn +�x) can be
approximated using Taylor series around the nth iterate as

Dw (xn +�x) ⇡ Dw (xn)| {z }
zn

+JT

n
rx, (8)

where Jn is the Jacobian matrix. Setting xn + �x = x, the
penalty term can be approximated as

kx�Dw(xn +rx)k2 ⇡ kx� znk2 + kJn�xk2 (9)
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images. Classical choices include norms of wavelet coeffi-
cients [27], total variation [28], as well as their combinations.
Recently, several authors have also recently introduced struc-
tured low-rank based priors that encourage super-resolution
image recovery [26], [29]–[31]. Plug-and-play approaches
that also rely on off-the-shelf image denoisers have been
introduced as regularizers [32].

B. Deep learned image reconstruction: the state-of-the-art

Many of the current deep learning based algorithms recover
the images as

xrec = Tw
�
AH b

�
, (3)

where Tw is a learned CNN [33]. The operator AH(·) trans-
forms the measurement data to the image domain, since CNNs
are designed to work in the image domain. We thus have the
relation

xrec = Tw
�
AHAx

�
, (4)

Thus, the CNN network is learned to invert the normal
operator AHA; i.e., Tw ⇡

�
AHA

��1 for signals living in
the image set.

For many measurement operators (e.g Fourier sampling,
blurring, projection imaging), AHA is a translation-invariant
operator; the convolutional structure makes it possible for
CNNs to solve such problems [34]. However, the receptive
field of the CNN has to be comparable to the support of the
point spread function corresponding to

�
AHA

�
. In applica-

tions involving Fourier sampling or projection imaging, the
receptive field of the CNNs has to be the same as that of the
image; large networks such as UNET with several layers are
required to obtain such a large receptive field. A challenge
with such large network with many free parameters is the
need for extensive training data to reliably train the parameters.
Another challenge is that the CNN structure may not be well-
suited for problems such as parallel MRI, where AHA is not
translational-invariant.

An alternate approach is to unroll an iterative algorithm
involving a CNN-based regularizer [16], [35], [36], which is
similar to the proposed scheme; we will discuss the differences
between these schemes and the proposed method in the next
section.

III. PROPOSED METHOD

We formulate the reconstruction of the image x 2 Cn as
the optimization problem:

xrec = argmin
x

kA(x)� bk22| {z }
data consistency

+� kNw(x)k2| {z }
regularization

. (5)

Here, Nw is a learned CNN estimator of noise and alias
patterns, which depends on the learned parameters w. We
express Nw(x) as

Nw(x) = (I �Dw) (x) = x�Dw(x). (6)

where Dw(x) is the ”denoised” version of x, after the removal
of alias artifacts and noise. The use of the CNN-based prior
kNw(x)k2, which gives high values when x is contaminated
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(b) Proposed Model-based Deep Learning (MoDL) architecture

IterationKthIteration1st Iterationthk

(c) Unrolled architecture as described in Eq. 4 and 5.

Fig. 1. MoDL: Proposed MOdel-based Deep Learning framework for image
reconstruction. (a) shows the CNN based denoising block Dw . (b) is the
recursive MoDL framework that alternates between denoiser Dw in (10b)
and the data-consistency (DC) layer in (11). (c) is the unrolled architecture
for K iterations. The denoising blocks Dw share the weights across all the
K iterations.

with noise and alias patterns, results in solutions that are
data-consistent and are minimally contaminated by noise and
alias patterns. Here, � is a trainable regularization parameter.
Substituting from (6), in (5), we obtain

xrec = argmin
x

kA(x)� bk22 + � kx�Dw(x)k2 (7)

Since these schemes rely on forward models, the receptive
field of the networks need not be the full image size. In
addition, since the network only needs to capture the redun-
dancies in the images, a network consisting of many fewer
parameters is sufficient to obtain good results. Note that the
above formulation is very similar to the plug-and-play prior
approach in [37]; the main difference is the denoiser is a
deep CNN in our setting, similar to [16]. Unlike [16], that
uses networks pre-trained for denoising, we rely on end-to-
end training as described in the next subsection. We set �
as a trainable parameter. If the constrained setting can yield
improved reconstructions, high values of � would be selected
during the training process.

A. Unrolling the recursive network

We note that the non-linear mapping Dw (xn +�x) can be
approximated using Taylor series around the nth iterate as

Dw (xn +�x) ⇡ Dw (xn)| {z }
zn

+JT

n
rx, (8)

where Jn is the Jacobian matrix. Setting xn + �x = x, the
penalty term can be approximated as

kx�Dw(xn +rx)k2 ⇡ kx� znk2 + kJn�xk2 (9)
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Exemplar learning of SLR priors: fast reconstruction
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Calibration-free parallel MRI using multichannel MoDL
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(a) Original (b) PSLR, 21.11 (c) K-UNET, 19.66 (d) K-space, 21.77 (e) MoDL, 23.42

(g) 6x mask (h) PSLR (i) K-UNET (j) K-space (k) MoDL

Fig. 2. Reconstruction results of 6x and 10x accelerated brain data. K-UNET stands for k-space UNET [9], while K-space is the
proposed scheme with k-space network alone and Hybrid is the proposed scheme with both k-space and image space networks.
MoDL is a calibration-based scheme that uses the coil-sensitivities, which are pre-estimated; (a)-(l) and (m)-(x) show results
for 6x and 10x undersampling respectively.
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Fig. 2. Reconstruction results of 6x and 10x accelerated brain data. K-UNET stands for k-space UNET [9], while K-space is the
proposed scheme with k-space network alone and Hybrid is the proposed scheme with both k-space and image space networks.
MoDL is a calibration-based scheme that uses the coil-sensitivities, which are pre-estimated; (a)-(l) and (m)-(x) show results
for 6x and 10x undersampling respectively.
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Fig. 2. Reconstruction results of 6x and 10x accelerated brain data. K-UNET stands for k-space UNET [9], while K-space is the
proposed scheme with k-space network alone and Hybrid is the proposed scheme with both k-space and image space networks.
MoDL is a calibration-based scheme that uses the coil-sensitivities, which are pre-estimated; (a)-(l) and (m)-(x) show results
for 6x and 10x undersampling respectively.
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Fig. 2. Reconstruction results of 6x and 10x accelerated brain data. K-UNET stands for k-space UNET [9], while K-space is the
proposed scheme with k-space network alone and Hybrid is the proposed scheme with both k-space and image space networks.
MoDL is a calibration-based scheme that uses the coil-sensitivities, which are pre-estimated; (a)-(l) and (m)-(x) show results
for 6x and 10x undersampling respectively.
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MoDL is a calibration-based scheme that uses the coil-sensitivities, which are pre-estimated; (a)-(l) and (m)-(x) show results
for 6x and 10x undersampling respectively.
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Synergistically combine priors: MoDL-SToRM
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Figure 1: (a) Demonstrating the iterations in the proposed model. The differences between this scheme and current
model-based deep-learned schemes are the sharing of the weights across iterations as well as the use of CG blocks to
enforce the data-consistency, when complex forward models such as multi-channel sampling is used. (b) i-th iteration
of the proposed iterative model: the iterative algorithm alternates between the denoising of the dataset using local CNN
block denoted by Dw, SToRM update denoted by WXn, and the DC block ((A⇤A + �1I + �2D)�1Rn) involving
conjugate gradients to enforce data-consistency at each iteration. (c) I � Nw = Dw, the denoising operator (d)
Nw, the noise extractor operator, (e) Training strategy with lagged update of Qn: unlike DC and Dw that involves
local operations, the update of Qn is global in nature; the direct implementation of the unrolled network in (a) is
associated with high memory demand and is not feasible on current GPU devices. We propose to pre-compute Qn in
an outer-loop and store them in the computer memory.
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Figure 1: (a) Demonstrating the iterations in the proposed model. The differences between this scheme and current
model-based deep-learned schemes are the sharing of the weights across iterations as well as the use of CG blocks to
enforce the data-consistency, when complex forward models such as multi-channel sampling is used. (b) i-th iteration
of the proposed iterative model: the iterative algorithm alternates between the denoising of the dataset using local CNN
block denoted by Dw, SToRM update denoted by WXn, and the DC block ((A⇤A + �1I + �2D)�1Rn) involving
conjugate gradients to enforce data-consistency at each iteration. (c) I � Nw = Dw, the denoising operator (d)
Nw, the noise extractor operator, (e) Training strategy with lagged update of Qn: unlike DC and Dw that involves
local operations, the update of Qn is global in nature; the direct implementation of the unrolled network in (a) is
associated with high memory demand and is not feasible on current GPU devices. We propose to pre-compute Qn in
an outer-loop and store them in the computer memory.
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METHODS

Acquisition scheme

Four healthy volunteers instructed to breath normally were scanned at the Siemens Aera scanner in the

University of Iowa hospitals to generate prospectively undersampled free-breathing ungated radial dataset.

The data was acquired using a FLASH sequence with a 32 channel cardiac array. The scan parameters were

TR/TE = 4.2/2.2ms, number of slices = 5, slice thickness = 5 mm, FOV = 300mm, spatial resolution = 1.17

mm. A temporal resolution of 42 ms was obtained by binning 10 consecutive lines of k-space per frame,

including 4 uniform navigator lines. Each slice comprised of 10000 radial lines of the k-space binned to 1000

frames, resulting in an acquisition time of 42s. The raw k-space data was interpolated to a Cartesian grid

and 7 virtual coils were approximated out of the initial 32 using a SVD based coil-compression technique.

The coil sensitivity maps were estimated from the compressed data using ESPIRiT (38). The SToRM (27)

reconstructed images were used as the reference to train the deep networks.

We use subsets of the above data to demonstrate the utility of the proposed scheme. We consider recon-

structions from 2000 spokes, which correspond to 8.4 second acquisition time, respectively. We used two

virtual channels for the proposed scheme to keep the memory demand of the optimization low.

MoDL-SToRM: formulation

We generalize the model-based deep learning framework (MoDL) by adding a SToRM prior:

C(X) = kA(X)�Bk22| {z }
data consistency

+
�1

2
kNw(X)k2| {z }
CNN prior

+
�2

2
tr
�
XTLX

�
| {z }
SToRM prior

. [1]

Here, A is the multi-channel Fourier sampling operator, which includes coil sensitivity weighting. Nw is a

3-D CNN based estimator that estimates the noise and alias patterns in the dataset from local neighborhoods

of the 2D+time dataset; kNw(x)k2 is a measure of the alias/noise contribution in the dataset X (31). The

denoised signal can thus be estimated from the data X as

Dw(X) = (I �Nw) (X) = X�Nw(X). [2]
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Figure 3: Dataset 1: (a) Full view of a single frame from the SToRM reconstruction using 1000 frames.
Only (red) cropped Myocardium region is shown. (b) Top row: SToRM reconstruction using 1000 frames.
Following eight rows are four sets of competing reconstructions and corresponding error (w.r.t to top row)
images : i) SToRM reconstruction with 200 frames, ii) MoDL with 200 frames, iii) Tikhonov-SToRM
reconstruction with 200 frames and iv) proposed with 200 frames. First column is the time profile along a
vertical cut across the Myocardium shown in green in (a). Following six columns show three cardiac states
at two different respiratory stages. The positions of those two respiratory stages are marked blue and green
on the time profiles, in the first column. Three cardiac states are neighboring frames near those two marked
time points. The SER (dB) reported in the figure corresponds to the myocardium area.
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Fig. 1: Proposed method: Top row shows the training of the DAE using the navigator data Z. Specifically, the navigator signals are corrupted
by Gaussian noise and fed into the network, whose parameters are learned to denoise the navigators. Once the denoiser is trained, it is used
within the reconstruction network as shown in the bottom row, where the residual error of the DAE is used as a prior.

2. METHOD

2.1. Navigator based MRI acquistion

We model the multichannel acquisition of the dynamic data
x(r, t) : Z3 ! C as:

yi(k, t) =

Z

r
x(r, t) si(r)e

j(kT r) dr+ n(r, t) (1)

Here, r = (x, y) and k = (kx, ky) represent the spatial and
k-space locations, respectively. The above equation can be
compactly rewritten in matrix form as:

Y = A(X) +N, (2)

where A is the multi-channel undersampling forward model.
Here X 2 Cm⇥n is the Casorati matrix of the data x(r, t).
Here m is the number of pixels in each time frame and n is
the total number of frames. In several acquisition schemes,
it is a common practice to acquire each frame at the same k-
space locations; this data is often called as k-space navigator
signals. This process can be mathematically denoted as Z =
PX, where P is a linear measurement matrix.

2.2. Low-rank/Subspace constrained dynamic MRI

We now briefly review the low-rank/subspace approach,
where the voxel time profiles are constrained to be in a
subspace, to set the stage for the proposed scheme. These
schemes express the data as X = UVH , where U 2 Cm⇥r

and V 2 Cn⇥r. Specifically, each voxel profile is expressed
as the weighted linear combination of r basis functions spec-
ified by the rows of V. The temporal basis functions V are
often learned from k-space navigators Z by singular value
decomposition. Once the temporal basis functions are deter-
mined, subspace constrained recovery is often posed as:

X = bUVH , where bU = arg min
U2Cm⇥r

kA(UVH)�Yk22
(3)

2.3. Reformulation of low-rank methods

We now reformulate (3) using a penalized formulation as

X⇤ = arg min
X2Cm⇥n

kA(X)�Yk22+�kX
�
In⇥n �VVH

�
| {z }

N

k2

(4)
Here, N is a projection operator to the null-space; kXNk2 is
the energy of the projection of X to the null-space. As � !
1, the temporal profiles (columns of X) will be constrained
to be in the signal subspace and hence (4) is equivalent to
(3). The subspace framework is well-suited to breath-held
and low motion applications. When there is extensive motion,
the voxel profiles may lie on a complex manifold and hence
a linear subspace model may be inefficient in capturing the
non-linear redundancies in the voxel profiles.

Recently, kernel low-rank methods were introduced to ex-
ploit non-linear redundancies in the voxel profiles [3]. These
approaches rely on an optimization scheme similar to (4) to
recover the images. The main distinction is that the matrix N
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to be in the signal subspace and hence (4) is equivalent to
(3). The subspace framework is well-suited to breath-held
and low motion applications. When there is extensive motion,
the voxel profiles may lie on a complex manifold and hence
a linear subspace model may be inefficient in capturing the
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Fig. 3: First row shows radial trajectory (thick lines show naviga-
tors), initial guess and full-size image respectively. Comparisons are
done on the zoomed version of full-size image around green squared
box. Second row shows the result of our proposed method. Frames
are picked from time points indicated by blue and purple lines. Time
profile shows frames along the red color line. Results show that our
method gives better spatial quality and temporal resolution with re-
duced aliasing artifacts.
contrast, the proposed method provides reduced aliasing arti-
facts and improved sharpness, when compared to the SToRM
reconstruction with 400 frames.

While the comparisons show improved reconstructions,
we observe some residual blurring and alias artifacts with
both 400 frame reconstructions. We will explore the addi-
tional use of spatial regularization as in [7] to improve the
results in the future.

4. CONCLUSION

In this paper, we have proposed a new dynamic MRI recon-
struction method based on a self-learned deep learning image
prior. We have trained the denoising autoencoder using navi-
gator data, to learn the dynamic structure in the cardiac CINE
images. Then this trained network is used as an image prior to
reconstruct the cardiac CINE images from highly undersam-
pled data. Results show that this approach captures data man-
ifold better than the kernel low-rank method. Reconstructed
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Fig. 4: Comparison of the proposed method with SToRM method
on second dataset.
cardiac CINE images show the ability of our proposed method
to give better spatial and temporal resolution.
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Summary: From SLR to MoDL
Structured low-rank algorithms

Lift data to higher dimensional matrix
Exploit subspace structure

C.1 Intellectual Merit

We now provide a brief overview of the intellectual merits of the proposal, before describing the aims.

C.1.1 Union of bandlimited surfaces & exponential lifting to union of subspaces

We consider the signals to be points on a surface or union of surfaces, denoted by S ⇢ Rn. We
represent S as the zero level-set (see Fig. 1) of a bandlimited function  (x)

(a) Surface

(b) Level set function

c

(d) Subspace

 

 
 
 

(c) Support of regions

�⇤

Non-linear lifting

Figure 1: Illustration of non-linear lifting and subspace relations
in 2-D. We assume that the signals are points on a curve (see
(a)), which is the zero level set of a bandlimited function shown
in (b). The Fourier coe�cients of the curve are support limited
to the red region in (c), denoted by ⇤. The non-linear lifting
of the points in (5), denoted by �⇤, results in the points in (d)
residing in a |⇤|-dimensional space. As seen from (5), all of these
points are orthogonal to c, which shows that c is the normal to
the plane. If one overestimate the support to �, denoted by the
green box in (c), there are |� : ⇤| possible shifts, which imply
that the lifted points �(�)(x) lie in a |�| � |� : ⇤| dimensional
space, which corresponds to the volume of the gray region in (c).

(i.e. S = {x| (x) = 0}) where

 (x) =
X

k2⇤

ck exp
�
j2⇡kTx

�

= cT

2

664

exp
�
j2⇡kT

1 x
�

...

exp
⇣
j2⇡kT

|⇤|x
⌘

3

775

| {z }
�⇤(x)

(4)

Here, ⇤ denotes the bandwidth of  , de-
noted by the red square in Fig. 1.c.

The key observation is that any point x 2 S

satisfies  (x) = cT�⇤(x) = 0. Here, �⇤(x)
is the non-linear lifting of the points x 2

Rn to the high-dimensional space C|⇤|, as
shown in Fig.1.d. We can view �⇤(x) as
the feature vector of the point x. Here, |⇤|

denotes the cardinality of the set ⇤. When
multiple points on the S are known, we have

cT
⇥
�⇤(x1) . . . �⇤(xN )

⇤
| {z }

�⇤(X)

= 0 (5)

This shows that the feature vectors lie on a plane of dimension |⇤| � 1, as shown in Fig. 1.

C.1.1.1. Exponential lifting: transformation from irreducible surface to subspace model: We term the
surface irreducible if the bandlimited polynomial  is irreducible over real values. In the above
description, we assumed the support ⇤ to define the lifting. When the support is not known, we
overestimate the support as � � ⇤, denoted by the green square in Fig. 1.c. We note that if  (x) = 0,
we also have ⌘l(x) = exp(j2⇡lTx)  (x) = 0; 8x 2 S, where for any l 2 Zn. Note that the coe�cients

of  
F
$ ck and ⌘l

F
$ ck�l are linearly independent. Thus, the dimension of the null-space is the number

of possible shifts of the set ck within �, which we denote by the set � : ⇤; see the blue box in Fig.
1.(c). This implies that the dimension of the null space is |� : ⇤|, or equivalently

rank (��(X)) = |�| � |� : ⇤|, (6)

which is the size of the gray box in Fig. 1.(c). We use (6) to determine the number of samples needed
for perfect recovery of the surface, the recovery of the signal from undersampled measurements, and
inference discussed in Section C.1.2. We note that the low-rank fitting of the data facilitates automatic
kernel selection, where the model with the smallest rank, and hence smallest bandwidth, is determined.

This work is inspired by PhaseLift [26], Blind Deconvolution [27], and super-resolution methods [61,62],
which relies on lifting to simplify the original problem to a low-rank problem in high-dimensional
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Using learned representations in CI: MoDL

Union of surfaces model
Recovery of images on surfaces

Learning functions: link to DL

Unrolled SLR: Calibrationless PMRI

Multiply low-bandwidth functions: increase bandwidth

Inner products with
anchor points in

Irreducible 
components

Multi-level neural network

Richer functions 
By

composition

More efficient representation

 
 

 

(q) MoDL, 21.77 (r) Hybrid, 22.34

Fig. 2. Reconstruction results of 6x and 10x accelerated brain data. K-UNET stands for k-space UNET [9], while K-space is the
proposed scheme with k-space network alone and Hybrid is the proposed scheme with both k-space and image space networks.
MoDL is a calibration-based scheme that uses the coil-sensitivities, which are pre-estimated; (a)-(l) and (m)-(x) show results
for 6x and 10x undersampling respectively.
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