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Abstract— We introduce a family of novel image regular-
ization penalties for three-dimensional (3-D) signals called
3-D higher degree total variation (HDTV). These penalties
further extend our previously introduced HDTV penalties,
which generalize the popular total variation (TV) penalty to
incorporate higher degree image derivatives. We make use
of a fast alternating minimization algorithm for solving 3-D
image recovery problems with HDTV regularization. Numerical
experiments on compressed sensing recovery of 3-D magnetic
resonance images show that HDTV and generalized HDTV
improves the image quality significantly compared with TV. We
also investigate the relationship between the recently introduced
Hessian-Shatten norms and HDTV.

I. INTRODUCTION

The total variation (TV) image regularization penalty is
widely used in many image recovery problems, including
denoising, compressed sensing, and deblurring [1]. The good
performance of TV penalty may be attributed to its desirable
properties such as convexity, invariance to rotations and
translations, and ability to preserve image edges. However,
one drawback of this scheme is that the reconstructed images
can contain undesirable patchy or staircase artifacts, since TV
regularization promotes sparse gradients.

We recently introduced a family of novel image regular-
ization penalties termed as higher degree TV (HDTV) to
overcome the above problem [2]. These penalties are defined
as the mixed L1-Lp norm (p = 1 or 2) of the nth degree
directional image derivatives. The HDTV penalties inherit
the above mentioned desirable properties of TV functional.
Experiments on two-dimensional (2-D) images demonstrate
that HDTV regularization minimizes the staircase and patchy
artifacts brought in by TV, while still enhancing edge and
ridge-like features in the image. Moreover, the algorithm
is also observed to provide improved reconstructions, both
visually and quantitatively.

The HDTV penalties were originally designed for 2-D
image reconstruction problems and were defined solely in
terms of 2-D directional derivatives. The direct extension of
the scheme to 3-D was challenging due to the high com-
putational complexity of our original iteratively reweighted
majorize minimize (IRMM) algorithm [2] for solving HDTV
regularized inverse problems.

Adapting an efficient algorithm we recently introduced
for solving image recovery problems with 2-D HDTV reg-
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ularization [6], in this work we extend the HDTV penalties
to three-dimensional (3-D) signals. By design, 3-D HDTV
penalties also inherit the desirable properties of TV and
2-D HDTV such as translation- and rotation-invariance,
scale co-variance, and convexity. Our algorithm for solving
3-D HDTV regularized inverse problems is based on an
alternating minimization scheme, which alternates between
two efficiently solved subproblems given by a shrinkage and
the inversion of a linear system.

We also study the relationship between 3-D HDTV and the
recently proposed regularization penalties based on Hessian-
Shatten norms [7]. Specifically, we show that the second
degree HDTV penalty and the Hessian-Shatten p = 1
norm are equivalent as semi-norms. We demonstrate with
numerical experiments that this equivalence carries over to
the discrete setting, as well.

Finally, we demonstrate the utility of 3-D HDTV regular-
ization in the context of practical inverse problems arising
in medical imaging, including deblurring and denoising of
3D fluorescence microscope images, and compressed sensing
MR image recovery of 3-D angiography datasets. We show
that 3-D HDTV routinely outperforms TV in terms of the
SNR of reconstructed images and its ability to preserve ridge-
like details in the datasets.

II. HIGHER DEGREE TOTAL VARIATION

Image recovery with TV and HDTV regularization may
be understood in a variational framework, where we consider
the recovery of a continuously differentiable signal f : Ω→
C, Ω ⊂ Rd, from its noisy and degraded measurements b.
We model the measurements as y = A(f) + n, where n is
assumed to be Gaussian distributed white noise and A is a
linear operator representing the degradation process. We may
formulate the recovery of f as the following optimization
problem

min
f
‖A(f)− b‖2 + λJ (f), (1)

where ‖A(f) − b‖2 is the data fidelity term, J (f) is a
regularization penalty, and the parameter λ balances the
two terms, and is chosen so that the signal-to-error ratio is
maximized.

The standard isotropic TV regularization penalty is defined
as the L1 norm of the gradient magnitude,

TV(f) =

∫
Ω

‖∇f(r)‖ dr,

where || · || denotes the Euclidean norm. In [2] we showed
that the 2-D TV penalty can be reinterpreted as the mixed
L1-L2 or L1-L1 norm of image directional derivatives. This



observation led us to propose two families of higher degree
TV (HDTV) regularization penalties in 2-D, specified by

I-HDTVn(f) =

∫
Ω

(
1

2π

∫ 2π

0

|fθ,n(r)|2dθ
) 1

2

dr, (2)

HDTVn(f) =

∫
Ω

(
1

2π

∫ 2π

0

|fθ,n(r)|dθ
)
dr, (3)

where fθ,n is the nth degree directional derivative of f in
the direction uθ = [cos(θ), sin(θ)], defined as

fθ,n(r) =
∂n

∂γn
f(r + γuθ)

∣∣∣∣
γ=0

.

The family of penalties defined by (2) and (3) were given
the name isotropic and anisotropic HDTV, respectively. It
is evident from (2) and (3) that the 2-D HDTV penal-
ties preserve many of the desirable properties of the TV
penalty, such as invariance under translations and rotations
and scale co-variance. Furthermore, practical experiments in
[2] demonstrate that HDTV regularization outperforms TV
regularization in many image recovery tasks, in terms of both
SNR and the visual quality of reconstructed images. Our
experiments also indicate that the anisotropic case, which
corresponds to the fully separable L1-L1 penalty, typically
exhibits better performance in image recovery tasks over
isotropic HDTV.

The HDTV penalties have a natural extension to 3-D sig-
nals by considering the Lp norm of all directional derivatives
in 3-D. We define

HDTV[n, p](f) =

∫
Ω

(∫
S2
|fu,n(r)|pdu

) 1
p

dr, (4)

where S2 = {u ∈ R3 : ||u|| = 1} and fu,n is the nth degree
directional derivative defined as

fu,n(r) =
∂n

∂γn
f(r + γu)

∣∣∣∣
γ=0

; u ∈ S2.

Due to its importance in the sequel, the p = 1 penalty we
will simply denote as HDTVn, i.e. HDTVn = HDTV[n, 1].

By design the 3-D HDTV penalties are guaranteed to
be rotation- and translation-invariant, and convex. It is also
clear they are also contrast and scale covariant, i.e. for
all α ∈ C, HDTV[n, p](α · f) = |α|HDTV[n, p](f) and
HDTV[n, p](fα) = |α|n−3HDTV[n, p](f), where fα(x) :=
f(α · x).

A. Relation to Hessian-Shatten Norms

Recently Lefkimmiatis et al. [7] introduced a family of
second-degree regularization penalties known as Hessian-
Shatten norms, defined as

HSp(f) =

∫
Ω

||Hf(r)||Sp , ∀ 1 ≤ p ≤ ∞, (5)

where Hf(r) is the Hessian matrix of f at r, and || · ||Sp is
the Shatten p-norm, defined as ||X||Sp = ||σ(X)||p where
σ(X) denotes the vector containing the singular values of the
matrix X . There is a close relationship between the p = 1

case of (5) and the anisotropic second degree HDTV penalty,
HDTV2, as demonstrated in the following proposition:

Proposition 1: The penalties HDTV2 and HS1 are equiv-
alent as semi-norms over C2(Ω,R), Ω ⊂ Rd, in dimension
d = 2 or 3, with bounds

(1− δ) · HS1(f) ≤ C · HDTV2(f) ≤ HS1(f),

where δ = 0.37 for d = 2, δ = 0.43 for d = 3, and C is a
normalization constant independent of f .
We omit a full proof for brevity. The essential idea is to re-
express the HDTV2 penalty as the integral of the function

Φ(r) =

∫
Sd−1

∣∣uTdiag[λf(r)]u
∣∣ du,

where diag[λf (r)] is the diagonal matrix whose entries are
given by λf (r), the Hessian eigenvalues of f at r. Then the
result follows from bounding the quantity Φ(r)/||λf(r)||`1 .

In particular, one can show C · HDTV2(f) = HS1(f) if
the Hessian matrices of f at all spatial locations are either
positive or negative semi-definite, i.e. have all non-negative
eigenvalues or all non-positive eigenvalues. In natural images
only a fraction of the pixels or voxels will have Hessian
eigenvalues with mixed sign, thus we expect the HS1 and
HDTV2 penalties to be nearly proportional and to behave
very similarly in applications. Our experiments in the results
section are consistent with this observation.

III. NUMERICAL IMPLEMENTATION

To solve the image recovery problem (1) with 3-D HDTV
regularization we make use of a fast alternating minimization
algorithm originally introduced for 2-D HDTV in [6]. The
algorithm is an adaptation of a half-quadratic minimization
method [8] used for solving image recovery problems with
TV regularization [9], [10]. The algorithm alternates between
two well-defined subproblems: a shrinkage step and the
inversion of a linear system. The latter subproblem is much
simpler to solve if the measurement operator A has a
diagonal form in the Fourier domain, as is the case for many
practical inverse problems we consider, such as denosing,
deblurring, and compressed sensing MR images recovery.
We also note that this algorithm is designed specifically for
anisotropic (p = 1) HDTV penalties, hence we focus on
those cases in this work.

Some modifications to the algorithm must be made in the
3-D setting. Specifically, the method by which we discretize
the angular integral in (4) and discretize the directional
derivative operators is different in 3-D. We present these
details below.

A. Sampling the unit sphere in 3-D

We approximate the inner integral in (4) with a Riemann
sum by uniformly sampling points in S2. In the 2-D case,
this can be achieved by parameterizing u ∈ S1 as uθ =
[cos(θ), sin(θ)], then discretizing the parameter θ as θi =
i 2π
K , for i = 1, ...,K, where K is the specified number of



sample points. However, in the 3-D case, if we sample the
usual parameterization of S2, i.e.

uθ,φ = [cos(θ) sin(φ), sin(θ) sin(φ), cos(φ)]

for θ ∈ [0, 2π], φ ∈ [0, π], by uniformly discretizing θ and φ,
the samples we obtain are heavily clustered at the poles of
the sphere, providing a poor approximation of the integral.
Instead, we make use of the ISOI software package [11],
[12] based on the HEALPix spherical sampling method [13]
to deterministically generate uniformly spaced samples of
S2. We find K ≈ 64 samples are sufficient to approximate
the integral in (4). Note that these sample points may be
computed in advance and stored in memory to reduce the
computational overhead.

B. Steerability of Directional Derivatives

The direct evaluation of (4) by discretizing S2 is compu-
tationally expensive. The computational complexity can be
considerably reduced by exploiting the rotation steerability
of nth degree directional derivatives. Namely, the first degree
directional derivatives fu,1 have the equivalent expression

fu,1(r) = uT∇f(r); ∀ u ∈ S2.

Similarly, higher degree directional derivatives fu,n(r) can
be expressed as the separable vector product

fu,n(r) = s(u)T∇nf(r); ∀ u ∈ S2,

where, s(u) is the vector of polynomials in the components
of u and ∇nf(r) is the vector of all nth degree partial
derivatives of f . For example, in the second degree case
(n = 2), we may choose

s(u) =
[
u2
x, u

2
y, u

2
z, 2uxuy, 2uyuz, 2uxuz

]T
,

∇2f(r) =
[
fxx(r), fyy(r), fzz(r), fxy(r), fyz(r), fxz(r)

]T
.

This shows that we may compute the nth degree directional
derivatives for all u ∈ S2 at all voxels with only a small
number of filtering operations (six, in the above example).

C. Discretization of the derivative operators

The standard approach to approximate partial derivatives is
by using finite difference operators. For example, the deriva-
tive of a 2-D signal along the x dimension is approximated as
∂xf [k1, k2] = f [k1 + 1, k2]− f [k1, k2]. This approximation
can be viewed as the convolution of f by ∆1[k] = ϕ(k+ 1

2 ),
where ϕ(x) = ∂β1(x)/∂x and β1(x) is the first degree B-
spline [14]. However, this approximation does not possess
rotation steerability, i.e. the directional derivative can not be
expressed as the linear combination of the finite differences
along x and y directions.

To obtain discrete operators that are approximately rota-
tion steerable we approximate the nth order partial deriva-
tives, ∂α := ∂α1

x ∂α2
y ∂α3

z for all mutli-indicies α =
(α1, α2, α3) with |α| = n, as the convolution of the signal
with the tensor product of derivatives of one-dimensional B-
spline functions. That is, ∂αf [k] = (Dα ∗ f)[k] where

Dα[k] = β(α1)
n (k1 +δ)⊗β(α2)

n (k2 +δ)⊗β(α3)
n (k3 +δ), (6)

for all k = (k1, k2, k3) ∈ N3, and where β(m)
n (x) denotes

the mth order derivative of a nth degree B-spline. In order
to obtain filters with small spacial support, we choose the
δ = 1/2 if n odd and δ = 0 if n even; this results in filters
supported in a (n+ 1)3 volume.

While the tensor product of B-spline functions are not
strictly rotation steerable, B-splines approximate Gaussian
functions as their degree increases, and the tensor product
of Gaussians is exactly steerable. Thus, the approximation
of derivatives we define above is approximately rotation
steerable; see Fig. 1.

(a) θ = φ = 0◦ (b) θ = 0◦, φ = 45◦ (c) θ = φ = 45◦

Fig. 1. Second degree discrete directional derivative operators given by the
B-spline approximation (6) at different orientations, specified by azimuthal
angle θ and polar angle φ. Note that the operators are approximately rotation
steerable.

IV. EXPERIMENTS

To demonstrate the utility of 3-D HDTV penalties, we
investigate their use in the compressed sensing recovery of
3-D MR angiography datasets. Our experiments show that
HDTV regularization routinely outperforms TV in terms of
the SNR of reconstructed images and its ability to preserve
ridge-like details in the 3-D datasets. Additionally, to verify
the conclusions of Proposition 1 carry over to the discrete
setting, we conduct experiments comparing the performance
of the HDTV2 and HS1 penalties in denoising and deblurring
2-D images.

In each experiment, we optimize the regularization pa-
rameters to obtain the optimized signal-to-noise ratio (SNR)
to ensure fair comparisons between different schemes. The
SNR of the reconstruction is computed as:

SNR = −10 log10

(
‖forig − f̂‖2F
‖forig‖2F

)
,

where f̂ is the reconstructed image, forig is the original
image, and ‖ · ‖F is the Frobenius norm.

A. Compressed Sensing MRI Recovery With 3-D HDTV

In these experiments we consider the compressed sensing
recovery of a single coil 3-D MR angiography dataset from
noisy and undersampled measurements. We experiment on
a 512×512×76 MR dataset obtained from [15], which we
retroactively undersample using a variable density random
Fourier encoding with acceleration factor of 5. To these
samples we also added 5 dB Gaussian noise with standard
deviation 0.53. Shown in Fig. 2 are the maximum intensity
projections (MIP) of the reconstructions obtained using vari-
ous schemes. We note that 3-D HDTV preserves more edge-
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Fig. 2. Compressed sensing recovery of 3-D MR angiography
dataset from noisy and undersampled Fourier data (acceleration
of 5 with 5 dB additive Gaussian noise). (a) shows the MIP of
the original dataset, (b)-(d) and (e)-(g) show zoomed versions two
regions of the original dataset and its reconstructions obtained using
TV and HDTV2. We observe that 3D-HDTV methods preserve
more line-like features compared with 3D-TV (indicated by green
arrows).

and ridge-like details compared with standard 3D-TV. In
Table 1 we provide quantitative comparisons between HDTV
and TV at different accelerations. Note that both the HDTV2
and HDTV3 penalties routinely outperform TV in SNR.

MRA (A=5) MRA(A=1.5) Cardiac
TV 13.87 14.53 18.37

HDTV2 14.23 15.11 18.56
HDTV3 14.01 14.70 18.50

Table 1: SNR (in dB) comparison of TV and HDTV for compressed sensing
MR image recovery of 3-D datasets. ‘MRA’ is the dataset shown in Fig.
(2), where A denotes the acceleration factor, and ‘Cardiac’ is a cardiac MR
dataset.

B. Comparison of HS1 and HDTV2 Penalties

In Table 2 we present quantitative comparisons of the
performance of the HS1 and HDTV2 regularization penalties
on 2-D test images in the context of denoising, and deblur-
ring. These experiments confirm that the discrete versions

of these penalties perform similarly in image reconstruction
tasks, as predicted by Proposition 1. Fig. 3 shows that the
reconstructions are visually similar, as well.

(a) Blurred image (b) HDTV2, 17.21ḋB (c) HS1, 17.13 dB

Fig. 3. Deblurring of a microscopy cell image. (a) is the blurred image,
(b) and (c) show the deblurred images using HDTV2 and HS1 regulariza-
tion, respectively. Both methods provide similar results, both visually and
quantitatively, as predicted by Proposition 1.

Denoising Deblurring
brain lena cell1 cell2

TV 27.60 27.35 15.66 16.67
HDTV2 28.05 27.65 16.19 17.21

HS1 28.08 27.51 16.17 17.13

Table 2: SNR (in dB) comparison of deblurring and denoising of 2-D
images using TV, HDTV2, and HS1 regularization. Note the SNR values
are approximately the same in the case of HDTV2 and HS1, and both
consistently outperform TV.

V. CONCLUSIONS

We extend our novel higher degree total variation (HDTV)
image regularization penalty to 3-D signals. The penalty is
essentially the L1 norm of all directional derivatives at each
voxel. We adapt a fast alternating minimization algorithm
for 3-D HDTV that is considerably faster than our previous
implementation for HDTV; the extension of the proposed
scheme to 3-D is mainly enabled by this speedup. Our
experiments demonstrate the improvement in image quality
offered by the proposed scheme over TV for compressed
sensing MR image reconstruction.
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