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Motivation: MRI reconstruction

Main Problem: 

Reconstruct image from Fourier domain samples

Related: Computed Tomography, Florescence Microscopy



Uniform Fourier Samples = 
Fourier Series Coefficients

Motivation: MRI Reconstruction



Fourier 
Interpolation

Fourier 
Extrapolation

Types of “Compressive” Fourier Domain Sampling

radial randomlow-pass

Super-resolution
recovery

“Compressed Sensing”
recovery



Extrapolation: super-resolution microscopy

S. Hell et al, Science 2007.



Interpolation:  accelerated MRI

Rel. Error = 5%25% Random 
Fourier samples

(variable density)
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Compressed Sensing (CS)

11

measurements sparse
signal

# non-zeros

• Incoherent projection
• Underdetermined system 
• Sparse unknown vector

Courtesy of  Dr. Dror Baron
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Sparse-Low Rank Recovery in Nutshell

x̂ = argmin
x

ky �Axk22 +R(x)

Forward mapping
By physics

Measurement data
Prior Knowledge

(smoothness, sparsity,etc)

Reconstructed image



Application to biomedical imaging

Randomly undersampleFull sampling is costly!



Convex
Optimization

Sparse
Model

Randomly
Undersample

Application to biomedical imaging



Convex
Optimization

Sparse
Model

Randomly
Undersample

Analysis formulation of Compressed Sensing



Convex
Optimization

Sparse
Model

Example:
Assume discrete gradient 
of image is sparse

Piecewise constant model



Recovery by Total Variation (TV) minimization

TV semi-norm:

i.e., L1-norm of discrete 
gradient magnitude



Recovery by Total Variation (TV) minimization

TV semi-norm:

i.e., L1-norm of discrete 
gradient magnitude



Recovery by Total Variation (TV) minimization

Sample locations

TV semi-norm:

i.e., L1-norm of discrete 
gradient magnitude

Restricted DFT



Recovery by Total Variation (TV) minimization

Convex optimization problem
Fast iterative algorithms: 
ADMM/Split-Bregman, 
FISTA, Primal-Dual, etc.

TV semi-norm:

i.e., L1-norm of discrete 
gradient magnitude

Restricted DFT

Sample locations



Recovery using zero filled IFFT

25% Random 
Fourier samples

(variable density)

Rel. Error = 30%



Recovery using TV minimization

Rel. Error = 5%25% Random 
Fourier samples

(variable density)



Limitations of CS

• Discrete domain	theory
• Explicit	form	of	sensing	matrix
• RIP	issue	à no	direct	interpolation



Analytic Reconstruction

(b) Time-reversal of a scattered wave(a)  MR Imaging

Beautiful analytic reconstruction results from  fully sampled data





“True” measurement model:

ContinuousContinuous



“True” measurement model:

This image cannot currently be 
displayed.

Approximated measurement model:

DISCRETE DISCRETE

ContinuousContinuous



Continuous

DFT Reconstruction

Continuous



Continuous

DFT Reconstruction

Continuous

DISCRETE



Continuous

DFT Reconstruction

Continuous

DISCRETE DISCRETE



Challenge: Discrete approximation destroys sparsity!
Continuous



Continuous

Exact Derivative

Challenge: Discrete approximation destroys sparsity!



Continuous DISCRETE

Sample

Exact Derivative

Challenge: Discrete approximation destroys sparsity!



Continuous DISCRETE

Sample

Exact Derivative

Gibb’s Ringing!

Challenge: Discrete approximation destroys sparsity!



Continuous DISCRETE

Sample

FINITE DIFFERENCEExact Derivative

Not Sparse!

Challenge: Discrete approximation destroys sparsity!



Super-resolution setting: ringing artifacts !!

x8 Ringing Artifacts
Fourier
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Classical Off-the-Grid Method: Prony (1795)

Uniform  
time samples

Off-the-grid
frequencies

• Robust variants: 

Pisarenko (1973), MUSIC (1986), ESPRIT (1989), 

Matrix pencil (1990) . . . Atomic norm (2011)



Main inspiration: Finite-Rate-of-Innovation (FRI)
[Vetterli et al., 2002]

Uniform  
Fourier samples

Off-the-grid
PWC signal

• Recent extension to 2-D images: 

Pan, Blu, & Dragotti (2014), “Sampling Curves with FRI”.



Annihilation Relation:

spatial domain multiplication

annihilating function

annihilating filter

convolutionFourier domain



annihilating function

annihilating filter

Stage 1: solve linear system for filter

recover signal
Stage 2: solve linear system for amplitudes



Similar 1-D FRI idea by [ Liang & Hacke 1989]
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Fig. 5 .  The sinc’ impulse response with noise confined to the width of the 
blur (9 x 9 pixels) 

Fig. 6. (a) The original (120 X 120) image, same as in Fig. 1. (b) Fig. 
6(a) blurred by the function shown in Fig. 5 with U ,  = 0.006 and U? = 

3, respectively. rms = 11.668. (c), (d) The restoration of Fig. 6(b) by 
the iterative Wiener filter, rms = 6.539, and by the Backus-Gilbert tech- 
nique, r m s  = 7.635, respectively. 

consideration. This argument is supported by (4) and ( 5 ) .  If the 
distance d is not properly chosen, restoration may give incorrect - 
results. If the distance chosen is too small, the approximated R,  ( f )  
tends to become an identity matrix, and useful information is lost. 
On the other hand, if the distance chosen i s  too large, some arti- 
facts are introduced, which may result in an unstable solution. Our 
experience i s  that the distance d is, approximately, linearly depen- 
dent on the image size. Thus, d satisfies 

d = (0.1 + 0 . 2 ) M  

for a matrix of size M by M .  

111. CONCLUSIONS 
For restoration of images distorted by systems having a noisy 

impulse response and additive noise, the Wiener filter is modified, 
extended, and applied to the 2-D case. The noise in the blur is not 
assumed to be necessarily confined to the width of the impulse re- 
sponse. 

The simulation examples presented confirm that the modified 
Wiener filter works well for the restoration of random blur. The 
experimental results show that the newly derived filter always gives 
better results than its linear counterpart (based on ignoring the noise 
in the impulse noise). The modified parametric Wiener filter gives 
more pleasing (smoother) images than the standard modified 
Wiener filter. The latter also gives better results than those based 
on the Backus-Gilbert technique [8]. 
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Superresolution Reconstruction Through Object 
Modeling and Parameter Estimation 

E. MARK HAACKE, ZHI-PE1 LIANG, A N D  STEVEN H .  IZEN 

Abstract-Fourier transform reconstruction with limited data is often 
encountered in tomographic imaging problems. Conventional tech- 
niques, such as FFT-based methods, the spatial-support-limited ex- 
trapolation method, and the maximum entropy method, have not been 
optimal in terms of both Gibbs ringing reduction and resolution en- 
hancement. In this correspondence, a new method based on object 
modeling and parameter estimation is proposed to achieve superreso- 
llrtion reconstruction. 

I. INTRODUCTION 
Many problems in physics and medicine involve imaging objects 

with high spatial frequency content in a limited amount of time. 
The limitation of available experimental data leads to the problem 
of diffraction-limited data which manifests itself by causing ringing 
in the image and i s  known as the Gibbs phenomenon. Due to the 
Gibbs phenomenon, the resolution of images reconstructed using 
the conventional Fourier transform method has been limited to 1 / L ,  
with L being the data window size. Many methods have been pro- 
posed to recover information beyond this limit. A commonly used 
superresolution technique is the iterative algorithm of Gerchberg- 
Papoulis [ I ] .  This algorithm uses the a priori knowledge that the 
object being imaged is of finite spatial support. It proceeds with an 
iterative scheme to perform Fourier transformation between the data 
and image space, imposing the anticipated object support and the 
consistency of the experimental data. It has been proved that in the 
ideal noiseless case, this procedure converges to the minimum norm 
solution [2]. However, when noise i s  present, the performance of 
this algorithm will be greatly limited. Other methods, including the 
maximum entropy method [3] and methods using the projection 
onto convex set (POCS) formalism [4], [SI, attempt to employ 
stronger constraints to regularize the problem, but have not been 
optimal for Gibbs ringing reduction and resolution enhancement. 
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In this Correspondence, a new method based on object function 
modeling is proposed. An efficient method for solving for the model 
parameters is given, which uses linear prediction theory and linear 
least squares fitting. Reconstruction results from simulated and real 
magnetic resonance data will also be presented to demonstrate its 
capability for Gibbs ringing reduction and resolution enhancement. 

11. RECONSTRUCTION THROUGH OBJECT MODELING A N D  
ESTIMATION 

The partial Fourier transform data reconstruction problem can 
be simply described as  solving for the object function p ( x )  from 
the following integral equation: 

s ( k )  = s, p ( x ) e - i 2 " k r  dx ( 1 )  

where s ( k )  is only available at k = nAk for n = - N / 2 ,  . . ., 
N / 2  - 1. It is well known that this problem is ill posed. Con- 
straints other than data consistency have to be used to obtain a good 
inversion. In this correspondence, object model constraints are 
used. 

Suppose that the object function p ( x )  consists of a series of box 
car functions; i t  can be expressed as 

M 

P ( X )  = P,,?W,,,(x) ( 2 )  
,U = I 

with the unit-amplitude box car function W,, , (x )  defined as 

(3 )  

where < c 2  < . . . < E ~ +  ,, and they define the edge locations 
of the M consecutive box car functions. This box car function model 
is expected to be valid wherever the probing wavelength is much 
larger than the ob-iect boundary width. More importantly, the pa- 
rameterization of the sharp edge locations of the object function 
will force the available data to be used in such a way so that they 
are "best" determined. Therefore, Gibbs ringing resulting from 
them can be eliminated in principle. 

Substituting p ( x )  in ( 2 )  into (1) yields 
M 

s( k )  = c p,a,, sinc ( mx,,k)e-'2"8"'" (4 )  

( 5 )  

( 6 )  

,=I 

where k = n A k  for n = - N / 2 ,  . . . , N / 2  - 1 and 

a, = E m  + I - E,, 

P,, = ( E , , ,  + t , , , + 1 ) / 2 .  
Let k,, = ( n  - N / 2  - 1 ) A k  and let s ( n )  denote ~ ( k , , ) ;  then (4) 
can be written in a matrix form as 

2 s = A ;  

s = ( ~ ( l ) ,  s ( 2 ) ,  . . . , s ( N ) ) ~  
2 

with 
(7)  

where rn = 1 ,  2 ,  . . . , M and n = I ,  2 ,  . . . , N .  
The reconstruction problem now reduces to finding the p , ' ~ ,  

anZ's ,  and P , n ' ~ .  Unfortunately, solving (4) is a highly nonlinear 
problem. A time-consuming search algorithm is usually required. 
In the following, the problem is converted to an all-pole model 
parameter estimation problem. Then linear prediction theory is used 
for efficient estimation of the nonlinear parameters. 

Based on the derivative property of the Fourier transform and 
( I )  and ( 2 ) ,  It can be shown that 

M' 

S ( k )  = i 2 a k s ( k )  = p;,e-'2*r'r'k ( 8 )  
0, = I 

7 1 2 0  

1 1 0 -  

0 90 O 0 1  

1 0 8 0 j  k 070 

1 4 2 0 6 0  

5 0 5 0  

0 40 - 

0 10 

0 l--LL 00 -135 -108 -81 -54 -27 0 27 5 4  81 108 135 

DISTANCE 

Reconstructions of a model object with 32 data points using the Fig 1 
FFT method (dashed line) and the proposed method (solid line). 

where M' = M + 1, and p h  is the amplitude of the rnth delta func- 
tion resulting from the differentiation of the box car functions. So- 
lution of E ,  from (8) is an age-old problem [ 6 ] .  I f s  ( k )  is noiseless, 
it can be proved that Z,,, = exp ( - i 2 m , , , A k )  for rn = I ,  . . . , M' 
are exactly the M' roots of the following polynomial equation 161, 
171 : 

g ( M ' ) Z M  + g ( M '  - l ) Z M - '  + . . . + g ( 1 ) Z  + 1 = 0 (9) 

where the vector 2 = (g( l ) ,  . . . , K ( M ' ) ) ~  is determined by the 
following linear prediction equations: 

Therefore, in theory, E,,, can be found by solving (10) and (9). Note 
that in this linear prediction formalism, the minimum value for N 
(the number of data points) is 2 M ' .  This can be understood since 
the total number of unknowns is at least 2M + 1 ( M  amplitudes 
and M' edge locations). If N > 2 M ' ,  ( I O )  can be solved in a least 
squares sense. However, the Hankel-structured coefficient matrix 
is usually ill conditioned, particularly when very narrow imagc fea- 
tures exist. In this case, 2 will be very sensitive to noise present 
in the data. To overcome this ill-conditioned problem, an SVD- 
based least squares procedure can be used to solve ( I O )  [7]. 

After E,,! is determined, CY,,, and P,,, can be ralculated using (5) 
and (6). Then can be obtained from (7) using a linear least 
squares procedure, which is equivalent to 

( 1 1 )  = ( A ~ A ) - ' A ~ s .  

111. RESULTS A N D  DISCUSSIONS 
In this section, reconstruction results from simulated and exper- 

imental data are presented to demonstrate the performance of thc 
proposed method. 

In Fig. 1, reconstructions of a model object using the conven- 
tional FFT method and the proposed method with 32 data points 
are shown. One can appreciate the magnitude of the Gibbs ringing 
associated with the FFT reconstruction (dashed line). With the pro- 

~ 
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(a) (b) 
Fig.  2 .  (a)  Fourier reconstruction of a phantom f rom real magnetic reso- 

nance data using 256 data points in the vertical direction and 64 points 
in the horizontal direction. (b)  Same a s  (a). but vertical direction is re- 
constructed using the proposed method. An example  profile through the 
phantom show\ the improvement in image hehavior.  
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(C) 
Flg 7 Recon\tructions Of d model ObJeCt with pardbollc behdvior\  with 

64 data points u \ ing  (a) the FFT method (dashed l ine),  (b) the Hamming-  
windowed FFT method (dashed l ine),  and  (c )  the proposed method 
(dashed line) 

posed method. the object is reconstructed perfectly (solid line), as 
expected, since no random or  systematic noise was present in the 
data. I n  Fig. 2, an NMR experiment was run to produce the Fourier 
transform data from a phantom. Using an N = 256 FFT in the 
vertical direction and an N = 64 FFT in the horizontal direction 

gives a poor quality image, Fig. 2(a). Applying the proposed 
method to the horizontal direction gives a significantly improved 
result with no apparent artifacts, Fig. 2(b). In Fig. 3. the recon- 
structions of a model object (solid line) with parabolic behavior are 
presented. The Gibbs ringing in the FFT reconstruction [dashed 

~ 
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Isolated Diracs

Extension to higher dims: Singularities not isolated

2-D PWC function



Isolated Diracs

2-D PWC function

Diracs on a Curve

Extension to higher dims: Singularities not isolated



2-D PWC functions satisfy an annihilation relation

spatial domain

Annihilation relation:

Fourier domain

multiplication

annihilating filter

convolution



Zero-set of a 2-D trigonometric polynomial [Pan et al., 2014]

“FRI Curve”



25x25 coefficients13x13 coefficients

Multiple curves
& intersections

Non-smooth
points

Approximate
arbitrary curves

7x9 coefficients

Complicated edge geometries with few coefficients



Piecewise analytic model [Pan et al., 2014]

• Not suitable for natural images

• 2-D only

• Recovery is ill-posed: Infinite DoF

• Signal model: piecewise analytic signal



Piecewise polynomial model [O. & Jacob, SampTA 2015]

• Extends easily to n-D

• Provable sampling guarantees

• Fewer samples necessary for recovery

• Proposed model: piecewise smooth signals  



Annhilation relation for PWC signals

Prop: If f is PWC with edge set                  

for      bandlimited to     then

any 1st order partial derivative



Prop: If f is PW linear, with edge set                  

and       bandlimited to     then

Annhilation relation for PW linear signals

any 2nd order partial derivative



Signal Model:

PW Constant

PW Analytic*

PW Harmonic

PW Linear

PW Polynomial

Choice of Diff. Op.:

1st order

2nd order

nth order

Wide class of images: Annihilation relations



Proof (a la Prony’s Method): 

Form Toeplitz matrix T from samples, use uniqueness of 

Vandermonde decomposition:

Challenges to proving uniqueness

“Caratheodory Parametrization”

1-D FRI Sampling Theorem [Vetterli et al., 2002]:

A continuous-time PWC signal with K jumps can be uniquely 

recovered from 2K+1 uniform Fourier samples.



Extends to n-D if singularities isolated [Sidiropoulos, 2001]

Not true when singularities supported on curves:

Requires new techniques:

– Spatial domain interpretation of annihilation relation

– Algebraic geometry of trigonometric polynomials

Challenges proving uniqueness, cont.



Theorem: If f is PWC* with edge set                  

with      minimal and bandlimited to      then               

is the unique solution to

1. Uniqueness of edge set recovery

*Some geometric restrictions apply

Requires samples 
of      in
to build equations



Theorem: If f is PWC* with edge set                  

with      minimal and bandlimited to      then               

is the unique solution to 

when the sampling set  

2. Uniqueness of signal (given edge set)

*Some geometric restrictions apply

Ongie & Jacob, SIAM J Imag. Science, in press



Theorem: If f is PWC* with edge set                  

with      minimal and bandlimited to      then               

is the unique solution to 

when the sampling set  
*Some geometric restrictions apply

Equivalently,

2. Uniqueness of signal (given edge set)

Ongie & Jacob, SIAM J Imag. Science, in press



LR INPUT

Super-resolution MRI [O. & Jacob, ISBI 2015]

Off-the-grid

1. Recover edge set 2. Recover amplitudes

Computational

Challenge!

Off-the-grid

Spatial
Domain  

Recovery

Discretize 

HR OUTPUT

2. Recover amplitudes

On-the-grid



Super-resolution of MRI Medical Phantoms

x8

x4

Ongie & Jacob, SIAM J Imag. Science, in press



Can we generalize to non-uniform setting ??

x8

Improve recovery using non-uniform sampling



Overview

1. Introduction

2. Review of Compressive Sensing

3. FRI extrapolation from uniform samples

4. Structured low-rank interpolation for non-uniform samples

• 1-D Theory

5. Fast implementations

6. Biomedical applications



Sampling vs low-rank interpolation



Key idea: annihilating filter

T-T 0

n1-n1 0

*	FRI	Sampling	theory



Low rank Hankel matrix 

噣

噣

1

2

3

4

5

6

7

8

9

-1

0 1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

12

2

3

4

5

6

7

8

9

12

13

3

4

5

6

7

8

9

10

10

10

10

0

11

11

11

1

2

3

4

5

Finite length convolution

Matrix
Representation

* ALOHA : Annihilating filter based LOw rank Hankel matrix Approach
* Jin KH et al. IEEE TCI (to appear) * Jin KH et al.,IEEE TIP, 2015* Ye JC et al. IEEE TIT, 2016



Low-Rank Hankel matrix minimization

Missing	elements	can	be	found	by	low	rank	Hankel structured	matrix	completion

Nuclear	norm Projection	on	sampling	positions

min

m
kH(m)k⇤

subject to P⌦(b) = P⌦(f)

RankH(f) = k
* Jin KH et al IEEE TCI, 2016 
* Jin KH et al.,IEEE TIP, 2015
* Ye JC et al., IEEE TIT, 2016

m



General TV Signals

67

Weighted Fourier dataPiecewise smooth
Splines, polynomials



68

Existence of Annihilating Filter

ĥ(!) ⇤
⇣
l̂(!)f̂(!)

⌘
= 0

Annihilating filter for weighted Fourier data 

General Low-Rank Hankel Matrix Completion



Extension to general signal models

Stream of Diracs

Stream of differentiated Diracs

Non-uniform spline

Piecewise smooth polynomial

rank 
X

j

dj

rank = r

rank  rq

rank = r

rank =
X

j

dj

rank = rq

* Ye JC et al.,IEEE TIT   2016

With	a	proper	weighting,	the	Hankel
matrix	of	the	weighted	k-space	data

à low	ranked.



Performance Guarantees

m � c1µcsk log
↵ n

min
m

kH(m)k⇤
subject to P⌦(m) = P⌦(

ˆf)

min
m

kH(m)k⇤
subject to kP⌦(m)� P⌦(

ˆf)k  �

kH(m)�H(f̂)kF  c2n
2�

↵ =

(
2, on grid

4, o↵ grid

Exact Recovery

Stable Recovery

* Ye JC et al.,IEEE TIT   2016



Mutual Coherence for FRI

Confluent Vandermonde matrix 

Multiplicity of roots

Using extreme function
for bounding singular value 
See Moitra (2015)

* Ye JC et al.,IEEE TIT   2016



Relation to Super-resolution: Minimum separation

n/2-n/2 0

1/2-1/2 0

�

Same as 
Candes et al (2013)
Tang et al (2015)

Using extreme function
for bounding singular value 
See Moitra (2015)

� >
2

n

* Ye JC et al.,IEEE TIT   2016



Link to discrete domain CS 

• Unknown singularities are located on integer grid

• Discrete whiting filter with uniform sampling accounts for the sparsity

On grid model using cardinal setup

* Ye JC et al.,IEEE TIT   2016



Off-Grid vs On-Grid : Hankel

Hankel Matrix: off-grid Wrap-around Hankel Matrix: on-grid 

Periodic repetition

m � c1µcsk log
↵ n

↵ =

(
2, on grid

4, o↵ grid

* Ye JC et al.,IEEE TIT   2016



Off-grid vs On-grid: weighting

Regularized Weighting à more stable

* Ye JC et al.,IEEE TIT   2016



Phase transition: 
piecewise constant signals



Overview

1. Introduction

2. Review of Compressive Sensing

3. FRI extrapolation from uniform samples

4. Structured low-rank interpolation for non-uniform samples

• 2-D Theory

5. Fast implementations

6. Biomedical applications



2-D PWC functions satisfy an annihilation relation

spatial domain

Annihilation relation:

Fourier domain

multiplication

annihilating filter

convolution



Matrix representation of annihilation

2-D convolution matrix
(block Toeplitz)

2(#shifts) x (filter size)

gridded center
Fourier samples

vector of filter coefficients



Basis of algorithms: Annihilation matrix is low-rank

Prop: If the level-set function is bandlimited to

and the assumed filter support                     then                               

Spatial domain

Fourier domain



Basis of algorithms: Annihilation matrix is low-rank

Prop: If the level-set function is bandlimited to

and the assumed filter support                     then                               

Fourier domain 

Assumed filter: 33x25
Samples: 65x49 Rank     300

Example: 
Shepp-Logan



INPUT

One Step Algorithm

Jointly estimate edge set and amplitudes

Off-the-grid

OUTPUT

Interpolate

Fourier data

Accommodate random samples



Recovery as a structured low-rank matrix completion



Lift

Toeplitz1-D Example:

Missing data

Recovery as a structured low-rank matrix completion



Toeplitz1-D Example:

Complete matrix

Recovery as a structured low-rank matrix completion



Recovery as a structured low-rank matrix completion

Project

Toeplitz1-D Example:



NP-Hard!

Recovery as a structured low-rank matrix completion



Convex Relaxation

Nuclear norm – sum of singular values

Recovery as a structured low-rank matrix completion



Recovery from 20-fold random undersampled data

Ongie & Jacob, SAMPTA 15
https://arxiv.org/abs/1609.07429



Fully sampled           TV (SNR=17.8dB)        GIRAF (SNR=19.0)

50% Fourier samples
Random uniform                                                 error                                     error

Ongie & Jacob, SAMPTA 15
https://arxiv.org/abs/1609.07429



Performance guarantee

Ongie & Jacob, ICIP16, 
https://arxiv.org/abs/1703.01405



Incoherency measure
Intuition: minimum separation distance when packing r points on 
the edge-set curve, where  

6

Lemma 8. A basis of the column space of T (

ˆf ) is given
by the columns of the 2|⇤2| ⇥ R weighted Vandermonde-like
matrix:

Ecol(P ) =

1p
|⇤2|

0
BBBBBBBBB@

w1,x

kw1k e
j2⇡k1·r1 . . .

w
R,x

kw
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k e
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...
...

w1,y
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w
R,y

kw
R

k e
j2⇡k|⇤2|·rR

1
CCCCCCCCCA

,

(22)
where where {k1, ...,k|⇤2|} is a linear indexing of elements in
⇤2 and P = {r1, ...., rR} is a set of admissible nodes for the
curve {µ0 = 0}. The weight vectors wi = (wi,x, wi,y), are
described by the formula (52) in Appendix VIII, and depend
only on the edge set {µ0 = 0}, the nodes P , and the filter
support ⇤1.

See Section VIII-C for the proofs of Lemmas 6 and 7, and
Section VIII-E for the proof of Lemma 8.

B. Incoherence measure
We now show how to define an incoherence measure ⇢ that

satisfies the desired bounds in Prop. 3. Consider the Gram
matrix G(P ) = [Erow(P )]

⇤Erow(P ), where P is any set of
R points r1, ..., rR on the edge set curve {µ = 0}. It is easy
to see from the definition (21) that the entries of G(P ) are
specified by

(G(P ))i,j =
1

|⇤1|
D⇤1(ri � rj), 1  i, j  R, (23)

where D⇤1(r) :=

P
k2⇤1

ej2⇡k·r is the Dirichlet kernel
supported on ⇤1. Note that G(P ) has ones along the diagonal,
and the magnitude of the off-diagonal entries is dictated by
the distances |ri � rj | and the filter support ⇤1. We now
define the incoherence measure ⇢ associated with the edge
set E = {µ0 = 0} in terms of G(P ).

Definition 9. Suppose the edge set curve E = {µ0 = 0} has
bandwidth ⇤0 (see (3)), and set R = |⇤1|� |⇤1 : ⇤0|. Define
the incoherence measure ⇢ by

⇢ = min

P⇢{µ0=0}
|P |=R

1

�min[G(P )]

, (24)

where �min[G(P )] is the minimum eigenvalue of G(P ).

Put in words, among all possible arrangements of R points
along the edge-set {µ0 = 0}, we seek the arrangement such
that the minimum eigenvalue G(P ) is as large as possible. In-
tuitively, the optimal arrangement will maximize the minimum
separation distance among the R points, and ⇢ can be thought
of as a measure of this geometric property. In particular, edge
set curves that enclose a small area, and hence require the
points P to be closely spaced along the curve, will result in
a large value of ⇢. According to Theorem 4, the measurement
burden will be high for such curves.

Note that curves corresponding to a particular bandwidth
can come in different sizes. Specifically, for a fixed µ0 with

bandwidth ⇤0 consider the family of curves {µ0 = ↵}, where
↵ is a scalar. One can change ↵ to obtain multiple curves with
exactly the same bandwidth, each of which correspond to a
different levelset of µ0. These level-sets will have different
incoherence measures, depending on how large or small the
level-set curves are. This shows the incoherence of an edge
set captures something besides its bandwidth. See Figure 3 for
an illustration.

We can give incoherency measure of an edge set a more pre-
cise geometric interpretation based on the minimum separation
distance of a set of admissible nodes. We generalize a bound
on the condition number of Vandermonde matrices derived in
[27] to the case of the Vandermonde-like matrix (21), and use
this to derive a bound for the incoherence parameter ⇢.

Theorem 10. Assume that the points P = {(xi, yi)}Ri=1

belonging to the curve {µ0 = 0} satisfy |xi � xj | > �

and |yi � yj | > � for all i 6= j. Assume the filter support
⇤1 ⇢ Z2 is a square region symmetric around the origin of
size

p
|⇤1|⇥

p
|⇤1|. Then

⇢ 
 
1� 1p

|⇤1| �

!�2

, (25)

where ⇢ is the incoherence parameter (24) associated with the
curve {µ0 = 0}.

See Section I of the Supplementary Materials for the proof.
The bound in (25) shows that the incoherence is close to one
(i.e., is as small as possible) when � � 1/

p
|⇤1|. Since �

is the spacing between each pair of points on the curve, to
achieve a larger � spacing, and hence a smaller ⇢, requires
a larger curve. This suggests that fewer measurements are
required to recover a larger curve, which is consistent with
the findings in the isolated Dirac setting [27], [28].
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Fig. 3. Illustration of edge set incoherence measure ⇢. In (a) are
the level-sets of trigonometric polynomial µ0 bandlimited to ⇤0 of
size 3⇥ 3. These curves all have the same bandwidth, ⇤0, but come
in different sizes. In (b)-(d) we show R = 24 nodes on the curve
giving the indicated bound on incoherence parameter ⇢ defined in
(24), assuming a filter ⇤1 of size 7⇥7. Observe that the incoherence
measure increases as the curve gets smaller. This indicates the smaller
curves have a significant sampling burden.

V. NUMERICAL EXPERIMENTS

A. Algorithms
For small to moderate problem sizes the nuclear norm

minimization problem (10) can be solved efficiently with
the alternating directions method of multipliers (ADMM)
algorithm, which results in a modification of the singular value
thresholding (SVT) algorithm [29]. This approach has been
proposed for related structured low-rank matrix completion

Small regions: high incoherence & more measurements

Complex boundaries: high rank/bandwidth 



Phase transitions

• 10 trials
• Uniform random Fourier samples
• 64x64 Fourier sampling window

Randomly generated
synthetic PWC images

Ongie & Jacob, ICIP16, 
https://arxiv.org/abs/1703.01405



Related structured low-rank methods in MRI
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Low-Rank Modeling of Local -Space
Neighborhoods (LORAKS) for Constrained MRI

Justin P. Haldar, Member, IEEE

Abstract—Recent theoretical results on low-rank matrix recon-
struction have inspired significant interest in low-rank modeling
of MRI images. Existing approaches have focused on higher-di-
mensional scenarios with data available from multiple channels,
timepoints, or image contrasts. The present work demonstrates
that single-channel, single-contrast, single-timepoint -space
data can also be mapped to low-rank matrices when the image
has limited spatial support or slowly varying phase. Based on
this, we develop a novel and flexible framework for constrained
image reconstruction that uses low-rank matrix modeling of
local -space neighborhoods (LORAKS). A new regularization
penalty and corresponding algorithm for promoting low-rank
are also introduced. The potential of LORAKS is demonstrated
with simulated and experimental data for a range of denoising
and sparse-sampling applications. LORAKS is also compared
against state-of-the-art methods like homodyne reconstruction,
-norm minimization, and total variation minimization, and

is demonstrated to have distinct features and advantages. In
addition, while calibration-based support and phase constraints
are commonly used in existing methods, the LORAKS framework
enables calibrationless use of these constraints.

Index Terms—Constrained image reconstruction, low-rank ma-
trix recovery, phase constraints, support constraints.

I. INTRODUCTION

C ONSTRAINED reconstruction is increasingly common
in magnetic resonance imaging (MRI) because it offers

capabilities to reduce -space sampling requirements, reduce
noise confounds, and correct artifacts (see, e.g., [1], [2] and ref-
erences). Such approaches are enabled by the substantial struc-
ture present in MR images, which can be exploited to compen-
sate for incomplete/low-quality data. While various constraints
have been proposed, many approaches implicitly rely on linear
dependence relationships.
A set of vectors is said to be linearly dependent if

there exists a set of scalars (not all zero) such that

(1)

Manuscript received September 05, 2013; revised November 20, 2013; ac-
cepted November 28, 2013. Date of publication December 05, 2013; date of
current version February 27, 2014. This work was supported by the National
Institutes of Health (NIH) under Grant NIH-R01-NS074980.
The author is with the Signal and Image Processing Institute, Ming Hsieh

Department of Electrical Engineering, University of Southern California, Los
Angeles, CA 90089 USA (e-mail: jhaldar@usc.edu).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TMI.2013.2293974

Linear dependence relationships imply that

(2)

for each with . In other words, linear de-
pendence relationships mean that vectors can be predicted from
each other. Such relationships enable both reduced data acquisi-
tion (e.g., need not be sampled if it can be predicted from the
other vectors) and noise reduction (e.g., the ability to average
with its value predicted from the other ).
An incomplete list of constrained MR imaging methods

that exploit linear dependence relationships includes: par-
allel imaging methods like GRAPPA [3], SPIRiT [4], and
PRUNO [5] that exploit linear dependencies between -space
samples from different receiver coils within local -space
neighborhoods; autoregressive moving average (ARMA) linear
prediction models of Fourier data [6]–[9]; feature-recognizing
MRI [10], [11], which can be interpreted as learning linear
dependence relationships from a database of training images;
support-limited reconstruction methods [12]–[16]; partially
separable function models of dynamic imaging data [17], [18],
in which the temporal variations from different spatial locations
in the dynamic image are assumed to be linearly dependent;
and phase-constrained partial Fourier reconstruction techniques
that rely on the Fourier symmetry characteristics of images
with slowly varying phase [19]–[21]. All of these methods rely
on knowledge of the linear dependence coefficients ,
which have generally been derived from calibration data: fully
sampled -space regions that can be used to estimate .
In recent years, calibrationless generalizations of some of

thesemethods have been proposed based on techniques from the
emerging theory of low-rank matrix recovery [22], which itself
is a generalization of the theory of sparsity-based compressed
sensing [23], [24]. In particular, calibrationless matrix recovery
methods have emerged to exploit linear dependencies in appli-
cations like dynamic imaging [2], [25]–[33], parallel imaging
[34]–[36], spectroscopic imaging [37], [38], diffusion imaging
[2], [39]–[41], and functional imaging [42], [43]. Compared
to calibration-based methods, calibrationless low-rank methods
have the advantages that: 1) they enable the use of more general
sampling schemes; 2) they estimate linear dependence structure
using the entire set of measured data, instead of just the subset
of calibration data; and 3) they are immune to mismatches be-
tween the prior information and imaging data that might arise
(e.g., due to subject motion, field drift, etc.) if the calibration
data is acquired in a prescan.

0278-0062 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Discrete formulation exploiting sparsity, smoothly varying phase, and 
multichannel acquisition

Magnetic Resonance in Medicine 64:457–471 (2010)

SPIRiT: Iterative Self-consistent Parallel Imaging
Reconstruction From Arbitrary k-Space
Michael Lustig1,2* and John M. Pauly2

A new approach to autocalibrating, coil-by-coil parallel imaging
reconstruction, is presented. It is a generalized reconstruc-
tion framework based on self-consistency. The reconstruction
problem is formulated as an optimization that yields the most
consistent solution with the calibration and acquisition data. The
approach is general and can accurately reconstruct images from
arbitrary k-space sampling patterns. The formulation can flex-
ibly incorporate additional image priors such as off-resonance
correction and regularization terms that appear in compressed
sensing. Several iterative strategies to solve the posed recon-
struction problem in both image and k-space domain are pre-
sented. These are based on a projection over convex sets
and conjugate gradient algorithms. Phantom and in vivo stud-
ies demonstrate efficient reconstructions from undersampled
Cartesian and spiral trajectories. Reconstructions that include
off-resonance correction and nonlinear ℓ1-wavelet regulariza-
tion are also demonstrated. Magn Reson Med 64:457–471,
2010. © 2010 Wiley-Liss, Inc.
Key words: image reconstruction; autocalibration; parallel
imaging; compressed sensing; SENSE; GRAPPA; iterative recon-
struction

Multiple receiver coils have been used since the begin-
ning of MRI (1), mostly for the benefit of increased signal-
to-noise ratio. In the late 1980’s, Kelton et al. (2) proposed
in an abstract to use multiple receivers for scan accel-
eration. However, it was not until the late 1990s when
Sodickson and Manning (3) presented their method simul-
taneous acquisition of spatial harmonics (SMASH) and
later Pruessmann et al. (4) presented SENSE, that acceler-
ated scans using multiple receivers became a practical and
viable option.

Multiple receiver coil scans can be accelerated because
the data obtained for each coil are acquired in parallel
and each coil image is weighted differently by the spa-
tial sensitivity of its coil. This sensitivity information in
conjunction with gradient encoding reduces the required
number of data samples that are needed for reconstruction.
This concept of reduced data acquisition by combined sen-
sitivity and gradient encoding is widely known as parallel
imaging.

Over the years, a variety of methods for parallel imaging
reconstruction has been developed. These methods differ

1Department of Electrical Engineering and Computer Science, University of
California at Berkeley, Berkeley, California, USA
2Magnetic Resonance Systems Research Laboratory, Department of Electrical
Engineering, Stanford University, Stanford, California, USA
Grant sponsor: NIH; Grant numbers: P41RR09784, R01EB007588, and
R21EB007715.
*Correspondence to: Michael Lustig, Ph.D., 506 Cory Hall, University of
California, Berkeley, Berkeley, CA 94720. E-mail: mlustig@eecs.berkeley.edu
Received 13 January 2010; revised 13 January 2010; accepted 11 February
2010.
DOI 10.1002/mrm.22428
Published online in Wiley InterScience (www.interscience.wiley.com).

by the way the sensitivity information is used. Methods
like SMASH (3), sensitivity encoding (SENSE) (4,5), sen-
sitivity profiles from an array of coils for encoding and
reconstruction in parallel (SPACE-RIP) (6), parallel mag-
netic resonance imaging with adaptive radius in k-space
(PARS) (7), and parallel imaging reconstruction for arbi-
trary trajectories using k-space sparse matrices (kSPA) (8)
explicitly require the coil sensitivities to be known. In prac-
tice, it is very difficult to measure the coil sensitivities with
high accuracy. Errors in the sensitivity are often ampli-
fied and even small errors can result in visible artifacts
in the image (9). On the other hand, autocalibrating meth-
ods like auto-SMASH (10,11), partially parallel imaging
with localized sensitivities (PILS) (12), generalized auto-
calibrating partially parallel acquisitions (GRAPPA) (13),
and anti-aliasing partially parallel encoded acquisition
reconstruction (APPEAR) (14) implicitly use the sensitiv-
ity information for reconstruction and avoid some of the
difficulties associated with explicit estimation of the sen-
sitivities. Another major difference is in the reconstruction
target. SMASH, SENSE, SPACE-RIP, kSPA, and AUTO-
SMASH attempt to directly reconstruct a single combined
image. Coil-by-coil methods, PILS, PARS, and GRAPPA
directly reconstruct the individual coil images, leaving the
choice of combination to the user. In practice, coil-by-coil
methods tend to be more robust to inaccuracies in the sen-
sitivity estimation and often exhibit fewer visible artifacts
(9,14,15).

SENSE is an explicit sensitivity-based, single-image
reconstruction method. Among all methods, the SENSE
approach is the most general. It provides a framework
for reconstruction from arbitrary k-space sampling and to
easily incorporate additional image priors. When the sen-
sitivities are known, SENSE is the optimal solution (14,15).
To the best of the authors’ knowledge, none of the coil-by-
coil autocalibrating methods are as flexible and optimal as
SENSE. Some proposed methods (16–19) adapt GRAPPA
to reconstruct some non-Cartesian trajectories, but these
require approximations and therefore lose some of the
ability to remove all the aliasing artifacts.

Here, we propose a new approach to parallel imag-
ing reconstruction called SPIRiT (iterative self-consistent
parallel imaging reconstruction). It is a coil-by-coil auto-
calibrating reconstruction. It is heavily based on the
GRAPPA reconstruction but also draws its inspiration from
SENSE in the sense that the reconstruction is formu-
lated as an inverse problem in a very general way. The
result is that the reconstruction is the solution for a least-
squares optimization. SPIRiT is based on self-consistency
with the calibration and acquisition data. It is flexible
and can reconstruct data from arbitrary k-space sam-
pling patterns and easily incorporates additional image
priors.

© 2010 Wiley-Liss, Inc. 457

Discrete formulation exploiting multichannel acquisition



Overview

1. Introduction

2. Review of Compressive Sensing

3. FRI extrapolation from uniform samples

4. Structured low-rank interpolation for non-uniform samples

5. Fast algorithms

6. Biomedical applications



Nuclear norm minimization

1. Singular value thresholding step

-compute full SVD of X!

2. Solve linear least squares problem

-analytic solution or CG solve

ADMM = Singular value thresholding (SVT)



Alternating projections [“SAKE,” Shin 14], [“LORAKS,” Haldar, 14] 

1. Project onto space of rank r matrices

-Compute truncated SVD: 

2. Project onto space of structured matrices

-Average along “diagonals”

Alternating projection algorithm (Cadzow)



“U,V factorization trick”

Low-rank factors

U,V factorization [O.& Jacob, SampTA 15, Jin et al., ISBI 15]



1. Singular value thresholding step

-compute full SVD of X!

SVD-free à fast matrix inversion steps

2. Solve linear least squares problem

-analytic solution or CG solve

UV factorization approach

U,V factorization [O.& Jacob, SampTA 15, Jin et al., ISBI 15]



Main challenge : Computational complexity & memory

Image: 256x256

Filter: 32x32

~106 x 1000 ~108 x 105

Cannot Hold 

in Memory!

256x256x32

32x32x10

2-D 3-D



Exploit convolutional structure of the matrix

Fast evaluation using FFT

Direct computation of small Gram matrix: avoid storage



• Original IRLS: To recover low-rank matrix X, iterate

IRLS algorithm along with structure exploitation



• Original IRLS: To recover low-rank matrix X, iterate

• We adapt to structured case: 

IRLS



• Original IRLS: To recover low-rank matrix X, iterate

• We adapt to structured case: 

Without modification, this approach is still slow!

IRLS algorithm

Ongie & Jacob, ISBI16
https://arxiv.org/abs/1609.07429



Idea 1: Embed Toeplitz lifting in circulant matrix

Toeplitz

Circulant
*Fast matrix-vector products with              by FFTs

Ongie & Jacob, ISBI16
https://arxiv.org/abs/1609.07429



Idea 2: Approximate matrix lifting

*Fast computation of                                by FFTs

Pad with extra rows 

Ongie & Jacob, ISBI16
https://arxiv.org/abs/1609.07429



GIRAF: fast [O. & Jacob, 2016 (arXiv)]

IRLS TV-minimization GIRAF algorithm

Local update: Least-squares
problem

Global update
w/small SVD

Edge weights Image ImageEdge weights

Least-squares
problem

Complexity similar to IRLS for TV minimization





Table: iterations/CPU time to reach 
convergence tolerance of NMSE < 10-

4.

Convergence speed of GIRAF

Ongie & Jacob, ISBI16
https://arxiv.org/abs/1609.07429



Convergence speed of GIRAF

20

than competing algorithms, demonstrating its superior scalability. GIRAF is also successful on all the
“hard” problem instances where SVT fails to converge below the set NMSE tolerance.

In Figure 10 we show the results of a similar recovery experiment, but where the Fourier samples
are corrupted with noise. We test on the SL dataset with USF = 0.65, adding complex white Gaussian
noise to the Fourier samples such that the signal-to-noise ratio (SNR) is approximately 22 dB. Here we
test GIRAF against AP-PROX and SVT-UV in their regularized formulations, (16), tuning regularization
parameters to obtain the optimal NMSE in each case. In this experiment and subsequent ones we report
the time each algorithm took to reach 1% of the final NMSE, where the final NMSE is obtained by
running each algorithm until the relative change in NMSE between iterates is less than 10

�6. We observe
the GIRAF algorithm shows similar run-time as in the noise-free setting, and converges to a solution with
smaller NMSE.

0 200 400 600 800 1,000
10�3

10�2

10�1

CPU time (s)

N
M
S
E

AP-PROX

SVT+UV

GIRAF-0

0

0.1

AP-PROX SVT+UV GIRAF-0
NMSE = 4.9e�3 NMSE = 11.6e�3 NMSE = 1.8e�3

Runtime: 1000 s Runtime: 1090 s Runtime: 49 s

Fig. 10. Comparison of GIRAF with competing algorithms for structured low-rank matrix recovery with noisy data using a
piecewise constant SLRA model. Plotted is the per iteration NMSE against elapsed CPU time in the recovery of synthetic data
from noisy random uniform Fourier samples (USF=0.65, sample SNR=22dB).

3) Application to compressed sensing MRI reconstruction: In Figure 11 we demonstrate the GIRAF
algorithm for the recovery of real MRI data from undersampled Fourier data using the gradient weighted
lifting scheme. The datasets we experiment on were obtained from a fully sampled four-coil parallel
MRI acquisition, compressed into a single virtual coil using an SVD-based technique [63]. We then
retrospectively undersample the single virtual coil. To compensate for complex phase in the data, we
estimate the phase of the image from very few of its low-pass Fourier samples, and incorporate this
into the measurement operator A, as recommended in [1]. To demonstrate the potential benefit of a
Fourier domain SLRA approach over standard discrete spatial domain penalties, we compare against
a standard total variation (TV) regularized reconstruction, implemented with an efficient ADMM/Split-
Bregman approach [64]. We use the GIRAF-0 algorithm with a filter size of 55 ⇥ 55. Observe that



Overview

1. Introduction

2. Review of Compressive Sensing

3. FRI extrapolation from uniform samples

4. Structured low-rank interpolation for non-uniform samples

5. Fast implementations

6. Biomedical applications

a. Applications to MRI

b. Other applications 



TV-domain sparse signal cases
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TV-domain sparse signal cases
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k-t dynamic sparse signal cases



Single coil static MRI



Rank Bound for Parallel Imaging

Jin et al,  IEEE TCI, 2016

Sparsity of common image
In transform domain

Sparsity of sensitivity map
In Fourier domain
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Parallel MRI



Dynamic MRI – multi coil

Six fold (x6) 
down sampling
# of coils =4



What is MR parameter mapping?

MR Parameter Mapping

[1] Siemonsen, S et al., Radiology, 2008 [2] Rugg-Gunn, F. J., et al.  NEUROLOGY, 2005

TE1 TE2 TE3 TE4

e.g. Multi-Echo Spin-Echo (ME-SE, T2 mapping)

t

Finding	the	quantitative
value	of	each	tissue

ConsPros

e.g. of T2 mapping for diagnosis for epilepsy

Clinically valuable
- As a quantitative diagnosis tool
- Acute stroke, epilepsy, etc.

Pros Cons

TE1 TE2 TE3 TE4

e.g. Multi-echo images for T2 mapping

Long scan time
- Needs multiple scans
- Variation of TI, TE, FA, etc.
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Reconstruction of x12.8 accelerated scan – ME-SE (4th echo)

Result : in vivo acceleration study ( ME-SE, T2 )

k-t FOCUSS k-t SPARSE C-LORAKSFull k-t SLR ALOHAPatch

Lee et al,  MRM, 2015
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Mapping from the reconstruction of x12.8 accelerated scan – T2 mapping

Result : in vivo acceleration study  ( ME-SE, T2 )

k-t FOCUSS k-t SPARSE C-LORAKSFull k-t SLR ALOHAPatch

Lee et al,  MRM, 2015



Result : Signal intensity curves ( SE-IR, T1 )

400 800 1200 16000 Time (ms)
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T1 relaxation

k-t FOCUSS
k-t SPARSE
Patch

Original ALOHA

LORAKS

k-t SLR

Lee et al,  MRM, 2015



Summary of Results

• Goal : Acceleration of MR Parameter mapping
by undersampling and reconstruction 

Full acquisition

Scan
Time

Conventional scan

Accelerated 
scan

1min	2s

12min	50s

Accelerated 
acquisition

Reconstructed 
images

ALOHALee et al,  MRM, 2015



Extension to 3-D applications using GIRAF

Image: 256x256

Filter: 32x32

~106 x 1000 ~108 x 105

Cannot Hold 

in Memory!

256x256x32

32x32x10

2-D 3-D



Lifting in 3D

𝒯(𝑓$) is low rank!

127

3D applications: dynamic MRI



Weight Update: Gram matrix: 2 FFTs and no matrix product.

Square root - one small eigen decomposition

Where,
Need few iterations of
CG to solve.

Fourier data update:

1 frame of

Fast 3-D implementation using GIRAF



Cardiac CINE MRI

1
2
9

Truth

Golden angle (14lines)

Proposed 
SNR – 23.32

HFEN– 0.109

TV
SNR – 23.27

HFEN– 0.121

Fourier Sparsity
SNR – 21.52
HFEN– 0.15

Balachandrasekaran & Jacob, ICIP 16



Decay	Constant	

Few measurements

Fourier samples

Sampling Mask

Exponential signals with spatially smooth parameters

MR parameter mapping
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Figure 3: Information flow in the proposed method. The residue specified by D(r, f) in [5] is discretized
on a uniform grid. The global optimum of the proposed constrained optimization problem is obtained using
a globally optimal graph cut optimization to yield the initial field map and the initial R⇤
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MR spectroscopic imaging, fat-water imaging,..
Fieldmap.            T2* map

Exponential signals with spatially smooth parameters



1-D signal satisfies an annihilation relation!

L+1 tap filter
Example: L=1



1-D

3-D
Fourier domain

Spatially smooth parameters 



Convolution as multidimensional Toeplitz matrix relation

⋮



Number of filters satisfying 

Multidimensional Toeplitz matrix is low-rank

⋮

Balachandrasekaran & Jacob, ISBI 17, Wed AM



Proposed method      7.5 times faster than IRLS (direct) method

Fast algorithm using an extension of GIRAF

Balachandrasekaran & Jacob, ISBI 17, Wed AM



Spatially bandlimited filters provide better reconstruction
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Parameter mapping in MRI

Balachandrasekaran & Jacob, ISBI17
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Parameter mapping in MRI
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Correction of Nyquist ghosts in multishot MRI [MUSSELS]

Motion-induced inter-shot phase errors

Ghost artifactsOriginal image

θ2

θ1



Self calibration methods: Image domain

Image domain annihilation relation [Morrisson, Do & Jacob 2007]

θ2

θ1

θ1

θ2

Model sensitivities as polynomials: EVD

Better than SOS estimates



θ2

θ1

θ1

θ2

Fourier domain relation [Lustig 2012, Haldar 2014 ]

Self calibration methods: Fourier domain

Phase: linear combination of exponentials      FIR filter



Fourier domain relation

Self calibration methods: matrix form

Convolution: matrix multiplication

k-space samples

=



Fourier domain relation

Self calibration methods: Fourier domain

Compact matrix representation

N shots:           null space vectors

Q is low-rank & structured k-space samples



Smoothness regularized multishot MRI

Smoothness regularization

Multi-shot recovery

Structured low-rank recovery

Combine the matrix liftings

Mani & Jacob, Magnetic Resonance Medicine, in press



0.8 x 0.8 x 2mm; 3 avgs; 25 directions; b=700

Structured low-rank recovery: MUSSELS

Can also account for partial Fourier

Mani & Jacob, Magnetic Resonance Medicine, in press, EMBC 2016



MUSE

vs

MUSSELS

Average #1               Average #2                  Combined

Comparison with MUSE (state of the art)

Mani & Jacob, Magnetic Resonance Medicine, in press



Radial trajectory correction 

Figure 1: Generating the block Hankel matrix from the radial data. The radial data is split into Ns segments based on the polar angle. The Hankel matrix of each segment
is computed after gridding to Cartesian co-ordinates. The block Hankel matrix generated is used for structured low-rank matrix recovery.

Figure 2: FFT of gridded data (left), CG NUFFT (middle), Proposed method (right).

Conclusion: We proposed direct reconstruction scheme for motion-compensated multi-shot diffusion data reconstruction
that does not require motion phase calibration, which works well for data acquired using spiral trajectories. This method
is general enough to accommodate other non-cartesian trajectories as well and offer superior reconstructions in many cases
compared to standard phase calibrated methods.

References:

2



Radial trajectory correction 

Uncorrected Corrected
Mani & Jacob, ISMRM 17



MR artifacts

• What is MR artifacts?
During acquisition, external interruptions (ex. fluctuation power 
supply of gradient, motion of object, etc.) distort signals.

151

Spike noise Respiratory motion
M. Graves, et. al., JMRI (2013)



Motivation

152



ü Herringbone (spikes 2-D k-space)

Motivations: MR artifacts as sparse outliers

153



ü Motion artifact (spikes 1-D k-space parallel to readout)

154

Motivations: MR artifacts as sparse outliers



Zipper artifact (spikes 1-D k-space perpendicular to readout)

155

Motivations: MR artifacts as sparse outliers



Key Observation : Sparse outliers

156

ALOHA* Sparse MR artifact+

* Sparse outlier is still sparse in weighted Hankel matrix

† E. Candes, et. al, JACM (2011), R. Otazo, et. al, MRM (2015)
*K.H. Jin, et. al, IEEE TIP (2015), K.H. Jin, et. al, arXiv (2015), J. C. Ye, et. al, arXiv (2015), J. Lee, et. al, MRM (2016), D. Lee, et. al, MRM (2016)

• ALOHA:  Annihilating filter based LOw rank Hankel matrix Approach 



Robust ALOHA

157

RPCA for weighted Hankel matrix

ü Extension of ALOHA for decomposition 
of sparse outliers (E) out of mixed signal*
ü Can be addressed ADMM†

ü K-space weighting

signal Sparse outlier

K-space weighting

* E. Candes, et. al, JACM (2011), R. Otazo, et. al, MRM (2015)
† S. Boyd, et. al., Foundations and Trends in Machine Learning (2011)
‡ Z. Wan, et. al.,  Mathematical Programming Computation (2012)
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Algorithm Flowchart



Retrospective results

High intensity
Spike noise

Low intensity
Spike noise 
(low frequency region)

Spike noise 
with down sampling (x5)



In Vivo Motion artifact

sudden motion
(3 times)



Cardiac Motion artifact



Zipper artifact

162



2-D herringbone (in-vivo)

163

before after



2-D herringbone (in-vivo)



EPI Ghost artifact

Gx
RO

Gy
PE

Gz
SS

RF

Ghost artifact image

In EPI, Gradient is distorted by eddy currents and this causes phase shift

Distorted gradient

FT

Even and odd echo mismatch 
causes ghost artifact!

Phase shift



Conventional correction

• Navigator : pre-scan or reference scan
Navigator-free

PE

RO Make phase 
difference map

Navigator-based

• Pulse sequence compensation

Calculate difference of phase 
between 1st -2nd line, 2nd -3rd line

only possible to linear phase correction

• Without any modification

lower performance compared to 
the reference-based approaches

Gx
RO

Gy
PE

Gz
SS

RF

Without PE 
gradient

Xiang QS et al., MRM, 2007
Poser BA et al., MRM, 2013

- Using Parallel Imaging Information

Kim YC et al., JMRI, 2007
Zhang et al., MRM, 20041) 2)

2)

1)

t-1 t

… …

SENSE recon. SENSE recon.

Phase disparity
from EPI data itself

Calculate

- others



EPI model

Image intensity Frequency offset

Echo time

Echo spacing (time between each echo)

EPI data can be expressed as N : Total # of echoes
n : Index of each line
x : Read-out
y : Phase-encoding

Virtual k-space 
(even signals)

Virtual k-space 
(odd signals)

where

Different!



Sparsity of difference

The ghost generating phase term can be changed into a sine term

Sparse

How can we use this sparsity?



Sparsity of difference (Cont.)

Low rank structured matrix
completion algorithm

EPI ghost correction 
Problem

k-space interpolation Problem 
using low rank structure



Reconstruction flow

• SE-EPI in-vivo data, 128x128 matrix size, 6/8 partial Fourier

Image

K-space

Odd echo only Even echo only
Reconstruction 

by odd echo
Reconstruction
by even echo SSOS result

ALOHA



Result : GRE-EPI in-vivo

Direct
inverse FT Proposed Conventional

-with reference
Conventional
-w/o reference

Im
ag

e
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Result : fMRI analysis

fMRI analysis of GRE-EPI using SPM
• Pair hand squeezing stimulation
⇒ Motor cortex activation

ProposedConventional

SP
M
m
ip

[0
, -

1,
 1

.2
5]

<

< <

SPM{T56}

hand1

SPMresults: .\classical
Height threshold T  = 5.315495  {p<0.05 (FWE)}
Extent threshold k = 0 voxels

Design matrix
0.5 1 1.5 2 2.5

10

20

30

40

50

60

contrast

1

Statistics:  p-values adjusted for search volume

set-level
p c

cluster-level
pFWE-corr qFDR-corr kE puncorr

peak-level
pFWE-corr qFDR-corr T (Z

º
) puncorr

mm mm mm

table shows 3 local maxima more than 8.0mm apart

Height threshold: T = 5.32, p = 0.000 (0.050)
Extent threshold: k = 0 voxels
Expected voxels per cluster, <k> = 0.557
Expected number of clusters, <c> = 0.09
FWEp: 5.315, FDRp: 6.670, FWEc: 1, FDRc: 6

Degrees of freedom = [1.0, 56.0]
FWHM = 8.9 10.2 9.0 mm mm mm; 3.0 3.4 2.4 {voxels}
Volume: 1762931 = 52235 voxels = 1903.6 resels
Voxel size: 3.0 3.0 3.8 mm mm mm; (resel = 24.08 voxels)

0.000 15 0.000 0.000 110 0.000 0.000 0.000  13.22   Inf 0.000 -39 -28  50 

0.000 0.000   8.75  6.92 0.000 -45 -13  61 

0.000 0.019   6.82  5.80 0.000 -42 -25  65 
0.000 0.000 146 0.000 0.000 0.000  13.13   Inf 0.000  45 -19  61 

0.000 0.000   9.84  7.46 0.000  45 -22  46 

0.000 0.001   7.86  6.43 0.000  51 -10  46 
0.000 0.000 36 0.000 0.000 0.000   8.83  6.96 0.000 -51 -37  65 

0.000 0.000 11 0.000 0.000 0.019   6.84  5.81 0.000  -6  53 -25 

0.000 0.005 6 0.003 0.000 0.019   6.78  5.77 0.000 -39  53 -14 
0.000 0.001 10 0.000 0.000 0.025   6.67  5.70 0.000 -51  47 -18 

0.000 0.000 13 0.000 0.001 0.088   6.26  5.43 0.000  -3  -4  54 
0.000 0.000 11 0.000 0.002 0.097   6.19  5.38 0.000 -39 -52  65 

0.021 0.516   5.56  4.94 0.000 -42 -55  58 
0.005 0.063 2 0.059 0.003 0.144   6.04  5.28 0.000 -33  59   5 
0.005 0.063 2 0.059 0.004 0.154   6.00  5.25 0.000  -3 -94   1 

0.005 0.063 2 0.059 0.005 0.188   5.92  5.20 0.000 -54 -31  50 

0.005 0.063 2 0.059 0.009 0.285   5.78  5.09 0.000   6 -91  16 
0.015 0.168 1 0.168 0.011 0.307   5.74  5.07 0.000 -33  56 -10 

0.005 0.063 2 0.059 0.027 0.618   5.48  4.89 0.000  15 -97  20 

0.005 0.063 2 0.059 0.031 0.665   5.45  4.86 0.000 -27  62   1 

Proposed 
(multi-coil)Conventional Proposed 

(single-coil)



Applications to Image Processing

Inpainting & Impulse noise removal



Spectral Domain Sparsity
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Smoothness, texture, pattern

Sparse spectrum

Smooth patch

Edge patch Texture patch

Concentrated	at
DC

Elongated	along	
Perpendicular	to	edge

Distributed	orthogonally	
w.r.t.	texture



2-D Hankel matrix
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Hankel
Matrix

construction
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Why patch processing ?

- Spectrum changes for each patch
- Need to adapt the local Image statistics

A
LO

H
A



Rotation invariant sparsity
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Hankel structured matrix is intrinsic low rank !!

0 deg. 90 deg.

0 90



Experimental results (x5)
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Experimental results (x5)

18. APR. 2015. 179
*



18. APR. 2015. 180

Text inlayed image reconstruction
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Line scratches
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Object removal



183*K.H. Jin, et. al, IEEE TIP (2015)
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Impulse Noise Removal
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Application to B-mode US Imaging

187

All Rx should be used
à high power 

consumption,
High data rate

1. Probes deliver 
beamformed

B-mode image, only.

2. After DAS, 
raw measurements 
discarded.



Sub-sampled Dynamic Aperture B-mode Imaging 
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Low-Rankness of B-mode US Data

Temporal slices of
Pre-beamformed RF data 

Reordering of pre-beamformed
into scanline-offset domain

for low-rank property

Multi-channel
ALOHA

Interpolation

Series of 
reordered data

à
Stacked 

Hankel matrix



Sparsity of the Spectrum



Exploiting Temporal Redundancy

191

à inter-temporal  annihilating filter

Reordered subsampled pre-beamformed data Reconstructed slices

Low-Rankness of B-mode US Data
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Low-Rankness of B-mode US Data

Spatio-temporal redundancy

à achieved by multichannel
Hankel matrix

Singular value dist. of 

Lowest rank over several settings!

Matrix àHankel matrix



In-vivo Acquisition 

• Verasonics system with a 
Linear type probe (L7-4) 

• Center freq:5MHz
• Sampling:20 MHz.
• 128 scanlines (SC) x 128 

RX channels
• RX element 

– Width:133um 
– space between RX 

elements : 158um
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Snapshot image from dynamic scan
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Dynamic reconstruction (x2)
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Full  Sampling Beam forming



Dynamic reconstruction (x2)
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Full  Sampling ALOHA



Dynamic reconstruction (x8)
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Full  Sampling Beam forming



Dynamic reconstruction (x8)
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Full  Sampling ALOHA



Dynamic reconstruction (x12)
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Full  Sampling Beam forming



Dynamic reconstruction (x12)

200

Full  Sampling ALOHA



§ Nanoscopy based on localization 

§ Localization precision is not diffraction limited

§ Sparsely activated probes + localization => super-

resolution image 

§ However, sparse activation scheme has too slow 

temporal resolution for live imaging 

§ Tens of seconds or several minutes 

§ High-density imaging for fast live imaging 
§ Require a robust localization algorithm and system 6/

Low-density imaging 

High-density imaging 

Localization microscopy



Greedy approach Sparsity based approach

Min, J.et al, Sci. Rep, 2014Zhu, L.et al, Nat Methods, 2012Holden, S.et al, Nat Methods, 2011

Better Localization Performance 
8/

Existing high density algorithm



203/

ALOHA principle

ü PSF estimation

ü Deconvolution 

ü Grid-free localization 

ALOHA for localization microscopy
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Minimum

PSF estimation



26
/

Grid-free localization
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True

3. Grid-free
Localization

2. Deconvolution1. PSF estimation

Raw data

Image

Fourier

ROI for 
PSF estimation

Algorithm procedure



PSF variation along time



Reconstruction



Localization bias



Infrared spectroscopy

1D IR spectroscopy                                                   2D IR spectroscopy

1 Compressively Sampled Two-Dimensional Infrared Spectroscopy
2 That Preserves Line Shape Information
3 Jonathan J. Humston,† Ipshita Bhattacharya,‡ Mathews Jacob,‡ and Christopher M. Cheatum*,†

4
†Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States

5
‡Department of Electrical and Computer Engineering, University of Iowa, Iowa City, Iowa 52242, United States

6 ABSTRACT: Two-dimensional infrared (2D IR) spectroscopy is a powerful tool to
7 investigate molecular structures and dynamics on femtosecond to picosecond time scales
8 and is applied to diverse systems. Current technologies allow for the acquisition of a single
9 2D IR spectrum in a few tens of milliseconds using a pulse shaper and an array detector,
10 but demanding applications require spectra for many waiting times and involve
11 considerable signal averaging, resulting in data acquisition times that can be many days
12 or weeks of laboratory measurement time. Using compressive sampling, we show that we
13 can reduce the time for collection of a 2D IR data set in a particularly demanding
14 application from 8 to 2 days, a factor of 4×, without changing the apparatus and while
15 accurately reproducing the line-shape information that is most relevant to this application.
16 This result is a potent example of the potential of compressive sampling to enable
17 challenging new applications of 2D IR.

18 ■ INTRODUCTION
19 Long data acquisition times are a longstanding problem in
20 many experimental methods and can limit the number of
21 studies that are practicable, especially those involving time-
22 evolving or unstable samples. Over the past decade,
23 compressive sampling has reduced data acquisition time in
24 diverse fields such as geophysics,1 medical imaging,2 computa-
25 tional biology,3 and astronomy.4 Compressive sampling
26 requires only a fraction of the traditional number of
27 measurements while yielding much of the same information
28 as the fully sampled data. Here we introduce an implementation
29 of compressive sampling to reduce the data acquisition time of
30 two-dimensional infrared (2D IR) spectroscopy without
31 distorting spectral peak line shapes.
32 Natural signals often have an underlying structure that causes
33 the signal or its coefficients in an appropriate transform domain
34 (e.g., Fourier coefficients, finite differences) to be sparse,
35 meaning that most coefficients have small values and there are
36 few large coefficients. In traditional data compression, the fully
37 sampled signal is transformed into a fixed basis and the
38 significant coefficients are stored or transmitted. The com-
39 pressed data can then be decompressed for viewing. This idea
40 underlies methods such as JPEG compression of images. A
41 massive data acquisition followed by the removal of most of the
42 data, however, is inefficient. Compressive sampling aims to
43 bypass the first step and to directly acquire the compressed
44 signal with no a priori knowledge of the signal being measured.
45 2D IR spectroscopy is a multidimensional spectroscopic
46 method used in the investigation of molecular structure and
47 dynamics on femtosecond to picosecond time scales and has
48 been applied to diverse systems from dilute solutions to solids
49 to membranes.15 There are different approaches to building a
50 2D IR spectrometer, and different experimental designs can

51lead to big differences in data acquisition times.5 Current
52technologies allow for the acquisition of a single 2D IR
53spectrum in a few tens of milliseconds using a pulse shaper and
54an array detector. For some applications, acquiring one
55spectrum is enough to answer the questions being asked, and
56improving the data acquisition time may not be important.
57Other applications, however, require spectra for many waiting
58times or may involve considerable signal averaging, and further
59reducing the time to acquire one spectrum can significantly
60reduce the overall measurement time.
61Previously, Dunbar et al. applied a form of compressive
62sampling to 2D IR.6 By scanning small, evenly spaced time
63points over a relatively short window, they determined peak
64positions and relative peak amplitudes with a reduction in
65acquisition time of a factor of 16. Unfortunately, their approach
66requires that the approximate frequencies, or at least the
67frequency splitting, must be known a priori to know where to
68place the sampling window. This method is further limited by
69the fact that it lacks the ability to reproduce line-shape
70information.

71■ EXPERIMENTAL METHODS
72We present 2D IR data collected in our lab measuring the
73antisymmetric stretch of the azide anion bound to formate
74dehydrogenase in a ternary complex with NAD+ to determine
75the frequency−frequency correlation function (FFCF).7 The
76full data set required 8−10 days of data acquisition because of
77the high density of waiting times and the extensive averaging
78necessary for the measurement. For each 2D IR spectrum, we
79scan τ1 from 0 to 4 ps, taking 24 fs steps in the rotating frame,
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Fig. 3. 2D Gaussian fits for simulated data: The fit parameters for
uniform and non-uniform undersampling are shown. The errors bars
represent 95% confidence bounds. The CS parameters degrade rapidly
with increasing acceleration whereas the degradation of lineshhape for
GIRAF is remarkably less.

Trends can also be seen in the quantitative comparisons in Fig.
5.

CS
GI

RA
F

(c)

(d)

(
)

𝝎𝟏 (𝒄𝒎−𝟏)
True Spectrum

(a)

(b)

Example sampling mask for 
under sampling factor 10 𝝎𝟏 (𝒄𝒎−𝟏)

Under sampling factor
3                                8                             12                             20

(
)

𝝎𝟏 (𝒄𝒎−𝟏) 𝝎𝟏 (𝒄𝒎−𝟏) 𝝎𝟏 (𝒄𝒎−𝟏)

(
)

Fig. 4. Non-uniformly undersampled recovery of experimental 2D IR
data: (a)The fully sampled 2D spectrum is recovered from 167 t points.
(b) Example non-uniform sampling mask of undersampling factor 10.
(c) Performance of compressed sensing (CS) algorithm and (d) GIRAF
at various undersampling factors.

Fig.5 shows a quantitative comparison of CS (blue) and GI-
RAF (red) 2D-Gaussian fit parameters. GIRAF lineshape param-
eters are within ±10% of the true data up to an undersampling
factor of 20. CS fits, however, significantly deviate from the
true fits beyond an undersampling factor of 5. For experimental
data, which is more challenging than simulated data GIRAF
exhibits much better recovery in comparison to compressed
sensing methods.

6. CONCLUSION

We introduce a novel method to reconstruct 2D IR data from few
measurements. The proposed algorithm models the signal as
a linear combination of damped exponentials. The algorithm
exploits the low rank structure of a Toeplitz matrix, whose en-
tries are samples of the linear combination of exponentials, and
is capable of recovering the missing samples in the signal from
heavily undersampled measurements. Our results show that

Fig. 5. Gaussian fit comparisons for experimental data: The fit pa-
rameters using CS and GIRAF are shown. The error bars represent
95% confidence bounds. The CS reconstruction for undersampling
factor 20 could not be fitted to the model due to severe distortion of
the lineshape.

the lineshapes are adequately preserved for quantitative analy-
sis, with as few as 6 samples in simulated data and 8 samples
for the experimental data. . This approach has the potential to
accelerate 2D IR considerably.

7. FUNDING INFORMATION

This work is supported by grants NIH 1R01EB019961-01A1 and
ONR N00014-13-1-0202 (MJ) and NSF CHE-1361765 (CMC)

REFERENCES
1. P. Hamm and M. Zanni, Concepts and methods of 2D infrared spec-

troscopy (Cambridge University Press, 2011).
2. W. Rock, Y.-L. Li, P. Pagano, and C. M. Cheatum, The Journal of Physical

Chemistry A 117, 6073 (2013).
3. J. J. Humston, I. Bhattacharya, M. Jacob, and C. M. Cheatum, The

Journal of Physical Chemistry A 0, null (0). PMID: 28365984.
4. J. A. Dunbar, D. G. Osborne, J. M. Anna, and K. J. Kubarych, The

Journal of Physical Chemistry Letters 4, 2489 (2013).
5. J. N. Sanders, S. K. Saikin, S. Mostame, X. Andrade, J. R. Widom, A. H.

Marcus, and A. Aspuru-Guzik, The journal of physical chemistry letters
3, 2697 (2012).

6. J. C. Ye, J. M. Kim, K. H. Jin, and K. Lee, IEEE Transactions on Informa-
tion Theory (2016).

7. X. Qu, M. Mayzel, J.-F. Cai, Z. Chen, and V. Orekhov, Angewandte
Chemie International Edition 54, 852 (2015).

8. A. Balachandrasekaran, G. Ongie, and M. Jacob, in “2016 IEEE Interna-
tional Conference on Image Processing (ICIP),” (IEEE).

9. G. Ongie and M. Jacob, in “Sampling Theory and Applications (SampTA),
2015 International Conference on,” (IEEE).

10. G. Ongie and M. Jacob, in “2015 IEEE 12th International Symposium
on Biomedical Imaging (ISBI),” .

11. P. Stoica and R. L. Moses, Introduction to spectral analysis, vol. 1
(Prentice hall Upper Saddle River, New Jersey, USA, 1997).

12. Q. Cheng and H. Yingbo, A review of parametric high-resolution
methods,High-resolution and robust signal processing (H. Yingbo, A.
Gershman, and Q. Cheng, eds.), (Marcel Dekker, 2003).

13. Y. Chen and Y. Chi, “Robust spectral compressed sensing via structured
matrix completion,” in “IEEE Trans. Inf. Theory,” , vol. 60 (2014), vol. 60,
pp. 6576–6601.

14. G. Ongie and M. Jacob, in “2016 IEEE 13th International Symposium
on Biomedical Imaging (ISBI),” (IEEE).

15. M. Fornasier, H. Rauhut, and R. Ward, SIAM J Optimization 21, 1614
(2011).

Accelerated imaging using GIRAF
Humston et al, Journal of Physical Chemistry
Bhattacharya et al, Optics Letters, submitted



Conclusions

• Off-the-grid = Continuous domain representation

• Compressive off-the-grid imaging:

Exploit continuous domain modeling to improve  image 

recovery from few measurements

• Two realizations: extrapolation, interpolation

– Extrapolation: FRI theory

– Interpolation:  Structured low-rank matrix completion

• Performance guarantee for structured low-rank approach

– 1D, 2D theory à near optimal performance guarantee



Conclusions (cont.)

• Extensive applications

– MRI

• Compressed sensing MRI, parallel MRI

• Super-resolution MRI

• MR artifact removal

– Image processing: inpainting, impulse noise denoising

– Other imaging applications

• US imaging

• Optics 

• A missing link between analytic recon and CS ?
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