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Recovery of Discontinuous Signals Using
Group Sparse Higher Degree Total Variation

Greg Ongie*, Student Member, IEEE, Mathews Jacob, Senior Member, IEEE

Abstract—We introduce a family of novel regularization penal-
ties to enable the recovery of discrete discontinuous piecewise
polynomial signals from undersampled or degraded linear mea-
surements. The penalties promote the group sparsity of the signal
analyzed under a nth order derivative. We introduce an efficient
alternating minimization algorithm to solve linear inverse prob-
lems regularized with the proposed penalties. Our experiments
show that promoting group sparsity of derivatives enhances the
compressed sensing recovery of discontinuous piecewise linear
signals compared with an unstructured sparse prior. We also
propose an extension to 2-D, which can be viewed as a group
sparse version of higher degree total variation, and illustrate its
effectiveness in denoising experiments.

Index Terms—Higher degree total variation (HDTV), group
sparsity, analysis models, compressive sensing, denoising

I. INTRODUCTION

Total variation (TV) has had great success as a regulariza-
tion penalty for a diversity of inverse problems, especially
in its ability to preserve sharp edges in recovered signals.
However, a piecewise constant prior is not appropriate for all
types of signals. For example, many natural images contain
smoothly varying regions due to lighting gradients, and are
better modeled as piecewise linear or piecewise polynomial.
To address this issue, researchers have proposed various exten-
sions of TV that promote sparsity of higher order derivatives
[1]–[5], which are closely related to spline representations in
1-D [6].

However, these higher order schemes can bias the results
towards continuous (with derivatives of order n = 2) or
continuously differentiable signals (n > 2), since these signals
have sparser representations under higher order derivatives. In
contrast, to represent a discontinuous 1-D signal as a spline
function under an nth order derivative requires n adjacent
coefficients per discontinuity, assuming the discontinuities are
sufficiently separated. Yet the preservation of these discontinu-
ities is a key concern in many signal recovery settings, such as
in image reconstruction where discontinuities represent sharp
image edges. Hence, we propose extending these higher order
schemes to accommodate discontinuous signals by exploiting
the group structure of higher order derivatives of the signal.

Specifically, we derive a model for discrete 1-D discon-
tinuous piecewise polynomial signals with maximum degree
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(n−1) based on the group sparsity of the nth order derivative.
This can be viewed as an instance of a group sparse analysis
model, a variant of the recently proposed cosparse analysis
signal model [7]. We introduce a family of non-convex reg-
ularization penalties to promote group sparsity of derivatives.
We also propose an efficient algorithm to solve linear in-
verse problems regularized with these penalties based on the
smooth continuation method in [8]. Our experiments on the
compressed sensing (CS) recovery of 1-D synthetic piecewise
linear signals show that our proposed scheme outperforms the
corresponding cosparse scheme.

We also investigate an extension of the penalties to 2-D,
which can be viewed as group sparse versions of our recently
introduced higher degree total variation (HDTV) penalties [5]
and their generalizations [9]. Note that neither [5] nor [9]
address the case of group sparse derivatives or non-convex
penalties. Our experiments show the group sparse HDTV
penalty improves over regular HDTV and other related higher
order TV penalties in denoising natural images.

A. Related work

Many other researchers have proposed non-convex penalties
for promoting group sparsity, showing substantial improve-
ments over convex formulations, which motivates their use
in this work. Notably [10] investigates an overlapping group
sparsity prior for denoising, and proposes using certain non-
convex penalty functions such that the overall cost function
is convex. While this approach has advantages over the fully
non-convex formulation that we pursue, the theory in [10] is
not easily extended the general linear inverse problem setting
we consider, nor to a general analysis prior. See also [11] for
a non-convex group sparse analysis approach to compressive
color imaging.

This work also has similarities to [12] which introduces a
group sparse version of 1-D TV to allow for the recovery
of smooth edges in signals that are approximately piecewise
constant. However, the signal model and goals of this work are
fundamentally different, as we are concerned with preserving
sharp edges in signals that are piecewise polynomial, not
piecewise constant.

II. SIGNAL MODEL

A. 1-D signal model

We begin by considering the class of discrete 1-D signals
consisting of a small number of polynomial segments with
discontinuities, or “jumps”, allowed at the interfaces. In par-
ticular, we define Pn(k, d) to be space of all signals x ∈ Rd
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consisting of at most k polynomial segments, each having
maximum degree (n− 1); see Fig. 1. Note that signals whose
piecewise polynomial segments have different degrees can be
modeled as elements of Pn(k, d), where (n − 1) is equal to
the highest degree of a segment.

More formally, we may define Pn(k, d) as all x ∈ Rd

such that for some constants ai,j ∈ R and knots
1 ≤ m1 < ... < mk ≤ d,

x =

k∑
i=1

(
ai,0r

0
mi

+ ai,1r
1
mi

+ · · ·+ ai,n−1r
n−1
mi

)
, (1)

where r`m := (1/`!) max(0, j−m+1)` are powers of a linear
ramp. Signals in the form of (1) have a particularly simple
representation under the the discrete nth derivative operator
D : Rd → Rd, defined as n applications of the backwards
finite difference operator F, defined as [Fz]j = zj − zj−1,
for 1 ≤ j ≤ d with z0 = 0. Note that Dr`m = δ(n−`−1)m

where δ(p)m is a pth order derivative of a Dirac delta centered
at m, which has support {m, ...,m+ p}. By linearity, for any
x ∈ Pn(k, d) this gives

Dx =

k∑
i=1

(
ai,0δ

(n−1)
m + ai,1δ

(n−2)
m + · · ·+ ai,n−1δm

)
.

(2)
When the number of jumps k is much less than than the

signal length d, the analyzed signal in (2) is sparse, having at
most n · k nonzero entries, with support contained within the
union of all groups of indices {mi, ...,mi+n−1}, i = 1, ..., k.
In other words, Dx is group sparse under the nth order
derivative, where the groups are defined as all overlapping
sets of n consecutive indices within {1, ..., d}.
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Fig. 1: Example of a signal belonging to L2(5, 64) (left) and the
signal analyzed under the second derivative operator (right). Note the
second derivative is pairwise group sparse.

B. Relation to cosparse analysis models

The above signal model is closely related to the recently
proposed cosparse analysis model [7]. A cosparse model
encompasses signals that are sparse after the application of
an analysis operator Ω ∈ Rp×d, p ≥ d, i.e. the signal
y = Ωx ∈ Rp is sparse. The proposed model can be viewed
as extension of a cosparse model to signals that are group
sparse under an analysis operator, thus we call this a group
sparse analysis model.

As observed in [7], cosparse analysis models face the
problem of having a combinatorial number of subspaces of low
dimension in their union-of-subspaces formulation, which has
bearings on the robustness of CS-recovery of signals belonging
to these models [13]. Enforcing group sparsity of the analyzed

signal can significantly reduce the number of these subspaces,
since they are determined by the allowed locations of the non-
zero entries of the analyzed signal, which are more heavily
restricted in the group sparse case.

C. Group sparse regularization penalties
A standard approach to promote group sparsity is to penalize

the mixed `2-`1 norm of the signal restricted to the groups G:

Φ1(y) =
∑
g∈G
‖yg‖2, (3)

where yg ∈ Rd denotes the vector whose entries are the same
as y ∈ Rd on the index set g ∈ G, and zeros elsewhere.
This penalty is also known as the group lasso, and its ability
to recover group sparse signals been studied extensively [14],
including the case of overlapping groups [15]–[17]. To better
approximate the ideal `0 measure of sparsity, we also consider
the following non-convex variant:

Φp(y) =
1

p

∑
g∈G
‖yg‖p2, 0 < p ≤ 1. (4)

In our setting, we may give a more compact representation
of the penalties in (3) and (4) by introducing an expansion
operator E : Rd → R(d−n+1)×n defined by

[
y1 y2 · · · yd

]T 7→ 1√
n

y1 y2 · · · yd−n+1

...
...

...
yn yn+1 · · · yd


T

,

where the rows of Ey collect the coefficients of y belonging
to each group of n consecutive indices. Up to a scaling, we
may recast (3) and (4) as Φp(y) = ‖Ey‖p2,p for 0 < p ≤ 1,
where ‖U‖p2,p := 1

p

∑
i ‖ui‖p2, and ui is a row of U.

Therefore, to promote the group sparsity of derivatives
y = Dx, we propose the following family of regularization
penalties:

Ψp(x) := Φp(Dx) = ‖EDx‖p2,p, 0 < p ≤ 1. (5)

Note that by setting E = I , the identity operator, (5) reduces
to a cosparse penalty ‖Dx‖pp. In this way, our algorithm in
Sec. III can be adapted to the cosparse case.

D. Extension to 2-D: Group sparse HDTV
Let x ∈ Rd now represent a vectorized 2-D discrete image.

One simple extension to 2-D is to apply the proposed 1-D
penalty to the rows and columns of the image in a separable
fashion:

Ψp(x) = ‖E1D1x‖p2,p + ‖E2D2x‖p2,p, 0 < p ≤ 1. (6)

Here D1 and D2 are the horizontal and vertical finite differ-
ence operators, respectively, and the expansion operators E1
and E2 collect all overlapping sets of n indices in the horizontal
and vertical direction, respectively. This may be viewed as
a two-angle group sparse version of the anisotropic HDTV
penalty introduced in [5], hence we label the penalty in (6) as
group sparse HDTV (GS-HDTV). Note we may also express
(6) as ‖EDx‖p2,p, for E = diag(E1, E2) and D = [DT

1 ,D
T
2 ]T ,

which allows us to directly apply our algorithm in Sec. III to
this case as well.
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III. ALGORITHM

Here our goal is to recover a signal x ∈ Rd from its
possibly degraded or undersampled linear measurements b =
Ax + n ∈ Rm, where A ∈ Rm×d with m ≤ d models the
signal acquisition, and n is a vector of noise. For simplicity
we assume the noise is additive white Gaussian (AWGN),
N (0, σ2). We pose the recovery as an optimization problem:

min
x
‖EDx‖p2,p +

λ

2
‖Ax− b‖22, (7)

where λ > 0 is a regularization parameter whose optimal value
depends on the noise level σ.

The cost function in (7) is convex when p = 1, and may be
efficiently minimized using a variable splitting method [18] or
augmented Lagrangian/split Bregman iterations [19]. For the
non-convex case 0 < p < 1 we adopt an approach proposed
in [8] that generalizes the splitting method in [18] to non-
convex `p penalties. The adaptation of this algorithm to our
setting (7) is straightforward and is summarized in Alg. 1.
The key ingredient is a generalization of the vectorized `1

soft-shrinkage rule to `p penalties for 0 < p ≤ 1:

shrinkp(t, γ) := max{0, 1− γ‖t‖p−22 } · t, ∀t ∈ Rn, γ > 0.

The algorithm consists of a inner loop, which solves a smooth
approximation to (7), and an outer loop, which refines the
approximation by incrementing a parameter β. The inner loop
of the algorithm alternates between two efficiently solved
subproblems: 1) A shrinkage operation on the rows of EDx
and 2) a matrix inversion step that can be solved analytically
in the Fourier domain for operators A diagonalizable under
the DFT, or more generally by a fast iterative method. We
note the complexity of the algorithm is essentially the same
as TV minimization [18], aside from the extra overhead in
computing the expansion operator E and its transpose ET .

Algorithm 1 Non-convex group sparse analysis recovery

Choose parameters λ > 0, r > 1, β0 > 0.
Initialize x← x0 ∈ Rd, Z← 0 ∈ Rd×n, β ← β0.
for j = 1 to Mouter do . β-continuation

α← λ/β
for i = 1 to Minner do . Alternating minimization

Z← shrinkp(EDx, 1/β)
x← (DTD + αATA)−1(DTETZ + αATb)

end for
β ← r · β

end for
return x

We find parameter choices 1.5 ≤ r ≤ 1.75 and 10 ≤
β0 ≤ 25, Mouter = 30, Minner = 15, work well for the
experiments considered in this work. While a smaller value
of p can further enhance sparsity, we observe taking p too
small (p < 0.5) requires many more inner iterations Minner
for stable convergence. We choose p = 0.5 as a compromise
between sparsity enhancement and computation time.

IV. EXPERIMENTS

A. 1-D CS-recovery
We compare our proposed group sparse analysis penalties

with the corresponding cosparse penalties (i.e. (5) with E = I),
in both the convex (p = 1) and non-convex (p = 0.5) case, for
the CS-recovery of discontinuous synthetic piecewise linear
signals. First we determine the probability of exact recovery
of a signal with k jumps from from noiseless random samples.
In each trial we generate a random signal x ∈ P2(k, 256) by
selecting the indices of the k jump discontinuities uniformly
at random, with jump magnitudes distributed as N (0, 1), and
the slopes of each line segment distributed as N (0, 0.01);
see Fig. 3(a) for a representative signal generated by this
procedure. We also randomly generate measurement matrices
A ∈ R150×256 with i.i.d. N (0, 1) entries, each column
rescaled to have unit norm. The convex recovery schemes were
solved with the MATLAB cvx package to ensure optimally
accurate solutions [20]. The non-convex schemes were solved
with Alg. 1, combined with Augmented Lagrangian iterations
[21] to enforce the constraint Ax = b. Here we used the
same parameters and initialization x0 = A†b, where A† is
the pseudoinverse of A. The recovered signal x∗ is judged
to be recovered “exactly” if ‖x∗ − x‖∞/‖x‖∞ < 10−6. The
results of the experiment are shown in Fig. 2.
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Fig. 2: Exact CS-recovery probabilities for 1-D piecewise linear
signals of length d = 256 from m = 150 as a function of jumps k
from noiseless random measurements (N = 250 trials), using group
sparse (GS) and cosparse (Co) penalties.

We observe that the convex group sparse penalty performs
marginally worse than the convex cosparse penalty. However,
this trend is reversed with the non-convex penalties, such that
the range of exact recovery is extended nearly two-fold in the
group sparse case. This result demonstrates the effectiveness
of a non-convex penalty for promoting analysis group sparsity,
and is consistent with other comparisons of non-convex and
convex penalties in this context (see e.g. [10]).

In Fig. 3 we illustrate the case of noisy measurements, as
specified by (7). The quality of the recovery x∗ is measured by
the signal-to-noise ratio, SNR = 20 log10(‖x‖2/‖x∗ − x‖2),
where x is the original signal. Note that Alg. 1 depends on a
regularization parameter λ which needs to be tuned for optimal
results. In each case we choose the λ that maximizes the SNR
of the recovery. Table I reports the SNR’s obtained by each
penalty over a range of undersampling factors (m) and noise
levels (σ), averaged over N = 50 trials. Random signals
and measurement matrices are generated as in the noiseless
setting. Again, we find the non-convex group sparse penalty
consistently outperforms the non-convex cosparse penalty in
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(a)

(b)

(c)

(d)

(e)

Fig. 3: Example of noisy CS-recovery. (a) original piecewise linear
signal of length d = 256 with k = 25 jumps. Signals recovered
from m = 150 measurements corrupted by AWGN, σ = 0.05: (b)
convex cosparse (SNR=17.5dB); (c) convex group sparse (SNR=17.4
dB); (d) non-convex cosparse (SNR=22.0dB); (e) non-convex group
sparse (SNR=26.4dB).

σ = 0.05 σ = 0.10

Penalty m=125 m=150 m=175 m=125 m=150 m=175

Co, p=1 15.2 (3.2) 15.3 (3.4) 15.6 (3.3) 15.5 (3.3) 15.5 (3.4) 15.2 (3.2)
GS, p=1 15.7 (2.7) 15.7 (2.8) 15.9 (2.8) 15.9 (2.8) 15.9 (2.9) 15.6 (2.8)
Co, p=0.5 18.2 (5.1) 18.3 (5.3) 18.8 (5.3) 18.5 (5.2) 18.4 (5.4) 18.2 (5.3)
GS, p=0.5 21.4 (4.4) 21.1 (4.5) 21.1 (4.6) 20.9 (4.8) 20.8 (4.9) 20.8 (4.7)

TABLE I: Comparison of group sparse (GS) and cosparse (Co)
penalties for CS-recovery of 1-D piecewise linear signals (k =
25, d = 256) from m random measurements corrupted with AWGN,
N (0, σ2). Reported values are the average SNR’s (in dB) from N =
50 realizations, with the standard deviation (in dB) in parenthesis.

terms of average SNR, and both significantly outperform the
convex penalties. Here the convex group sparse penalty also
shows a slight SNR improvement over the convex cosparse
penalty. However, the effect is small relative to the variance,
and insignificant compared to the improvement offered by non-
convex penalties.

B. 2-D denoising

We demonstrate the utility of the non-convex (p=0.5) second
degree GS-HDTV penalty (6) for denoising natural images.
The three 256×256 test images we consider are shown in
Fig. 4(a)-(c), which we corrupt with various levels of AWGN.
Here we compare against standard isotropic total variation
(TV), and two second degree TV extensions: total generalized
variation (TgV) [22] and anisotropic second degree HDTV
[5]. Also, we compare with the non-convex (p=0.5) second
degree cosparse penalty (i.e. (6) with E1 = E2 = I), which
we label Co-HDTV. The GS-HDTV and Co-HDTV schemes
are solved with Alg. 1; average computation time of our
unoptimized MATLAB implementation running on a desktop
computer (Intel i5-3470 CPU, 3.20 GHz, 8 GB RAM) is ∼25s.
The SNR’s of the denoised images are reported in Table II.
Regularization parameters were tuned to optimize the SNR in
each case. Note the non-convex schemes GS-HDTV and Co-
HDTV typically outperform the convex ones, demonstrating
the benefit of non-convex penalty functions. However, GS-
HDTV also shows a consistent ∼0.3dB gain in SNR over
Co-HDTV, indicating the benefit of GS-HDTV is not due to
non-convexity alone. Indeed, we see the most improvement

(a) Lena (b) Peppers (c) Brain

(d) Peppers (zoom) (e) Noisy (f) TgV

(g) HDTV (h) Co-HDTV (i) GS-HDTV

Fig. 4: Denoising comparison. (a)-(c) Original images. (d) Peppers
image, zoomed for detail, (e) corrupted with AWGN (SNR=20.0dB).
(f) Denoised with TgV regularization (SNR=26.8dB), (g) convex
HDTV (SNR=26.7dB), (h) non-convex Co-HDTV (SNR=26.9dB),
and (j) non-convex GS-HDTV (SNR=27.2dB). The arrows in (h) and
(i) identify noise artifacts successfully removed by GS-HDTV but not
Co-HDTV.

Lena Peppers Brain

Penalty 17dB 20dB 25dB 17dB 20dB 25dB 17dB 20dB 25dB

TV 22.4 24.3 25.5 24.7 26.4 27.7 22.7 24.7 26.0
TgV 22.6 24.5 25.7 24.9 26.8 28.2 23.2 25.1 26.3

HDTV 22.4 24.3 25.5 25.0 26.7 28.1 23.3 25.3 26.6
Co-HDTV 22.5 24.4 25.7 25.1 26.9 28.3 23.1 25.0 26.2
GS-HDTV 22.8 24.7 26.0 25.4 27.2 28.6 23.4 25.3 26.6

TABLE II: (SNR in dB) 2-D denoising results. Images were
corrupted with AWGN to match the indicated SNR (17dB, 20dB,
or 25dB). Regularization parameters were optimized to obtain the
best SNR in all cases. Original images are displayed in Fig. 4.

in the test images with significant piecewise linear regions,
Lena and Peppers (∼0.4dB SNR gain over HDTV). Contrast
this with the mostly piecewise constant Brain image (no SNR
improvement over HDTV). Visually, the GS-HDTV penalty
also appears better at removing localized inhomogeneities in
piecewise linear regions; see Fig. 4(d)-(i).

V. CONCLUSION

Most higher order generalizations of TV implicitly consider
a continuous piecewise polynomial model. We extend these
schemes to discontinuous signal models by enforcing group
sparsity of higher order derivatives. The proposed non-convex
group sparse derivative penalties show significant improve-
ment for the CS-recovery of 1-D discontinuous piecewise
linear signals compared to a cosparse prior. We also show
a similar improvement for the denoising natural images over
other second order extensions of TV.
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[3] J. Yuan, C. Schnörr, and G. Steidl, “Total-variation based piecewise
affine regularization,” in Scale Space and Variational Methods in Com-
puter Vision. Springer, 2009, pp. 552–564.

[4] S. Lefkimmiatis, J. Paul Ward, and M. Unser, “Hessian schatten-norm
regularization for linear inverse problems,” IEEE transactions on image
processing, vol. 22, no. 5-6, pp. 1873–1888, 2013.

[5] Y. Hu and M. Jacob, “Higher degree total variation (HDTV) regular-
ization for image recovery,” Image Processing, IEEE Transactions on,
vol. 21, no. 5, pp. 2559–2571, 2012.

[6] G. Steidl, S. Didas, and J. Neumann, “Splines in higher order TV
regularization,” International journal of computer vision, vol. 70, no. 3,
pp. 241–255, 2006.

[7] S. Nam, M. E. Davies, M. Elad, and R. Gribonval, “The cosparse
analysis model and algorithms,” Applied and Computational Harmonic
Analysis, vol. 34, no. 1, pp. 30–56, 2013.

[8] R. Chartrand, “Fast algorithms for nonconvex compressive sensing: MRI
reconstruction from very few data,” in Biomedical Imaging: From Nano
to Macro, 2009. ISBI’09. IEEE International Symposium on. IEEE,
2009, pp. 262–265.

[9] Y. Hu, G. Ongie, S. Ramani, and M. Jacob, “Generalized higher
degree total variation (hdtv) regularization,” Image Processing, IEEE
Transactions on, vol. 23, no. 6, pp. 2423–2435, June 2014.

[10] P.-Y. Chen and I. W. Selesnick, “Group-sparse signal denoising: Non-
convex regularization, convex optimization,” Signal Processing, IEEE
Transactions on, vol. 62, no. 13, pp. 3464–3478, 2014.

[11] A. Majumdar and R. K. Ward, “Compressed sensing of color images,”
Signal Processing, vol. 90, no. 12, pp. 3122–3127, 2010.

[12] I. W. Selesnick and P.-Y. Chen, “Total variation denoising with over-
lapping group sparsity,” in Acoustics, Speech and Signal Processing
(ICASSP), 2013 IEEE International Conference on. IEEE, 2013, pp.
5696–5700.

[13] T. Blumensath and M. E. Davies, “Sampling theorems for signals from
the union of finite-dimensional linear subspaces,” Information Theory,
IEEE Transactions on, vol. 55, no. 4, pp. 1872–1882, 2009.

[14] J. Huang, T. Zhang et al., “The benefit of group sparsity,” The Annals
of Statistics, vol. 38, no. 4, pp. 1978–2004, 2010.

[15] R. Jenatton, J.-Y. Audibert, and F. Bach, “Structured variable selection
with sparsity-inducing norms,” The Journal of Machine Learning Re-
search, vol. 12, pp. 2777–2824, 2011.
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