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ABSTRACT

We propose a convex clustering and reconstruction algorithm
for data with missing entries. The algorithm uses a similarity
measure between every pair of points to cluster and recover
the data. The cluster centres can be recovered reliably when
the ground-truth similarity matrix is available. Moreover, the
similarity matrix can also be reliably estimated from the par-
tially observed data, when the clusters are well-separated and
the coherence of the difference between points from different
clusters is low. The algorithm performs well using the esti-
mated similarity matrix on a simulated dataset. The method is
also successful in reconstructing images from under-sampled
Fourier data.

Index Terms— Clustering, Missing Data, Image Recon-
struction, Matrix Completion.

1. INTRODUCTION

Clustering aims at finding groups within a collection of ob-
jects, based on similarity in their features. It is an important
and well-studied problem in data analysis, as is evident from
the vast amount of literature dedicated to it. Some traditional
clustering techniques are K-means [1] and spectral clustering
[2]. Recently, convex clustering methods [3] have been pro-
posed which address many of the shortcomings of these tra-
ditional methods, such as sensitivity to initialization and prior
knowledge of the number of clusters.

Most clustering algorithms assume full knowledge of all
the features of each object. Relatively less work has been
done on clustering data when incomplete feature information
is available about some (or all) the objects. Such a prob-
lem might arise in the clustering of survey respondents who
choose not to answer certain questions [4]. In Magnetic Reso-
nance Imaging, data corresponding to different image frames
is collected in the Fourier domain. Since the imaging process
is slow, only a few Fourier samples can be collected. Similar
images appearing at different time points may be clustered to
aid image reconstruction [5].

The existing clustering algorithms can be directly applied
to incompletely observed data through the methods of ”dele-
tion” or ”imputation” [6, 7]. ”Deletion” is the removal of the
objects with missing features from the analysis. However, this

might involve discarding a large amount of the collected data.
”Imputation” is the estimation of the missing values prior to
clustering. The clustering result then becomes very dependent
on the accuracy of imputation. Further, the imputed values
and measured values are treated equivalently. Recently, an al-
ternative algorithm termed ”k-POD” [8] has been proposed,
which alternates between imputation and k-means clustering.
However, it is prone to all the disadvantages of k-means.

We propose a convex clustering algorithm for data with
missing entries. The algorithm estimates the cluster centres
using the matrix of similarity measures between every pair of
points. It is shown that using the ground-truth similarity ma-
trix in the proposed algorithm results in good cluster centre
estimates. However, the ground-truth similarity matrix is not
available in practice due to missing entries in the data. Thus,
we estimate the similarity matrix from the incomplete data it-
self. The similarity between a pair of points can be estimated
using their partial distance, computed using the samples at
commonly observed locations. It is assumed that the clusters
are well-separated and the difference between pairs of points
from different clusters have low coherence. Under these as-
sumptions, the estimated similarity is shown to be accurate,
if there are a sufficient number of commonly observed loca-
tions. It is observed that using the estimated similarity matrix
does not result in very significant errors, and the performance
improves with increase in the number of observed entries in
the data. The technique is also used to reconstruct an image
series from under-sampled Fourier measurements.

2. BACKGROUND

2.1. Notations

We consider the matrix X ∈ Rn×N , where each column is
an observation (xi ∈ Rn) with n features. Each observation
belongs to 1 out of k clusters. The ith cluster contains Ni
points, and therefore

∑k
i=1Ni = N . The cluster to which xj

belongs is denoted by C(j). Let U ∈ Rn×N be the matrix of
cluster centres, such that the ith column ui ∈ Rn represents
the centre of cluster C(i). xi and ui are related as:

xi = ui + ηi (1)



Each element of the matrix X is sampled with probability
p0. The rectangular sampling matrix corresponding to xi is
denoted by Si. Our goal is to recover the cluster centres {ui},
given incomplete observations {Sixi}.

2.2. Convex Clustering of fully sampled data

Convex clustering methods have been proposed for the case
of fully sampled data (i.e. Si = I,∀i) by solving the opti-
mization problem:

{u∗i } = arg min
ui

∑
i

‖ui − xi‖2 + λ
∑
i

∑
j

wij‖ui − uj‖2

(2)
Here, the weight wij represents the similarity between points
xi and xj , computed using a non-linear function such as:

wij = e−
d2
ij

σ2 (3)

where dij = ‖xi − xj‖22. Unlike spectral clustering and k-
means clustering, convex clustering methods do not require
the prior knowledge of the desired number of clusters and are
insensitive to initialization. The number of clusters change
continuously with the regularization parameter λ. This allows
for an observation of the ”clustering path”, by varying λ over
a large range.

3. THEORY

3.1. Convex Clustering of data with missing entries

We propose to extend the convex clustering algorithm to ac-
count for missing data by solving the optimization problem:

{u∗i } = arg min
ui

∑
i

‖Si(ui − xi)‖2

+λ
∑
i

∑
j

wij‖ui − uj‖2
(4)

The weights wij cannot be estimated in this case using (3),
since only a few entries of xi are known, and the rest are
missing. We first obtain the solution u∗(gt) assuming per-
fect knowledge of the ground-truth weight matrix W(gt). We
compare this to the solution u∗(est) using weights estimated
from the partially observed data, denoted by W(est). We note
that the solution for each row of U∗ is independent of other
rows. For simplicity, we analyze the solution for only the 1st

row of U∗. The 1st rows of X and U are denoted by x and
u respectively. xj and uj are the jth elements of x and u
respectively. We also have the following assumptions on the
data:

A1 The maximum spread of any cluster is: δ = maxi ‖ηi‖.

A2 The minimum distance between any 2 cluster centres is:
ε = minC(i) 6=C(j) ‖ui − uj‖.

A3 There exists a constant K > 2 such that ε = Kδ. A large
value of K implies well-separated clusters.

A4 For any vector x ∈ Rn, the coherence is defined as
n‖x‖2∞
‖x‖22

. The coherence of the difference between
each pair of columns from different clusters is up-
per bounded by µ. The intuition is to avoid situations
where points belonging to different clusters differ only
at a few sampling locations.

We derive an expression for u∗(gt). We observe that u∗(gt) is
very close to the ground-truth cluster centres u and the dif-
ference reduces with increase in sampling probability p0. We
also derive an estimate for ∆u∗ = (u∗(gt) − u∗(est)). Our
experiments result in small values of ∆u∗ when K is large
and µ is small. We observe that for relatively higher p0, the
estimate for ∆u∗ is quite accurate.

3.2. Performance using Ground-truth Weights

We define the ground-truth weight matrix W(gt) entries as:

w
(gt)
ij =

{
1 , if xi and xj belong to the same cluster.
0 , otherwise.

(5)

We find an expression for the solution of (4) using W(gt).
The following definitions will be used to state the result:

• sj = 1 if xj has been observed and 0 otherwise.

• ρC(j) is the fraction of entries belonging to clusterC(j)
that have been observed in x.

Theorem 1. The solution of the clustering algorithm (4) us-
ing the weight matrix W(gt) is:

u
∗(gt)
j =

1

sj + λNC(j)
[sjxj +

λ

ρC(j)

∑
m:xm∈C(j)

smxm] (6)

Corollary 1.1. When there is zero intra-cluster variance (i.e.
K → ∞), then with a probability ≥ 1 − (1 − p0)NC(j) , the
solution to (4) using the weight matrix W(gt) is:

u
∗(gt)
j = xj = uj (7)

The probability in Corollary 1.1 is associated with the as-
sumption that there is at least 1 known entry in x belonging to
the cluster C(j). If this assumption is satisfied, then we have
perfect recovery of the centre of cluster C(j).

3.3. Weight Estimation from Incomplete Data

Since W(gt) is not available in practice, we estimate the
weight matrix W(est) from the partially observed data. Sim-
ilar to [9], we will use the concept of partial distances. We
denote the set of indices that are observed in both xi and xj



by Ωij . We represent the vector of entries of xi at locations in
the set Ω by xΩ

i . Let |Ωij | = q. The partial distance between
xi and xj is defined as:

d
Ωij
ij =

√
n

q
‖xΩij

i − x
Ωij
j ‖2 (8)

Using ideas from [9], we can conclude that if a pair of points
has a sufficiently large number of commonly observed loca-
tions, then the partial distance between them is close to the
actual distance between them with a high probability. The
idea is formalized in the next theorem.

Theorem 2. For any 0 < δ0, δ1 < 1 and q ≥ q0 =
2µ2

δ2
1

log 2
δ0

, we have with probability ≥ (1− δ0):

(1− δ1)d2
ij ≤ (d

Ωij
ij )2 ≤ (1 + δ1)d2

ij (9)

Thus, for pairs of points having a sufficient number of
commonly observed locations, the weight wij can be esti-
mated reliably from the partial distances with high probabil-
ity. Motivated by (3), we compute the weight matrix W(est)

from partial distances as:

w
(est)
ij =

e−
(d

Ωij
ij

)2

σ2 , if |Ωij | ≥ q0 and (d
Ωij
ij )2 < t.

0 , otherwise.
(10)

Corollary 2.1. The weight w(est)
ij is computed for a pair of

points xi and xj , where |Ωij | ≥ q0 and t = (1 + δ1)δ2.

• If C(i) 6= C(j), then w(est)
ij = 0 with probability ≥

(1− δ0e
−(K−2)4

2 ).

• If C(i) = C(j), then w(est)
ij ≥ e−

(1+δ1)δ2

σ2 with proba-
bility ≥ (1− δ0

2 ).

3.4. Performance using Estimated Weights

We perform some preliminary analysis on the performance
of algorithm (4) using an estimated weight matrix. A more
thorough analysis will be the subject of future work. For sim-
plicity, we study the performance of the clustering algorithm
(4) when we have the following weight matrix:

w
(th)
ij =



1 , if C(i) = C(j).

e−
(d

Ωij
ij

)2

σ2 , if C(i) 6= C(j), |Ωij | ≥ q0,

(d
Ωij
ij )2 < t.

0 , otherwise.

(11)

The matrices W(est) and W(th) differ only in the definition
of the intra-cluster weights. We note from our simulations

that under favourable conditions such as high sampling prob-
ability and low intra-cluster variance, the effect of W(est) and
W(th) on the clustering algorithm are comparable. The dif-
ference in the solutions u∗(th) and u∗(gt) (using W(th) and
W(gt) respectively) is due to the presence of non-zero inter-
cluster weights.

We next analyze the effect of the inter-cluster weights. We
introduce the term ”1st order interaction” to refer to the effect
of wij (where C(i) 6= C(j)) on u∗m where m ∈ C(i), or
m ∈ C(j). Higher order interactions refer to the effect of
wij (where C(i) 6= C(j)) on u∗m where m /∈ C(i), C(j). We
denote the difference (u

∗(gt)
j − u∗(th)

j ) by ∆u∗j , and approxi-
mate it as the sum of all 1st order interactions. Before stating
the next result, which gives a closed-form approximation for
∆u∗j , we define the following:

• L(gt) and L(th) are the Laplacian matrices correspond-
ing to W(gt) and W(th) respectively.

• S is the square diagonal sampling matrix for x.

Theorem 3. The difference between u∗(th)
j and u∗(gt)j , ap-

proximated as the sum of all 1st order interaction errors is:

∆u∗j ≈ λ[(S + λL(gt))−1(L(gt) − L(th))u∗(gt)]j (12)

This approximation ignores all higher order inter-class inter-
actions. We expect that under favourable conditions such as
well-estimated weights, well-separated clusters and low intra-
cluster variance, this approximation should be accurate.

Corollary 3.1. If we assume zero intra-cluster variance (i.e.
K → ∞) and set t = 0, then W(th) = W(gt) with prob-
ability ≈ 1. In this case, using either of the weight matrices
W(est) or W(th) in the algorithm (4) results in ∆u∗j = 0 with
probability ≥ (1− (1− p0)NC(j)).

4. RESULTS

4.1. Validation on simulated data

The proposed algorithm was tested on a simulated matrix
X ∈ R20×500 with columns lying in k = 5 convex clusters
with Ni = 100. Columns 1 − 100 of X were assigned to
cluster 1, 101 − 200 were assigned to cluster 2 and so on.
Fig 1 compares the results u∗(gt) and u∗(est) to the actual
cluster-centres u, for λ = 10−6, p0 = 0.8, 0.5, 0.3 and
K = ∞, 10, 3.5. As expected, higher K and p0 result in
superior performance. The error ∆u∗ = u∗(gt) − u∗(est)

is shown in Fig 2 for the same parameters. This is com-
pared to the 1st order error approximation given by (12). The
approximation is accurate for higher K and p0.

4.2. Application to MR image reconstruction

Image reconstruction from a few Fourier samples is a com-
mon problem in Magnetic Resonance Imaging. We used the



Fig. 1. Clustering performance: The 1st row of the matrix
of cluster centres is shown here, obtained from (1) Ground-
truth data (green) (2) Proposed algorithm using W(gt) (red)
(3) Proposed algorithm using W(est) (blue). The results are
shown for 3 values of p0 and K, and λ was fixed at 10−6.

Fig. 2. Clustering error due to imperfect weights: We show
the difference between the 1st row of estimated cluster cen-
tres when computed using W(gt) and W(est). The experi-
mentally obtained error is shown in blue. The theoretically
obtained 1st order error approximation is shown in red. The
results are shown for the same parameters as in Fig 1.

proposed algorithm to reconstruct a time series of cardiac
PINCAT [10] images, from under-sampled Fourier data. The
images were generated in the breath-held, short-axis mode.
There are N = 200 image frames, each of size 128×128 and
k = 20 cardiac cycles, each consisting of Ni = 10 frames.
The Fourier domain data corresponding to each image frame
can be reshaped into a vector of size 1282 × 1 and arranged
as a column of the matrix X ∈ C1282×200. In the original

Fig. 3. Image reconstruction from under-sampled Fourier
data: Cardiac PINCAT phantom images were under-sampled
in the Fourier domain. The images were clustered and recon-
structed from 10% and 40% of the Fourier samples, using the
proposed algorithm. The under-sampling masks and recon-
structed images are shown here along with the ground-truth.

dataset, we have K → ∞. We add zero-mean Gaussian ran-
dom noise in the image domain, resulting in K = 3.25. The
Fourier data corresponding to the noisy images was under-
sampled using a variable density random sampling mask, as
shown in Fig 3. Reconstructions are shown from 10% and
40% of the Fourier samples. It can be seen that the recon-
structed images are very similar to the ground-truth.

5. CONCLUSION

A method for convex clustering and reconstruction of data
with missing entries is proposed. The algorithm uses a weight
matrix which depends on the similarity between every pair
of points. An expression is derived for the solution using a
ground-truth weight matrix. It is then shown that the weight
matrix can also be estimated from the data itself. An estimate
is obtained for the difference in the solutions using the two
weight matrices. The results obtained at 20% and 50% miss-
ing samples on a simulated dataset are quite promising. If the
ratio between minimum inter-cluster distance and maximum
intra-cluster distance is kept high, then good results are also
obtained at 70% missing entries. The algorithm is shown to
be successful in clustering and reconstructing cardiac images
from highly under-sampled (60% and 90% missing) Fourier
data. Cluster size and number of clusters are other factors
whose effects are to be studied in future work. Further re-
search needs to be performed to explore the utility of the al-
gorithm in various other image processing and reconstruction
applications.
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