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Abstract—The presence of missing entries in data often cre-
ates challenges for pattern recognition algorithms. Traditional
algorithms for clustering data assume that all the feature values
are known for every data point. We propose a method to cluster
data in the presence of missing information. Unlike conventional
clustering techniques where every feature is known for each point,
our algorithm can handle cases where a few feature values are
unknown for every point. For this more challenging problem,
we provide theoretical guarantees for clustering using a l0 fusion
penalty based optimization problem. Furthermore, we propose an
algorithm to solve a relaxation of this problem using saturating
non-convex fusion penalties. It is observed that this algorithm
produces solutions that degrade gradually with an increase in the
fraction of missing feature values. We demonstrate the utility of
the proposed method using a simulated dataset, the Wine dataset
and the ASL dataset. It is shown that the proposed method is a
promising clustering technique for datasets with large fractions
of missing entries.

I. INTRODUCTION

Clustering is an exploratory data analysis technique used to
discover natural groupings in large datasets, with applications
to analysis of gene expression data, image segmentation,
identification of lexemes in handwritten text, search result
grouping, and recommender systems [1]. A wide variety
of clustering methods have been introduced over the years;
see [2], [3], [4] for a review of classical methods. Com-
mon clustering techniques such as k-means [5], k-medians
[6], and spectral clustering [7] are implemented using the
Lloyd’s algorithm. Recently, linear programming and semi-
definite programming based convex relaxations of the above
algorithms [8] were introduced to minimize the sensitivity
to initialization. Hierarchical clustering methods [9], which
produce easily interpretable and visualizable clustering results,
have been recently introduced for applications where the
number of clusters are unknown. The more recent convex
clustering technique termed as sum-of-norms clustering [10]
retains the advantages of hierarchical clustering, while being
invariant to initialization, and producing a unique clustering
path. Theoretical guarantees for successful clustering using the
convex-clustering technique are also available [11].

Most of the above clustering algorithms cannot be directly
applied to real-life datasets, when a large fraction of samples
are missing. For example, gene expression data often contains
missing entries due to image corruption, fabrication errors or
contaminants [12], rendering gene cluster analysis difficult.
Likewise, large databases used by recommender systems (e.g
Netflix) usually have a huge amount of missing data, which
makes pattern discovery challenging [13]. The presence of
missing responses in surveys [14] and failing imaging sensors
in astronomy [15], [16] are reported to make the analysis

in these applications challenging. Several approaches were
introduced to extend clustering to missing-data applications.
For example, a partially observed dataset can be converted to a
fully observed one using deletion of features that have missing
entries or imputation of missing entries [17], followed by clus-
tering. Similarly, an extension of the weighted sum-of-norms
algorithm was done in [10], where the weights are estimated
from the data points using imputation of missing entries [18].
Kernel-based methods for clustering have also been extended
to deal with missing entries by replacing Euclidean distances
with partial distances [19], [20]. A majorization-minimization
algorithm was introduced to solve for the cluster-centers and
cluster memberships in [21], which offers proven reduction in
cost with iteration. In [22] and [23] the data points are assumed
to lie on a mixture of K distributions, where K is known. The
algorithms then alternate between the maximum likelihood
estimation of the distribution parameters and the missing
entries. While the above algorithms have been successfully
demonstrated in a variety of applications, theoretical analysis
of the clustering performance in the presence of missing
entries is lacking. By contrast, missing data problems in the
context of a variety of other data models has been well studied
in the recent years. For instance, efficient algorithms along
with theoretical guarantees have been proposed for low-rank
matrix completion [24] and subspace clustering from data with
missing entries [25], [26].

The main focus of this paper is to introduce an algorithm for
the clustering of data with missing entries and to theoretically
analyze the conditions for perfect clustering in the presence of
missing data. The proposed algorithm is inspired by the sum-
of-norms clustering technique [10]. Specifically, we formulate
the recovery as an optimization problem, where each data point
is assigned an auxiliary variable. The auxiliary variable is an
estimate of the center of the cluster to which the specified
point belongs. A fusion penalty is used to encourage the
auxiliary variables to merge, whenever possible. We focus
on the analysis of clustering using a `0 fusion penalty in the
presence of missing entries, for an arbitrary number of clusters.
The analysis reveals that perfect clustering is guaranteed with
high probability, provided the number of measured entries
(probability of sampling) is high enough; the required number
of measured entries depends on parameters including intra-
cluster variance and inter-cluster distance. Our analysis also
shows that the performance is critically dependent on coher-
ence, which is a measure of the concentration of inter cluster
differences in the feature space. Specifically, if the separation
between clusters is determined only by a very small subset
of all the available features, then clustering becomes quite
unstable if features in this subset are missing. Other factors
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which influence the clustering technique are the number of
features, number of clusters and total number of points.

We also introduce a relaxation of the above `0 penalty based
clustering problem using non-convex saturating fusion penal-
ties. The algorithm is demonstrated on a simulated dataset with
different fractions of missing entries and cluster separations.
We observe that the clustering performance degrades gradually
with an increase in the number of missing entries. We also
demonstrate the algorithm on clustering of the Wine dataset
[27] and an Australian Sign Language (ASL) dataset [28].

II. CLUSTERING USING `0 FUSION PENALTY

A. Background

We consider the clustering of points drawn from one of K
distinct clusters C1, C2, . . . , CK . We denote the center of the
clusters by c1, c2, . . . , cK ∈ RP . For simplicity, we assume
that there are M points in each of the clusters. The individual
points in the kth cluster are modelled as:

zk(m) = ck + nk(m); m = 1, ..,M, k = 1, . . . ,K (1)

Here, nk(m) is the noise or the variation of zk(m) from the
cluster center ck. The set of input points {xi}, i = 1, ..,KM is
obtained as a random permutation of the points {zk(m)}. The
objective of a clustering algorithm is to estimate the cluster
labels, denoted by C(xi) for i = 1, ..,KM .

The sum-of-norms (SON) method is a recently proposed
convex clustering algorithm [10]. Here, a surrogate variable
ui is introduced for each point xi, which is an estimate of the
center of the cluster to which xi belongs. As an example, let
K = 2 and M = 5. Without loss of generality, let us assume
that x1,x2, . . . ,x5 belong to C1 and x6,x7, . . . ,x10 belong to
C2. Then, the desired solution is: u1 = u2 = . . . = u5 = c1
and u6 = u7 = . . . = u10 = c2. In order to find the optimal
{u∗i }, the following optimization problem is solved:

{u∗i } = arg min
{ui}

KM∑
i=1

‖xi−ui‖22 + λ

KM∑
i=1

KM∑
j=1

‖ui−uj‖p (2)

The fusion penalty (‖ui−uj‖p) can be enforced using different
`p norms, out of which the `1, `2 and `∞ norms have been
used in literature [10]. The use of sparsity promoting fusion
penalties encourages sparse differences ui − uj , which facil-
itates the clustering of the points {ui}. For an appropriately
chosen λ, the ui’s corresponding to xi’s from the same cluster
converge to the same point. The above optimization problem
is solved efficiently using the Alternating Direction Method of
Multipliers (ADMM) algorithm and the Alternating Minimiza-
tion Algorithm (AMA) [29]. Truncated `1 and `2 norms have
also been used recently as the fusion penalty, which provide
superior performance compared to convex penalties [30].

The sum-of-norms algorithm has also been used as a visu-
alization and exploratory tool to discover patterns in datasets
[18]. Clusterpath diagrams are a common way to visualize the
data. This involves plotting the solution path as a function of
the regularization parameter λ. For a very small value of λ,
the solution is given by: u∗i = xi, i.e. each point forms its
individual cluster. For a very large value of λ, the solution is

Fig. 1: Central Assumptions: (a) and (b) illustrate different
instances where points belonging to R2 are to be separated
into 3 different clusters (denoted by the colours red, green and
blue). Assumptions A.1 and A.2 related to cluster separation
and cluster size respectively, are illustrated in both (a) and
(b). The importance of assumption A.3 related to feature
concentration can also be appreciated by comparing (a) and
(b). In (a), points in the red and blue clusters cannot be
distinguished solely on the basis of feature 1, while the red and
green clusters cannot be distinguished solely on the basis of
feature 2. Thus, it is difficult to correctly cluster these points
if either of the feature values is unknown. In (b), due to low
coherence (as assumed in A.3), this problem does not arise.

given by: u∗i = c, i.e. every point belongs to the same cluster.
For intermediate values of λ, more interesting behaviour is
seen as various u∗i merge and reveal the clusters in the data.

In this paper, we extend the algorithm to account for missing
entries in the data. We present theoretical guarantees for
clustering using an `0 fusion penalty. Next, we approximate
the `0 penalty by non-convex saturating penalties, and solve
the resulting relaxed optimization problem using an iterative
reweighted least squares (IRLS) strategy [31].

B. Central Assumptions
We make the following assumptions (illustrated in Fig 1),

which are key to the successful clustering of the points:
A.1: Cluster separation: Points from different clusters

are separated by δ > 0 in the `2 sense, i.e:

min
{m,n}

‖zk(m)− zl(n)‖2 ≥ δ; ∀ k 6= l (3)

A.2: Cluster size: The maximum separation of points
within any cluster in the `∞ sense is ε ≥ 0, i.e:

max
{m,n}

‖zk(m)− zk(n)‖∞ = ε; ∀k = 1, . . . ,K (4)

Thus, the kth cluster is contained within a cube of
size ε.

A.3: Feature concentration: The coherence of a vector
y ∈ RP is defined as [24]:

µ(y) =
P‖y‖2∞
‖y‖22

(5)

By definition: 1 ≤ µ(y) ≤ P . We bound the
coherence of the difference between points from
different clusters as:

max
{m,n}

µ(zk(m)− zl(n)) ≤ µ0; ∀ k 6= l (6)
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The coherence parameter µ plays a key role in the success
of the algorithm. Intuitively, a vector with a high coherence
has a few large values and several small ones. µ0 defined in (6)
is indicative of the difficulty of the clustering problem in the
presence of missing data. If µ0 = P , then two clusters differ
in only a single feature, suggesting that it is difficult to assign
the correct cluster to a point if this feature is not sampled.
The best case scenario is µ0 = 1, when all the features are
equally important. In general, cluster recovery from missing
data becomes challenging with increasing µ0.

Under assumption A.2, the distance between two points
in the same cluster is less than or equal to ε

√
P . Also, by

assumption A.1, the distance between two points in different
clusters is greater than or equal to δ. Thus, the normalized ratio
of the cluster size to cluster separation, specified by κ = ε

√
P
δ

is a measure of the difficulty of the clustering problem. Small
values of κ suggest large inter-cluster separation compared to
the cluster size; the recovery of such well-defined clusters is
expected to be easier than the case with large κ values. Note
that the `2 norm is used in the definition of δ, while the `∞
norm is used to define ε. If δ = ε

√
P , then κ = 1; this value

of κ is of special importance since κ < 1 is a requirement for
successful recovery in our main results. κ < 1 corresponds
to the case where every intra-cluster distance is smaller than
every inter-cluster distance.

We study the problem of clustering the points {xi} in the
presence of entries missing uniformly at random. We arrange
the points {xi} as columns of a matrix X. The rows of the
matrix are referred to as features. We assume that each entry
of X is observed with probability p0. The entries measured in
the ith column are denoted by:

yi = Si xi, i = 1, ..,KM (7)

where Si is the sampling matrix, formed by selecting rows
of the identity matrix. We consider the following optimization
problem to cluster data with missing entries:

{u∗i } = min
{ui}

KM∑
i=1

KM∑
j=1

‖ui − uj‖2,0

s.t ‖Si (xi − ui)‖∞ ≤
ε

2
, i ∈ {1 . . .KM}

(8)

The `2,0 norm is defined as:

‖x‖2,0 =

{
0 , if ‖x‖2 = 0

1 , otherwise
(9)

Similar to the SON scheme (2), we expect that all ui’s that
correspond to xi in the same cluster are equal, while ui’s
from different clusters are not equal. We consider the cluster
recovery to be successful when there are no mis-classifications.
We claim that the above algorithm can successfully recover the
clusters with high probability when:

1) The clusters are well separated (i.e, low κ = ε
√
P
δ )).

2) The sampling probability p0 is sufficiently high.
3) The coherence µ0 is small.

C. Theoretical guarantees for correct clustering
We now move on to a formal statement and proof of this

result. All the important symbols used in the paper have been
summarized in Table I. We first define the following quantities,
which will be used in our results below.
• Upper bound for probability that two points have less than

half the expected number (p
2
0P
2 ) of commonly observed

locations:

γ0 :=
(e

2

)− p20P2
(10)

• Upper bound for probability that two points from dif-
ferent clusters can yield the same u without violating
the constraints in (8), when they have more than p20P

2
commonly observed locations:

δ0 := e
− p

2
0P (1−κ2)2

µ20 (11)

• Upper bound for probability that two points from dif-
ferent clusters can yield the same u without violating
the constraints in (8), irrespective of the number of
commonly observed locations:

β0 := 1− (1− δ0)(1− γ0) (12)

• Upper bound for failure probability of (8):

η0 :=
∑
{mj}∈S

β 1
2 (M

2−
∑
j m

2
j )

0

∏
j

(
M

mj

) (13)

where S is the set of all sets of positive integers {mj}
such that: 2 ≤ U({mj}) ≤ K and

∑
jmj = M . Here,

the function U counts the number of non-zero elements
in a set. For example, if K = 2 then S contains all
sets of 2 positive integers {m1,m2}, such that m1 +
m2 = M . Thus, S = {{1,M − 1}, {2,M − 2}, {3,M −
3}, . . . , {M − 1, 1}} and (13) reduces to:

η0 =

M−1∑
i=1

[
β
i(M−i)
0

(
M

i

)2
]

(14)

• Since the expression for η0 is quite involved, we simplify
it the special case where there are only two clusters. Un-
der the assumption that log β0 ≤ 1

M−1 + 2
M−2 log 1

M−1 ,
it can be shown (derived in Appendix F) that η0 is upper-
bounded as:

η0 =

M−1∑
i=1

[
β
i(M−i)
0

(
M

i

)2
]

≤M3βM−10

:= η0,approx

(15)

We first consider the data consistency constraint in (8) and
determine possible feasible solutions. All the points in any
specified cluster can share a center without violating the data
consistency constraint:

Lemma II.1. Consider any two points x1 and x2 from the
same cluster. Then, there exists a u that satisfies the data
consistency conditions specified by:

‖Si (xi − u)‖∞ ≤ ε

2
; i = 1, 2 (16)
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TABLE I: Notations used

K Number of clusters
M Number of points in each cluster
P Number of features for each point
Ci The ith cluster
ci center of Ci

zi(m) mth point in Ci
{xi} Random permutation of KM points {zk(m)} for

k ∈ {1, 2, . . . ,K},m ∈ {1, 2, . . . ,M}
Si Sampling matrix for xi
X Matrix formed by arranging {xi} as columns,

such that the ith column is xi
p0 Probability of sampling each entry in X
δ Cluster separation defined in (3)
ε Cluster size defined in (4)
κ Defined as κ = ε

√
P
δ

µ0 Parameter related to coherence defined in (6)
γ0 Defined in (10)
δ0 Defined in (11)
β0 Defined in (12)
η0 Defined in (13)

η0,approx Upper bound for η0 for the case of 2 clusters,
defined in (15)

This result follows from the assumption of the cluster size,
and is proven in Appendix A. In contrast, points from different
clusters cannot share a center with high probability:

Lemma II.2. Consider any two points x1 and x2 from
different clusters. If κ < 1, then with probability at least 1−β0
there exists no u that satisfies the data-consistency relations:

‖Si (xi − u)‖∞ ≤ ε

2
; i = 1, 2 (17)

The proof of this lemma is in Appendix C. To get some
intuition regarding the above result, let us define S1 = SI1 and
S2 = SI2 , where I1 and I2 are the index sets of the features
that are sampled (not missing) in x1 and x2 respectively. We
observe that (17) can be satisfied, if the features of x1 and
x2 are not very different on the index set I1 ∩ I2, which is
the set of commonly observed locations. If the probability of
sampling p0 is sufficiently high, then the cardinality of the
set of common locations, specified by |I1 ∩ I2| = q, will be
high, with high probability. If the coherence µ0 defined in
assumption A3 is low, then with high probability the vector
x1−x2 does not have q small entries. Thus, for a small value
of µ0 and high p0, (17) occurs with a low probability β0.

The above result can be generalized to consider a large
number of points from multiple clusters. If we choose M
points such that not all of them belong to the same cluster,
then it can be shown that with high probability, they cannot
share the same u without violating the constraints in (8):

Lemma II.3. Assume that {xi : i ∈ I, |I| = M} is a set
of points chosen randomly from multiple clusters (not all are
from the same cluster). If κ < 1, a solution u does not exist
for the following equations:

‖Si (xi − u)‖∞ ≤
ε

2
; ∀i ∈ I (18)

with probability exceeding 1− η0.

The proof of this lemma is in Appendix D. The key
message of the above result is that large clusters with mis-
classified results are highly unlikely. We will show that all
feasible solutions containing small mis-classified clusters are
associated with higher cost than the correct solution. Thus,
we can conclude that the algorithm recovers the ground truth
solution with high probability, as summarized below.

Theorem II.4. If κ < 1, the solution to the optimization
problem (8) is identical to the ground-truth clustering with
probability exceeding 1− η0.

The proof of the above theorem is in Appendix E. We note
that for a low value of β0 and a high value of M (number of
points in each cluster), we will obtain a very low value of η0.
The only non-zero terms in the objective function of (8) are
the differences between centers of distinct clusters. Intuitively,
the value of the objective function could be made equal to 0
by assigning all the points to the same cluster. However, this
is not allowed by the constraints of the optimization problem
which are based on our known observations of the data points.
Using similar arguments, under our theoretical assumptions,
the objective function value cannot be made arbitrarily low by
assigning all the points to a very few large clusters. This idea
is captured by Lemma II.3. It turns out (as shown in the proof
of Theorem II.4) that under our theoretical assumptions, the
optimization problem has a unique minimizer given by the
correct clustering with high probability. While the objective
function value for this solution can be large if the data contains
a large number of clusters, it will nevertheless be the minimum
value that the objective function can attain under the given
constraints.

For the special case where there are no missing entries, we
have the following result which is proved in Appendix G.

Theorem II.5. If κ < 1, the solution to the optimization
problem (8) with Si = I,∀i = 1, . . . ,KM is identical to
the ground-truth clustering.

III. RELAXATION OF THE `0 PENALTY

The results in the previous section provide important in-
sights on the difficulty of the clustering problem in the pres-
ence of missing data. However, the optimization problem in
(8) is NP-hard. We hence consider a computationally feasible
relaxation of the optimization problem (8) in this section.

A. Relaxed optimization problem

We consider a relaxed problem where φ is a function
approximating the `0 norm:

{u∗i } = min
{ui}

KM∑
i=1

KM∑
j=1

φ (‖ui − uj‖2)

s.t ‖Si(xi − ui)‖∞ ≤
ε

2
, i ∈ {1 . . .KM}

(19)

Some examples of such functions are:
• `p norm: φ(x) = |x|p, for some 0 < p < 1.

• H1 penalty: φ(x) = 1− e−
x2

2σ2 .
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Fig. 2: Different penalty functions φ. (a) The `0 norm (b) The `p
penalty function which is non-convex for 0 < p < 1 and convex for
p = 1 (c) The H1 penalty function. The `p and H1 penalties closely
approximate the `0 norm for low values of p and σ respectively.

These functions approximate the `0 penalty more accurately
for lower values of p and σ, as illustrated in Fig 2. We can
solve (19) using a majorize-minimize strategy. Specifically,
by majorizing the penalty φ using a quadratic surrogate
functional, we obtain:

φ(x) ≤ w(x)x2 + d (20)

where w(x) = φ
′
(x)
2x , and d is a constant. For the two penalties

considered here, we obtain the weights as:

• `p norm: w(x) = ( 2
px

(2−p) + α)−1 . The infinitesimally
small α term is introduced to deal with situations where
x = 0. For x 6= 0, w(x) ≈ p

2x
p−2.

• H1 penalty: w(x) = 1
2σ2 e

− x2

2σ2 .

With this majorization, (19) can be solved by alternating
between the box-constrained quadratic optimization problem:

{u∗i } = min
{ui}

KM∑
i=1

KM∑
j=1

wi,j‖ui − uj‖2

s.t ‖Si(xi − ui)‖∞ ≤
ε

2
, i ∈ {1 . . .KM}

(21)

and the computation of the weights wi,j . We refer to this
iterative solution as the constrained solution.

While the above formulation is consistent with our theo-
retical formulation, it is computationally intensive to solve
the constrained problem for large datasets. In addition, the
exact value of ε may be unknown in practical applications.
Therefore, we propose to solve the following unconstrained
problem:

{u∗i } = arg min
{ui}

KM∑
i=1

‖Si(ui−xi)‖22+λ

KM∑
i=1

KM∑
j=1

φ(‖ui−uj‖2)

(22)
We now state a majorize-minimize formulation for (22):

{u∗i , w∗ij} = arg min
{ui,wij}

KM∑
i=1

‖Si(ui − xi)‖22

+λ

KM∑
i=1

KM∑
j=1

wij‖ui − uj‖22

(23)

Fig. 3: Comparison of different penalties. We show here
the 2 most significant principal components of the solutions
obtained using the IRLS algorithm. (a) It is seen that the `1
penalty is unable to cluster the points even though the clusters
are well-separated. (b) The `p; p = 0.1 penalty is able to
cluster the points correctly. However, the cluster-centers are
not correctly estimated. (c) The H1 penalty correctly clusters
the points and also gives a good estimate of the centers.

In order to solve problem (23), we alternate between two
sub-problems till convergence. At the nth iteration, these sub-
problems are:

w
(n)
ij =

φ
′
(
‖u(n−1)

i − u
(n−1)
j ‖2

)
2‖u(n−1)

i − u
(n−1)
j ‖2

(24)

{u(n)
i } = arg min

{ui}

KM∑
i=1

‖Si(ui − xi)‖22

+λ

KM∑
i=1

KM∑
j=1

w
(n)
ij ‖ui − uj‖22

(25)

We observe experimentally that the formulations (22) and
(19) offer qualitatively similar results. Our experiments also
show that for the optimal value of λ, the formulation in
(22) may offer more accurate solutions than the constrained
formulation in (19). Note that the data consistency term in (19)
is the maximum likelihood term when the cluster centers are
corrupted by Gaussian noise; it is expected to provide more
noise-robust estimates. For certain choices of the φ function, it
is guaranteed that the IRLS iterations will converge to a critical
point of the objective function (23). This result is stated below.

Theorem III.1. Let φ : [0,∞) → [0,∞) be a continuously
twice differentiable function such that φ ◦ √. is a strictly
concave function, with φ(0) = 0, φ

′
(0) = c and 0 < φ

′
(x) ≤

c. Then the iterates defined as (24) and (25) converge to
a stationary point of the objective function in (23), or the
accumulation points of {U(n)} form a continuum in the set of
stationary points of the objective function in (23).

The proof of the above result is in Appendix H and follows
from [32]. The H1 penalty satisfies the conditions required
by the above theorem. Thus, the IRLS iterates (24) and (25)
defined for the H1 penalty will converge to a critical point of
(22), unless the objective function in (22) contains flat regions,
i.e. the critical points are not isolated. These flat regions will
be present if a particular row of X is never sampled. This can
be regarded as an artefact of the sampling scheme. In this case,
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the iterates will form a continuum in the flat region. Moreover,
regardless of the existence of flat regions, the iterates will
converge to a minimum, unless it is initialized at a maximum.

B. Comparison of penalties

We compare the performance of different fusion penalties
when used as a surrogate for the `0 norm. For this purpose,
we use a simulated dataset with points in R50 belonging
to three well-separated clusters, such that {xi}200i=1 ∈ C1,
{xi}400i=201 ∈ C2 and {xi}600i=401 ∈ C3. We do not consider
the presence of missing entries for this experiment. We solve
(22) to cluster the points using the `1, `0.1 and H1 (for
σ = 0.5) penalties. The results are shown in Fig 3. Only
for the purpose of visualization, we take a PCA of the data
matrix X ∈ R50×600 and retain the two most significant
principal components to get a matrix of points ∈ R2×600.
These points are plotted in the figure, with red, blue and green
representing points from different clusters. We similarly plot
the two most significant components of the estimated centers
in black. In (b) and (c), we note that u∗1 = u∗2 = . . . = u∗200,
u∗201 = u∗202 = . . . = u∗400 and u∗401 = u∗402 = . . . = u∗600.
Thus, the `0.1 and H1 penalties are able to correctly cluster
the points. This behaviour is not seen in (a). We conclude that
the convex `1 penalty is unable to cluster the points.

The cluster-centers estimated using the `0.1 penalty are inac-
curate. The H1 penalty out-performs the other two penalties
and accurately estimates the cluster-centers. We can explain
this behaviour intuitively by Fig 2. The `1 norm penalizes
differences between all pairs of points. The `0.1 and H1

functions penalize differences between points that are close.
Due to the saturating nature of the penalties, they do not
heavily penalize differences between points that are further
away. However, we note that the H1 penalty saturates to 1
very quickly, similar to the `0 norm. This behaviour is missing
for the `0.1 penalty, and for this reason, it shrinks the distance
between the estimated centers of different clusters.

C. Initialization Strategies

Since the cost function is non-convex, the algorithm requires
good initialization of the weights wij for convergence to the
correct cluster center estimates. We consider two different
strategies for initializing the weights:
• Partial Distances [25], [33]: Consider a pair of points

x1,x2 observed by sampling matrices S1 = SI1 and
S2 = SI2 respectively. Let the set of common indices
be ω := I1 ∩ I2. We define the partial distance as
‖yω‖ =

√
P
|ω|‖x1ω −x2ω‖, where xiω represents the set

of entries of xi restricted to the index set ω. Instead of
the actual distances which are not available, the partial
distances ‖yω‖ can be used for computing the weights.

• Imputation Methods: The weights can be computed from
estimates {u(0)

i }, where:

u
(0)
i = Sixi + (I− Si)m (26)

Here m is a constant vector, specific to the imputation
technique. The zero-filling technique corresponds to m =

0. Better estimation techniques can be derived where the
jth row of m can be set to the mean of all measured
values in the jth row of X.

We will observe experimentally that for a good approximation
of the initial weights W(0), we get the correct clustering.
Conversely, the clustering fails for a bad initial guess. Our
experiments demonstrate the superiority of a partial distance
based initialization strategy over a zero-filled initialization.

IV. RESULTS

We demonstrate the impact of the different parameters
on the theoretical bounds in Theorem II.4. We also test
the proposed algorithm on simulated and real datasets. The
simulations are used to study the performance of the algorithm
with change in parameters such as fraction of missing entries,
number of points to be clustered etc. We also study the
effect of different initialization techniques on the algorithm
performance. We demonstrate the algorithm on a Wine dataset
[27], and an Australian sign language (ASL) dataset [28].

A. Variation of theoretical prediction with parameters

We plot the quantities γ0, δ0, β0 and η0 (defined in section
II-C) as a function of parameters p0, P, κ and M in Fig 4. γ0
is an upper bound for the probability that a pair of points have
<

p20P
2 entries observed at common locations. In Fig 4 (a), the

change in γ0 is shown as a function of p0 for different values
of P . In subsequent plots, we fix P = 50 and µ0 = 1.5. δ0 is
an upper bound for the probability that a pair of points from
different clusters can share a common center, given that ≥ p20P

2
entries are observed at common locations. In Fig 4 (b), the
change in δ0 is shown as a function of p0 for different values
of κ. In Fig 4 (c), the behaviour of β0 = 1− (1− γ0)(1− δ0)
is shown, which is the probability mentioned in Lemma II.2.

We consider the two cluster setting, (i.e. K = 2) for sub-
sequent plots. η0 is the probability of failure of the clustering
algorithm (8). In (d), plots are shown for (1−η0) as a function
of p0 for different values of κ and M . As expected, the
probability of success of the clustering algorithm increases
with increase in p0 and M and decrease in κ.

B. Clustering of Simulated Data

We simulated datasets with K = 2 disjoint clusters in R50

with a varying number of points per cluster. The points in each
cluster follow a uniform random distribution, around the mean.
We study the probability of success of the H1 penalty based
clustering algorithm with partial-distance based initialization
as a function of κ, M and p0. For a particular set of parameters
the experiment was conducted twenty times to compute the
probability of success of the algorithm. Between these trials,
the cluster-centers remain the same, while the points sampled
from these clusters are different and the locations of the
missing entries are different. Fig 5 (a) shows the result for
datasets with κ = 0.39 and µ0 = 2.3. The theoretical
guarantees for successfully clustering the dataset are shown in
(b). Note that the theoretical guarantees do not assume that the
points are taken from a uniform random distribution. Also, the
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Fig. 4: Variation of the recovery probabilities with parameters: The quantities γ0, δ0 and β0 defined in Section II-C are plotted
in (a), (b) and (c), respectively. In (b) and (c), P = 50 and µ0 = 1.5 are assumed. β0 gives the probability that 2 points from
different clusters can share a center. As expected, this value decreases with increase in p0 and decrease in κ. Considering
K = 2 clusters, a lower bound for the probability of successful clustering (1− η0) using the proposed algorithm is shown in
(d) for different values of κ.

Fig. 5: Experimental results for probability of success. Guar-
antees are shown for a simulated dataset with K = 2 clusters.
The clustering was performed using (23) with an H1 penalty
and partial distance based initialization. For (a) and (b) it
is assumed that κ = 0.39 and µ0 = 2.3. (a) shows the
experimentally obtained probability of success of clustering
for clusters with points from a uniform random distribution.
(b) shows the theoretical lower bound for the probability of
success. (c) shows the experimentally obtained probability of
success for a more challenging dataset with κ = 1.15 and
µ0 = 13.2. Note that we do not have theoretical guarantees
for this case, since our analysis assumes that κ < 1.

bounds assume that we are solving the original problem using
a `0 norm, whereas the experimental results were generated
for the H1 penalty. Our guarantees hold for κ < 1. However,
we demonstrate in (c) that even for the more challenging case
where κ = 1.15 and µ0 = 13.2, the clustering is successful.

We simulated Dataset-1 with K = 3 disjoint clusters in
R50 and M = 200 points in each cluster. In order to generate
this dataset, three cluster centers in R50 were chosen from a
uniform random distribution. The distances between the three
pairs of cluster-centers are 3.5, 2.8 and 3.3 units respectively.
For each of these three cluster centers, 200 noisy instances
were generated by adding zero-mean white Gaussian noise
of variance 0.1. The dataset was sub-sampled with varying
fractions of missing entries (p0 = 1, 0.9, 0.8, . . . , 0.3, 0.2).
The locations of the missing entries were chosen uniformly at
random from the full data matrix. We also generate Dataset-
2 by halving the distance between the cluster centers, while
keeping the intra-cluster variance fixed. Both the proposed
initialization techniques for the IRLS algorithm (i.e. zero-
filling and partial-distance) are also tested here. The results are
shown in Fig 6. The centres are estimated for different values
of λ. Since the estimated centres lie in R50, we take a PCA of
the estimated centers (similar to Fig 3) and plot the two most
significant components. The lines in the figure trace the path of
the individual cluster centers as the regularization parameter
λ increases. For lower λ values, the cluster centres are the
same as the points themselves. For very high λ values, all
clusters merge and all the estimated cluster centres are equal
in value. The three colours distinguish the estimated cluster
centres according to their ground-truth cluster memberships.
These colours have been shown only for easier visualization.
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Fig. 6: Clustering results in simulated datasets. The H1 penalty is used to cluster two datasets with varying fractions of missing
entries. Results are presented with different initialization techniques (zero-filled and partial-distance based). We show here the
two most significant principal components of the solutions. The clusterpaths are shown as a function of the regularization
parameter λ. Inter-cluster distances in Dataset 2 are half of those in Dataset 1, while intra-cluster distances remain the same.
Consequently, Dataset 1 performs better at a higher fraction of missing entries. For the partial-distance based initialization, the
cluster center estimates are relatively stable with varying fractions of missing entries.
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Fig. 7: Effect of changing dimension in simulated datasets.
The proposed scheme is used to cluster datasets with varying
ambient dimension P . The SER of the estimated cluster
centres is plotted as a function of the regularization parameter
λ. It is observed that the achievable SER increases with
increase in the ambient dimension.

The colours are not inferred by the algorithm, but known to us
as ground-truth. As expected, we observe that the clustering
algorithms are more stable with fewer missing entries. We also
observe that the partial distance based initialization technique
out-performs the zero-filled initialization. Thus, we use this
scheme for subsequent experiments on real datasets.

We study the performance of the proposed scheme with
change in the ambient dimension P in Fig. 7 . For all these
experiments, we consider simulated data with p0 = 0.4.
For the study on effect of ambient dimension, datasets with
K = 3 clusters are considered. It is observed that the
performance improves with an increase in ambient dimension,
as is predicted by theory by the exponential dependence of γ0
and δ0 on P .

We study the performance as a function of the number
of clusters K in Fig. 8. For the study on varying number
of clusters, we consider two cases. For both these cases, an
ambient dimension of P = 50 is assumed. In the first case,
the number of points in each cluster is fixed as M = 200,
and thus the total number of points is 200K. In the second
case, the total number of points is fixed to 600. The number
of points per cluster is then 600

K . The results are illustrated
in Fig 8. We observe that in case-1, the performance of the
algorithm is invariant to the number of clusters. In case-2, the
performance of the algorithm degrades with an increase in the
number of clusters. In this case, more observed entries per
data point are required as K grows.

C. Comparison with other methods

We have compared the proposed scheme with several other
schemes on the task of clustering data with missing entries. We
first present results for both the constrained (19) and uncon-
strained (22) versions of the proposed scheme. The competing
methods include several different versions of the sum-of-norms
formulation, as well as methods for subspace clustering in the
presence of missing entries. The SON formulations are of the

type:

{u∗i } = arg min
{ui}

KM∑
i=1

‖Si(xi−ui)‖22+λ

KM∑
i=1

KM∑
j=1

wij‖ui−uj‖

(27)
The different versions we use here are:

1) l1-ZF-W-m: In this formulation, the weights {wij} are
computed using partial distances.

2) l1-ZF-W: Here, the weights are obtained as above, and
Si = I,∀i. The missing entries are imputed to zero.

3) l1-ZF: Here, we set wij = 1,∀i, j, and Si = I,∀i. The
missing entries are imputed to zero.

4) l1-ZF-m: In this formulation, wij = 1,∀i, j and the
masks Si are retained to account for missing entries,
as in l1-ZF-W-m.

In addition we compare to Group subspace clustering (GSSC)
and Mixture subspace clustering (MSC) [34], Matrix com-
pletion with noise (LRMC) [35], Sparse subspace clustering
with missing entries (SSC-CEC) [33] and High rank matrix
completion (HRMC) [26] methods for data with missing
entries.

The algorithms are evaluated on the simulated dataset
containing 3 clusters (termed ’Dataset-2 in the previous sub-
section) with p0 = 0.4. We have used the signal to error ratio
(SER) of the recovered cluster centres as an indicator of the
goodness of the recovered cluster centers. We note that differ-
ent algorithms are differentially sensitive to the regularization
parameter λ. Hence, plotting the SER as a function of λ shows
the best case performance of each algorithm. The SER of the
estimated cluster centres are shown in Fig 9 as a function
of λ. We observe from the SER plots that the proposed
algorithm using the non-convex penalty estimates the cluster
centres most accurately. The best SER value over all values
of λ are shown in Table II for all the methods, along with
classification accuracy. We also observe from the clusterpaths
that the non-convex penalty of the proposed scheme results in
perfect clustering, while the other SON-based techniques fail
to cluster the points for any value of λ. Thus, the classification
accuracy of the other SON based techniques is not reported in
the table. We observe the estimated cluster centres from the
constrained version of the proposed scheme is not identical
to the best centre estimates obtained from the unconstrained
version. However, the results are comparable. We note that
in the constrained case, the cluster centres do not exactly
converge to the ground-truth centres as in the unconstrained
case. The unconstrained setting allows the user to view the
clusterpath as a function of λ, instead of choosing the right
value, which might vary between datasets. In contrast, the
ε parameter in the constrained case might be challenging to
set. We note that cluster centres are inaccurately estimated for
both GSSC and MSC. However, GSSC has a high percentage
of correctly clustered points, as compared to MSC. It is to
be noted, that both GSSC and MSC require the number of
clusters to be specified apriori, which is not required for the
proposed scheme. The LRMC technique fails to cluster the
points. It assigns each point to its individual cluster for low λ
values and assigns all the points to a single cluster for larger λ
values. When spectral clustering is applied on the co-efficient
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Fig. 8: Effect of changing number of clusters in simulated datasets. The proposed scheme is used to cluster datasets with
varying number of clusters K. Two cases are considered: (a) Number of points per cluster is constant. In this case, the
clustering performance is invariant to the number of clusters. (b) Total number of points is constant. In this case, the clustering
performance degrades with increase in the number of clusters.

matrices obtained from both SSC-CEC and HRMC, we get
good clustering performance and centre estimates. However,
the number of clusters needs to be specified apriori.

TABLE II: Performance comparison of different methods

Method SER (dB) % correctly classified Number of clusters
Prop-uncons 62.12 100 Not required

Prop-cons 46.48 100 Not required
l1-ZF-w-m 35.72 - Not required
l1-ZF-W 37.68 - Not required

l1-ZF 24.84 - Not required
l1-ZF-m 16.94 - Not required

MSC -6.63 67.83 Required as input
GSSC -0.93 97.50 Required as input
LRMC 30.33 - Not required

SSC-CEC 45.2 99.17 Required as input
HRMC - - Required as input

D. Clustering of Wine Dataset

We apply the clustering algorithm to the Wine dataset
[27]. The data consists of the results of a chemical analysis
of wines from three different cultivars. Each data point has
P = 13 features. The three clusters have 59, 71 and 48
points respectively, resulting in a total of 178 data points. We
created a dataset without outliers by retaining only M = 40
points per cluster, resulting in a total of 120 data points. We
under-sampled these datasets using uniform random sampling
with different fractions of missing entries. The results are
displayed in Fig 10 using the PCA technique as explained
in the previous sub-section. It is seen that the clustering is
quite stable and degrades gradually with increasing fractions
of missing entries. Our code and dataset for this experiment
is available at: https://github.com/sunrita-poddar/Clustering-
with-missing-entries.

E. Clustering of ASL Dataset

We apply the clustering algorithm to subsets of words from
the Australian Sign Language high quality dataset [28]. The
original dataset contained 2565 signs, each repeated 27 times

by a single user over a period of 9 weeks. 22 features are
measured for each sign, with an average length of 57 time
frames for each feature. These features correspond to the
relative positions and orientations of the fingers, measured
using gloves and magnetic position trackers. We picked the
most important frame for each frame, resulting in feature
vector of length 22 for each word. We next formed two datasets
containing subsets of words. The first dataset contained all
instances of the four words ”alive”, ”answer”, ”boy” and
”cold”. The second dataset contained all instances of the four
words ”alive”, ”boy”, ”change” and ”love”. For each dataset,
the feature vectors were arranged as columns of the matrix X.
Both the datasets were of size 22 × 108. The datasets were
undersampled uniformly at random using different fractions of
missing entries. The results are displayed in Fig 11 for both
datasets. It is observed that clustering the first dataset in the
presence of missing entries is relatively easier, since the words
are more well-separated, as is predicted by theory.

V. DISCUSSION

We have proposed a novel algorithm to cluster data, when
some of the features of the points are missing at random.
We theoretically studied the performance of an algorithm that
minimizes an `0 fusion penalty subject to certain constraints
relating to consistency with the known features. We con-
cluded that under favorable clustering conditions, such as well-
separated clusters with low intra-cluster variance, the proposed
method performs the correct clustering even in the presence
of missing entries. However, since the problem is NP-hard,
we propose to use relaxations of the `0 norm. We observe
experimentally that the H1 penalty is a good surrogate for
the `0 norm. This non-convex saturating penalty is shown
to perform better in the clustering task than previously used
convex norms and penalties. We describe an IRLS based
strategy to solve the relaxed problem.

Our theoretical analysis reveals the various factors that
determine whether the points will be clustered correctly in
the presence of missing entries. As expected, the performance

https://github.com/sunrita-poddar/Clustering-with-missing-entries
https://github.com/sunrita-poddar/Clustering-with-missing-entries
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Fig. 9: Comparison with other methods. The proposed scheme is compared to several other versions of sum-of-norms clustering
using weighted and unweighted convex penalties. It is observed from the clusterpaths that the convex penalties are unable to
cluster the points for any value of λ. The corresponding SER values of the estimated cluster centres is also low as compared
to the proposed scheme. The subspace clustering based methods (GSSC and MSC) [34] produce poor estimates of the cluster
centres. However, as seen from Table II, GSSC provides good classification accuracy. LRMC [35] is unable to cluster the
points. In contrast, SSC-CEC [33] and HRMC [26] provide good clustering performance and centre estimates. It is to be noted
that the methods GSSC, MSC, SSC-CEC and HRMC require the number of clusters to be provided as an input.

Fig. 10: Clustering on Wine dataset. The H1 penalty is used
to cluster the Wine datasets with varying fractions of missing
entries. The clustering performance is accurate for around 30%
missing entries.

degrades with the decrease in the fraction of sampled entries
(p0). Moreover, our results show that the difference between
points from different clusters should have low coherence (µ0)
to obtain good clustering performance. This means that the
expected clustering should not be dependent on only a few
features of the points. Intuitively, if the points in different
clusters can be distinguished by only one or two features,
then a point missing these particular feature values cannot be
clustered correctly. Moreover, we note that a high number of
points per cluster (M ), high number of features (P ) and a low
number of clusters (K) make the data less sensitive to missing
entries.

We finally note that well-separated clusters with low intra-
cluster variance (resulting in low values of κ) is desirable.
While κ < 1 is assumed for our theoretical results, this is
a restrictive assumption which may not be satisfied for many
real datasets. Though the proposed algorithm is shown to work
well on the Wine and ASL datasets, the assumption κ < 1
is violated for all these datasets. However, we observe that
κ is still a good measure for the difficulty of the problem.
Specifically, we observe the values κ = 8.13 for the wine
dataset, and κ = 3.78 and 9.77 for the first and second
ASL datasets respectively. However, as expected the first ASL
dataset having a lower κ value is easier to cluster than the
second one. The relaxation of this constraint to match the
theory and the practical observations is a focus of our future
work. We also plan to simplify the theoretical guarantees such
that the relationship between p0 and the probability of failure
of the algorithm η0 is more intuitive.

Our experimental results show great promise for the pro-
posed technique. In particular, for the simulated data, we
note that the cluster-center estimates degrade gradually with
increasing fraction of missing entries. Depending on the
characteristics of the data such as number of points and
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Fig. 11: Clustering on subsets of words taken from the ASL dataset. 2 datasets have been shown here, with instances of 4
words in each case. Dataset-2 is more challenging to cluster in the presence of missing entries due to greater similarity between
the 4 words, as indicated by a smaller separation distance. Dataset-1 is accurately clustered even for 40% missing entries,
while Dataset-2 is accurately clustered for around 20% missing entries.

cluster separation distance, the clustering algorithm fails at
some particular fraction of missing entries. We also show the
importance of a good initialization for the IRLS algorithm, and
our proposed initialization technique using partial distances is
shown to work very well. Our theory assumes well-separated
clusters and without the presence of any outliers. Theoretical
and experimental analysis for the clustering performance in
the presence of outliers will be investigated in future work.

VI. CONCLUSION

We propose a clustering technique for data in the presence
of missing entries. We prove theoretically that a constrained `0

norm minimization problem recovers the clustering correctly
with high probability. An efficient algorithm that solves a
relaxation of the above problem is presented next. It is
demonstrated that the cluster center estimates obtained using
the proposed algorithm degrade gradually with an increase
in the number of missing entries. The algorithm is also used
to cluster a Wine and an ASL dataset. The presented theory
and results demonstrate the utility of the proposed scheme in
clustering data in presence of missing entries.
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APPENDIX A
PROOF OF LEMMA II.1

Proof. Since x1 and x2 are in the same cluster, ‖x1−x2‖∞ ≤
ε. For all the points in this particular cluster, let the pth feature
be bounded as: fpmin ≤ x(p) ≤ fpmax. Then we can construct
a vector u, such that u(p) = 1

2 (fpmin + fpmax). Now, since
fpmax− f

p
min ≤ ε, the following condition will be satisfied for

this particular choice of u:

‖xi − u‖∞ ≤ ε

2
; i = 1, 2 (28)

From this, it follows trivially that the following will also hold:

‖Si (xi − u)‖∞ ≤ ε

2
; i = 1, 2 (29)

APPENDIX B
LEMMA B.1

Lemma B.1. Consider any pair of points x1,x2 ∈ RP
observed by sampling matrices S1 = SI1 and S2 = SI2 , re-
spectively. We assume the set of common indices (ω := I1∩I2)
to be of size q = |I1 ∩ I2|. Then, for some 0 < t < q

P ,
the following result holds true regarding the partial distance
‖yω‖2 = ‖SI1∩I2 (x1 − x2) ‖2:

P
(
‖yω‖22 ≤

( q
P
− t
)
‖y‖22

)
≤ e
− 2t2P2

qµ20 (30)

where y = x1 − x2.

Proof. We use some ideas for bounding partial distances from
Lemma 3 of [25]. Let y = x1 − x2. We rewrite the partial
distance ‖yω‖22 as the sum of q variables drawn uniformly
at random from {y21 , y22 , . . . , y2P }. By replacing a particular

http://arxiv.org/abs/1112.5629
http://archive.ics.uci.edu/ml
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variable in the summation by another one, the value of the sum
changes by at most ‖y‖2∞. Applying McDiarmid’s Inequality,
we get:

P
(
E(‖yω‖22)− ‖yω‖22 ≥ c

)
≤ e
− 2c2∑q

i=1
‖y‖4∞ = e

− 2c2

q‖y‖4∞

(31)
From our assumptions, we have E(‖yω‖22) = q

P ‖y‖
2
2. We

also have ‖y‖22
‖y‖2∞

≥ P
µ0

by (6). We now substitute c = t‖y‖22,
where 0 < t < q

P . Using the results above, we simplify (31):

P
(
‖yω‖22 ≤

( q
P
− t
)
‖y‖22

)
≤ e−

2t2‖y‖42
q‖y‖4∞ ≤ e

− 2t2P2

qµ20 (32)

APPENDIX C
PROOF OF LEMMA II.2

Proof. We will use proof by contradiction. Specifically, we
consider two points x1 and x2 belonging to different clusters
and assume that there exists a point u that satisfies:

‖Si (xi − u)‖∞ ≤ ε

2
; i = 1, 2 (33)

We now show that the above assumption is violated with high
probability. Following Lemma B.1, we denote y = x1 − x2

and the partial distance is:

‖yω‖2 = ‖SI1∩I2 (x1 − x2) ‖2 (34)

Using (33) and applying triangle inequality, we obtain
‖yω‖∞ ≤ ε, such that ‖yω‖2 ≤ ε

√
q, where q = |I1 ∩ I2|

is the number of commonly observed locations. We will show
that with high probability, the partial distances satisfy:

‖yω‖22 > ε2q (35)

which contradicts (33). We first find a lower bound for q.
Using the Chernoff bound and setting E(q) = p20 P , we have:

P
(
q ≥ p20P

2

)
> 1− γ0 (36)

where γ0 = ( e2 )−
p20P

2 . Using Lemma B.1, we have the
following result for the partial distances:

P
(
‖yω‖22 ≤

( q
P
− t
)
‖y‖22

)
≤ e
− 2t2P2

qµ20 (37)

Since x1 and x2 are in different clusters, we have ‖y‖2 ≥ δ.
We will now determine the value of t for which the above
upper bound will equal the RHS of (35):( q

P
− t
)
‖y‖22 = ε2q (38)

or equivalently:

t =
q

P
− ε2q

‖y‖22
≥ q

P
− ε2q

δ2
=

q

P
(1− κ2) (39)

Since t > 0, we require κ < 1, where κ = ε
√
P
δ . Using the

above, we get the following bound if we assume that q ≥ p20P
2 :

t2

q
≥ q

P 2
(1− κ2)2 ≥ p20

2P
(1− κ2)2 (40)

We obtain the following bound for any q ≥ p20P
2 :

P
(
‖yω‖2 > ε2q

)
≥ 1− e

− 2t2P2

qµ20

≥ 1− e
− p

2
0P (1−κ2)2

µ20

= 1− δ0

(41)

Combining (36) and (41), the probability for (33) to hold is
≤ 1− (1− γ0)(1− δ0) = β0.

APPENDIX D
PROOF OF LEMMA II.3

Proof. We construct a graph where each point xi is repre-
sented by a node. Lemma II.1 implies that a pair of points
belonging to the same cluster can yield the same u in a
feasible solution with probability 1. Hence, we will assume
that there exists an edge between two nodes from the same
cluster with probability 1. Lemma II.2 indicates that a pair
of points belonging to different clusters can yield the same
u in a feasible solution with a low probability of β0. We
will assume that there exists an edge between two nodes from
different clusters with probability β0. We will now evaluate
the probability that there exists a fully-connected sub-graph
of size M , where all the nodes have not been taken from the
same cluster. We will follow a methodology similar to [36],
which gives an expression for the probability distribution of
the maximal clique (i.e. largest fully connected sub-graph) size
in a random graph. Unlike the proof in [36], in our graph every
edge is not present with equal probability.

We define the following random variables:

• t := Size of the largest fully connected sub-graph con-
taining nodes from more than 1 cluster

• n := Number of M membered complete sub-graphs
containing nodes from more than 1 cluster

Our graph can have an M membered clique iff n is non-zero.
Thus, we have:

P (t ≥M) = P (n 6= 0) (42)

Since the distribution of n is restricted only to the non-negative
integers, it can be seen that:

P (n 6= 0) ≤ E(n) (43)

Combining the above 2 results, we get:

P (t ≥M) ≤ E(n) (44)

Let us consider the formation of a particular clique
of size M using m1,m2, . . . ,mK nodes from clusters
C1, C2, . . . , CK respectively such that

∑K
j=1mj = M , and

at least 2 of the variables {mj} are non-zero. The number
of ways to choose such a collection of nodes is:

∏
j

(
M
mj

)
.

In order to form a solution {mj}, we need 1
2 (M2 −

∑
jm

2
j )

inter-cluster edges to be present. We recall that each of these
edges is present with probability β0. Thus, the probability that
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such a collection of nodes forms a clique is β
1
2 (M

2−
∑
j m

2
j )

0 .
This gives the following result:

E(N) =
∑
{mj}∈S

β
1
2 (M

2−
∑
j m

2
j )

0

∏
j

(
M

mj

)
= η0 (45)

where S is the set of all sets of positive integers {mj} such
that: 2 ≤ U({mj}) ≤ K and

∑
jmj = M . Here, the function

U counts the number of non-zero elements in a set. Thus:

P (t ≥M) ≤ η0 (46)

This proves that with probability ≥ 1− η0, a set of points of
cardinality ≥M not all belonging to the same cluster cannot
all have equal cluster-center estimates.

APPENDIX E
PROOF OF THEOREM II.4

Proof. Lemma II.1 indicates that fully connected original
clusters with size M can always be formed, while Lemma
II.3 shows that the size of misclassified large clusters cannot
exceed M−1 with very high probability. These results enable
us to re-express the optimization problem (8) as a simpler
maximization problem. We will then show that with high
probability, any feasible solution other than the ground-truth
solution results in a cost higher than the ground-truth solution.

Let a candidate solution have k groups of sizes
M1,M2, . . . ,Mk respectively. The center estimates for all
points within a group are equal. These are different from the
center estimates of other groups. Without loss of generality, we
will assume that at most K of these groups each have points
belonging to only a single ground-truth cluster, i.e. they are
”pure”. The rest of the clusters in the candidate solution are
”mixed” clusters. If we have a candidate solution with greater
than K pure clusters, they can always be merged to form K
pure clusters; the merged solution will result in a lower cost.

The objective function in (8) can thus be rewritten as:
KM∑
i=1

KM∑
j=1

‖ui − uj‖2,0 =

k∑
i=1

Mi(KM −Mi)

= K2M2 −
k∑
i=1

M2
i

(47)

Since we assume that the first K clusters are pure, therefore
they have a size 0 ≤ Mi ≤ M , i = 1, . . . ,K. The remaining
clusters are mixed and have size ≤ M − 1 with probability
≥ 1−η0. Hence, we have the constraints 0 ≤Mi ≤ (M −1),
i = K + 1, . . . , k. We also have a constraint on the total
number of points, i.e.

∑k
i=1Mi = KM . Thus, the problem

(8) can be rewritten as the constrained optimization problem:

{M∗i , k∗} = max
{Mi},k

k∑
i=1

M2
i

s.t. 0 ≤Mi ≤M, i = 1, . . . ,K

0 ≤Mi ≤M − 1, i = K + 1, . . . , k
k∑
i=1

Mi = KM

(48)

Note that we cannot have k < K, with probability ≥ 1 −
η0, since that involves a solution with cluster size > M . We
can evaluate the best solution {M∗i } for each possible value
of k in the range K ≤ k ≤ MK. Then we can compare
these solutions to get the solution with the highest cost. We
note that the feasible region is a polyhedron and the objective
function is convex. Thus, for each value of k, we only need
to check the cost at the vertices of the polyhedron formed by
the constraints, since the cost at all other points in the feasible
region will be lower. The vertex points are formed by picking
k− 1 out of the k box constraints and setting Mi to be equal
to one of the 2 possible extremal values. We note that all the
vertex points have either K or K + 1 non-zero values. As
a simple example, if we choose M = 10 and K = 4, then
the vertex points of the polyhedron (corresponding to different
solutions {Mi}) are given by all permutations of:

• (10, 10, 10, 10, 0, 0 . . . 0) : 4 clusters
• (10, 10, 10, 0, 1, 9, 0 . . . 0): 5 clusters
• (10, 10, 0, 0, 2, 9, 9, 0 . . . 0): 5 clusters
• (10, 0, 0, 0, 3, 9, 9, 9, 0 . . . 0): 5 clusters
• (0, 0, 0, 0, 4, 9, 9, 9, 9, 0 . . . 0): 5 clusters

In general, the vertices are given by permutations of:

• (M,M, . . . ,M, 0, 0 . . . 0): K clusters
• (M,M, . . . , 0, 0, 1,M − 1, 0 . . . 0): K + 1 clusters
• (M,M, . . . , 0, 0, 2,M − 1,M − 1 . . . 0): K + 1 clusters
• . . .
• (0, 0, . . . 0,K,M−1,M−1 . . .M−1, 0): K+1 clusters

Now, it is easily checked that the 1st candidate solution
in the list (which is also the ground-truth solution) has the
maximum cost. Mixed clusters with size > M − 1 cannot
be formed with probability > 1 − η0. Thus, with the same
probability, the solution to the optimization problem (8) is
identical to the ground-truth clustering.

APPENDIX F
UPPER BOUND FOR η0 IN THE 2-CLUSTER CASE

Proof. We introduce the following notation:

1) F (i) = i(M − i) log β0, for i ∈ [1,M − 1].
2) G(i) = 2[log Γ(M+1)−log Γ(i+1)−log Γ(M−i+1)],

for i ∈ [1,M − 1] where Γ is the Gamma function.

We note that both the functions F and G are symmetric about
i = M

2 , and have unique minimum and maximum respectively
for i = M

2 . We will show that the maximum for the function
F +G is achieved at the points i = 1,M − 1. We note that:

G′(i) = −2[Ψ(i+ 1)−Ψ(M − i+ 1)] (49)

where Ψ is the digamma function, defined as the log derivative
of the Γ function. We now use the expansion:

Ψ(i+ 1) = log i+
1

2i
(50)

Substituting, we get:

G′(i) = −2

[
log

i

M − i
+

M − 2i

2i(M − i)

]
(51)
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Thus, we have:

F ′(i) +G′(i) = (M − 2i)( log β0 −
1

i(M − i)
)

− 2 log
i

(M − i)
)

(52)

Now, in order to ensure that F ′(i) + G′(i) ≤ 0, we have to
arrive at conditions such that:

log β0 ≤
1

i(M − i)
+

2

M − 2i
log

i

M − i
(53)

Since the RHS is monotonically increasing in the interval i ∈
[1, M2 − 1] the above condition reduces to:

log β0 ≤
1

M − 1
+

2

M − 2
log

1

M − 1
(54)

Under the above condition, for all i ∈ [1, M2 ] :

F ′(i) +G′(i) ≤ 0 (55)

Thus, the function F +G reaches its maxima at the extremal
points given by i = 1,M − 1. For i ∈ {1, 2, . . . ,M − 1}:

F (i) +G(i) = log[β
i(M−i)
0

(
M

i

)2

] (56)

Thus, the function β
i(M−i)
0

(
M
i

)2
also reaches its maxima at

i = 1,M − 1. This maximum value is given by: βM−10 M2.
This gives the following upper bound for η0:

η0 ≤
M−1∑
i=1

[βM−10 M2] ≤M3βM−10 = η0,approx (57)

APPENDIX G
PROOF OF THEOREM II.5

Proof. We consider any two points x1 and x2 that are in
different clusters. Let us assume that there exists some u
satisfying the data consistency constraint:

‖xi − u‖∞ ≤ ε/2, i = 1, 2. (58)

Using the triangle inequality, we have ‖x1 − x2‖∞ ≤ ε and
consequently, ‖x1−x2‖2 ≤ ε

√
P . However, if we have a large

inter-cluster separation δ > ε
√
P , then this is not possible.

Thus, if δ > ε
√
P , then points in different clusters cannot be

misclassified to a single cluster. Among all feasible solutions,
clearly the solution with the minimum cost is the one where all
points in the same cluster merge to the same u. Thus, κ < 1
ensures that we will have the correct clustering.

APPENDIX H
PROOF OF THEOREM III.1

Proof. The proof follows from theorem 1 in [32]. The follow-
ing optimization problem is proposed:

min
U

Q(U) + λ

N−1∑
m=0

ψ[Vm(U)] (59)

where Q,Vm : RP → [0,∞), for m = 0, 1, . . . , N−1 are con-
tinuously differentiable convex functionals, and ψ : [0,∞)→

[0,∞) is a continuously twice differentiable concave function,
with ψ(0) = 0, ψ

′
(0) = 1 and 0 < ψ

′
(t) ≤ 1. We now

consider the following:
1) Q(U) =

∑
i ‖Si(ui − xi)‖2

2) Vm(U) = ‖ui−uj‖2, for m = (i− 1)KM + j− 1 and
N = (KM)2 − 1

If we choose the functions ψ such that the required con-
ditions are satisfied, then according to the theorem,{U(n)}
defined in (24) and (25) converges to a stationary point of
(22), or the accumulation points of {U(n)} form a continuum
in the set of stationary points of (22).
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