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Targeted Audience: Researchers and Clinicians interested in using quantitative relaxation measures to the study the effect of physiological and 
metabolic changes including those associated with neurological and psychiatric disorders on tissue parameters. 
Purpose: Quantification of multiple tissue parameters is emerging as a powerful tool in diagnosing various neurological and psychiatric diseases. 
However the major bottleneck in its routine clinical use is the long acquisition times needed to acquire multiple contrast weighted images. In 
addition, long acquisition times are likely to result in motion induced artifacts. In this work, we propose a dictionary learning based scheme to 
simultaneously recover T1ρ and T2 maps. Although, T1 ρ is sensitive to a number of tissue properties of interest, it is not specific. Acquiring 
additional parameters (e.g. T2ρ and T2) can improve the specificity of T1ρ. The proposed method models the data as a weighted linear combination of 
basis functions from a dictionary, which is learned from the measured data.  
Methods: The reconstruction from under-sampled data is posed as a constrained optimization 
problem given by: 

 ሾܷכ, ሿכܸ ൌ ሺܷܸሻܣ௎,௏ԡ݊݅݉݃ݎܽ െ ܾԡிଶ ൅ ଵԡܷԡଵ; ԡܸԡிଶߣ ൏ 1,  
where b=under-sampled data, U=sparse coefficient matrix, V=learned dictionary, and A 
considers coil sensitivity encoding along with Fourier encoding. A sparsity-promoting l1 
norm prior is enforced on U, while the Frobenius norm of the dictionary V is constrained. 
This approach jointly estimates the sparse coefficients U and the dictionary basis functions V 
from the measured undersampled k-space data b.  

We evaluated the utility of the proposed algorithm using both retrospective 
undersampling and prospective undersampled acquisitions. A fully sampled 2D dataset was 
acquired using a TSE sequence combined with T1ρ and T2 preparatory pulses5,6 (Turbo 
factor=8; FOV=22x22cm2, TR=2.5s, spin lock freq=330Hz). T1ρ and T2 weighted images 
were acquired by changing the duration of the T1ρ preparation pulse spin lock time (TSL) and 
T2 preparation pulse echo time (TE). The data was collected for 12 equispaced TSLs and TEs 
each ranging from 10ms to 120ms resulting in a scan time of 16min. The 2D data was 
retrospectively undersampled using a variable density sampling pattern at acceleration 
R=6,8,10,12.  
 The 3D prospective dataset with R=8 was acquired using a segmented 3D GRE 
sequence based on the 3D MAPSS1 approach (TR=5.6ms, Res=1.7mm3 isotropic, 
FOV=22x22x22cm3). Ten T1ρ spin-lock images and ten T2 TE images were acquired (10ms - 
100ms) resulting in a scan time of 20min. Both the datasets were reconstructed using the 
proposed scheme and the results were compared with kt-PCA2 and CS3 based schemes. The 
proposed scheme was solved using two algorithms: Algorithm 1- without variable splitting4 
and Algorithm 2 – with variable splitting. The parameters were estimated using a single 

exponential model given by ܯሺ݌ሻ ൌ ܵ0 exp ቀെ ்ாሺ௖ሻమ் ቁ exp ቀെ ்ௌ௅ሺ௖ሻభ்ఘ ቁ. 

Results: From Fig. 1, we observe that the proposed scheme performs better than the CS and 
kt-PCA scheme in both cases with and without motion because the dictionary is subject-
specific and the sparsity constraint allows implicit model order selection. Since, the dictionary 
in CS scheme is estimated from a model (formed using second equation), it does not account 
for subject motion. As the model order is fixed a priori in kt-PCA scheme, it tends to model 
noise leading to nosier reconstructions. To study the benefit of multi-parameter mapping from 
the technical perspective, comparisons of T1ρ maps obtained from reconstructions of the 
combined (T1ρ +T2) dataset and from just the T1ρ dataset itself are shown in Fig 2. Since the 
changes in parameters due to physiological changes is very small (~1-2%), accurate 
estimation of parameters plays an important role. We observe that combining the two 
datasets yields more accurate parameter estimation and thus improves the specificity of 
parameters in shorter acquisition times. The 3D dataset was reconstructed slice-by-slice 
using both Algorithms 1 and 2 to compare their results and reconstructions times. From Fig. 
3, we observe that both the algorithms yield similar results but Algorithm 2 takes 5.2 hours 
to reconstruct the entire 3D dataset whereas Algorithm 1 takes >50 hours.  
Conclusion: In this work we propose a novel dictionary learning scheme to accelerate 
whole-brain multi-parameter mapping. The proposed scheme yields reasonable parameter 
estimates at high accelerations as compared to other schemes. The robustness of the proposed 
scheme to motion makes it well-suited for multi-parameter mapping applications.  
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Figure 1: Comparison of the proposed method with 
CS and kt-PCA (i) without motion and (ii) with
motion. The plots corresponding to a) Reconstruction 
error, b) T1ρ map error and c) T2 map error are 
shown. It is observed that proposed scheme gives 
better performance than CS and kt-PCA.

Figure 2: Plots for T1ρ map error obtained from 
reconstructions for combined T1ρ+T2 dataset and the
T1ρ only dataset. We observe that combining the 
datasets yields superior reconstructions which 
translates to lower MSE in parameter estimation

Figure 3: Axial, Coronal and Sagittal views of the T1ρ
(top row) and T2 (bottom row) parameter maps using
Algorithm 1 (left) and Algorithm2 (right). Algorithm 2
yields similar results as Algorithm 1 but reduces the
reconstruction time by ~10 fold 


