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Abstract

Purpose: To improve the graph model of our previous work GOOSE for fat-water decomposition with

higher computational efficiency and quantitative accuracy. R2, C3

Methods: Novel generalizations of the GOOSE fat water decomposition algorithm, which inherit the R2, C4

global convergence guarantees of GOOSE thus minimizing fat-water swaps and phase wraps, are intro-

duced. Two non-equidistant graph optimization frameworks: a single-step framework termed as rapid

GOOSE (R-GOOSE), and a multi-step framework termed as multi-scale rapid GOOSE (m-RGOOSE)

are proposed. Both frameworks require considerably fewer graph layers than GOOSE, resulting in an

order of magnitude reduction in computational time and memory demand, making it readily applicable

to multidimensional graph water applications. The quantitative accuracy and computational time of the

novel frameworks are compared with GOOSE on the 2012 ISMRM Challenge datasets.

Results: Both frameworks accomplish the same level of high accuracy as GOOSE among all datasets.

Compared to 100 layers in GOOSE, only 8 layers used in the new graph model, computational time

is lowered by an order of magnitude to around five seconds for each dataset in the multi-resolution

framework, while the single-step framework also achieves an average runtime of eight seconds.

Conclusion: The proposed method provides fat-water decomposition results with a lower run-time and

higher accuracy compared to GOOSE.

Key words: 3D fast fat water decomposition, non-equidistant graph model, globally optimal surface

search
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INTRODUCTION

The separation of water and fat from multi-echo images in MRI is a classic problem, with a wide range of

important clinical applications (1–3). Since direct methods such as fat saturation (4) and water excitation

(5) suffer from their sensitivity to B0 static field inhomogeneity, Dixon based methods have been widely

studied because of its robustness to field variations. The estimation of the unknown parameters—fat & water

components, field inhomogeneity, and T ∗2 decay (optional)—is thus formulated as a nonlinear optimization

problem.

The classical approach is to solve the problem at each voxel independently, either using analytical meth-

ods (6, 7) or using iterative strategies (8). This voxel-by-voxel approach is challenging due to the nonlinear-

ity of the signal model, the ambiguity of the signal model in pixels with only fat or water, and large magnetic

field inhomogeneity variations with high field magnets. The above challenges often result in the fat-water

swaps and phase wraps in the field inhomogeneity map (1). Various methods have been introduced to ad-

dress these challenges, including region growing (9, 10), region merging (11), iterative graph cut algorithm

(12), and multi-resolution schemes (13, 14). While these methods provide correct fat-water separations in

many applications, they sometimes converge to local minima in difficult cases which might contain large

field map variations or low SNR regions including cavities, resulting in fat-water swaps. Different ingenious

strategies such as multi-scale search (15, 16) and region-based labeling (17, 18), have been introduced to

minimize the local minima issues and have considerably improved the recovery.

We have previously introduced a non-iterative single-step graph search algorithm termed as GOOSE

to estimate the B0 field map as a constrained optimization problem (19). GOOSE minimized the discrete

approximation of the original problem, subject to smoothness constraints on the field map. A graph was

constructed with as many layers as the size of a uniformly discretized grid, where each node (corresponding

to a specific pixel and frequency) is connected to only a few of the nodes in the adjacent pixel within a

small range of frequencies. This constrained optimization problem was then solved using a graph search

algorithm. The hall-mark of GOOSE was its ability to converge to the global minimum of the GOOSE

optimization problem, which follows from (20). The algorithm yielded improved results over many of the

state-of-the-art methods such as (9, 10, 12, 14), even though the energy formulation used was simpler and

similar in concept to other formulations. However, a challenge was the high computational complexity that

restricted its applicability to large scale 3D problems. In particular, the run-time is dependent on the graph
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size, which in turn is dependent on the discretization of the field map. Typically, the problem discretization

results in graphs with more than 100 layers, which results in a computationally expensive algorithm.

In this paper, we introduce novel and computationally efficient extensions of the original GOOSE algo-

rithm, which we term as R-GOOSE and mR-GOOSE, respectively. Specifically, we consider a smoothness

penalized likelihood cost function, which is similar in concept to (12, 15). Inspired by cite lu, we restrict

the search at each voxel to a smaller set, specified by the local minima of the voxel independent maximum

likelihood cost function. Despite the similarities in the formulation to previous methods, the main novelty

of this paper is the graph search algorithm that can account for non-equidistant nodes. Unlike all of the

current methods (with the exception of GOOSE), the proposed algorithm is guaranteed to yield the global

minimum of the R-GOOSE constrained optimization problem; we note that the minimum may differ from

the GOOSE solution since the cost functions are not the same. The global convergence property implies

that the quality of fat-water decomposition only depends on the specific cost function and not on the ini-

tialization or intermediate steps unlike current methods without global optimization guarantees. Current

methods require additional heuristic steps such as careful initializations or multi-resolution approaches to

obtain good solutions. We also note that the solution may contain swaps, if the cost function is not ap-

propriately designed (e.g. improperly chosen regularization parameter, organs with inner cavities). The

proposed algorithm is fundamentally different from most of the current graph search methods, which are

designed for equi-spaced nodes. Since the new formulation significantly reduces the graph layers compared

to GOOSE, it provides an order of magnitude reduction in computational complexity and memory demand.

Hence, the new algorithms are readily applicable to large-scale 3-D fat-water imaging applications. We

compare the computational complexity of the R-GOOSE and mR-GOOSE algorithms against the GOOSE

algorithm using datasets from 2012 ISMRM challenge.

Methods

Signal model and GOOSE formulation

In gradient echo acquisitions, the signal is collected in a succession of time echo (TE) shifts, t1, t2, . . . ,

tN . At each location r = (x, y, z), it can be expressed as a combination of fat and water components. The
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matrix form can be expressed as:


e−γ t1 e−γ t1

(∑M
i=1 βie

j2πδi t1
)

..

e−γ tn e−γ tn
(∑M

i=1 βie
j2πδi tn

)


︸ ︷︷ ︸
Aγ

ρwater
ρfat


︸ ︷︷ ︸

g

=


s[1]

..

s[N ]


︸ ︷︷ ︸

s

. [1]

In [1], the model contains one water peak and M fat peaks, each of which has a chemical shift δi to the water

peak. ρwater, ρfat are the complex valued concentrations of water and fat and βi denotes the relative weight

of each peak. γ(r) = [1/T ∗2 (r)− j2πf(r)], represents the combined effect of the local frequency shift

f(r) due to the static field inhomogeneity and the T ∗2 decay. Assuming that βi and δi are known (21), the

unknowns ρwater, ρfat and γ(r) (f(r) and T ∗2 ) at each voxel can be obtained by minimizing the least-square

error between the model and the measured data ‖Aγg− s‖2. The estimation of T ∗2 can be achieved through

an independent search over a reasonable range of discrete T ∗2 values (12). For a specific value of f(r) and

T ∗2 (r), the concentrations ρwater and ρfat can be obtained as g = (AT
γAγ)−1AT

γ s. Substituting the optimal

values for a specific frequency back, we obtain:

f̂(r) = arg min
f(r)

min
ρwater,ρfat,T

∗
2

‖Aγg − s‖2︸ ︷︷ ︸
D(f(r))

[2]

Here, D (f(r)) is the voxel independent maximum likelihood prior.

Since the voxel independent prior has multiple local minima at each location, the recovery of the field

map at all the pixels was formulated as a single optimization problem (19):

f̂ = arg min
f(r)

∑
r

D (f(r)) such that

|f(r + ex)− f(r)| ≤ F

|f(r + ey)− f(r)| ≤ F. [3]

Here, ex = (1, 0, 0) and ey = (0, 1, 0) are the unit vectors in the x and y directions. GOOSE imposes hard

constraints for the permissible deviation of frequencies values between adjacent voxels. To solve the above

optimization problem, the frequency values are discretized onto a uniform full grid with a grid spacing ∆,
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where F is assumed to be a multiple of ∆. A brief graph illustration can be seen in Fig. 1.(a). The reader is

referred to (19) for more details.

Proposed algorithm

The proposed formulation considers a non-uniform discretization of the frequency axis, compared to the

uniform discretization strategy in GOOSE. Specifically, each of the graph nodes at a specific voxel corre-

spond to local minima of D (f(r)), denoted by the set LM(r). Here, the optimization models in [2] and [3]

are replaced by a smoothness penalized 3D optimization formulation for field map estimation:

f̂ = arg min
f(r)

∑
r

 D(f(r))︸ ︷︷ ︸
data consistency

+µ
∑

s∈N (r)

wrs|f(r)− f(s)|2

︸ ︷︷ ︸
smoothness regularization

 , f(r) ∈ LM(r);∀r [4]

The termN (r) in [4] denotes the local neighborhood of the voxel at location r. wrs are pre-defined weights

that penalize the differences of the field map values in the neighborhood N (r) as in (12). The first term

promotes the consistency between the data model and measurements and the second term encourages field

map smoothness. µ is the regularization parameter that balances the first term and second term. The choices

of f(r) are limited to LM(r), the set of minimizers at location r.

R-GOOSE

We solve [4] using a single-step graph optimization algorithm. As shown in Fig.2.(a), we start with the

determination of the local minima LM(r) by searching for the zero crossings of the derivatives of the voxel

independent likelihood term D (f(r)); the derivatives are approximated by finite differences. We then build

a graph, whose nodes at each voxel correspond to the local minimizer set LM(r). The nodes of the graph

are equispaced on a uniform space of size Nx ×Ny ×Nz , where Nx, Ny and Nz are the sizes in x, y and

z directions, respectively. By contrast, the nodes are non-equispaced in frequency. We denote the number

of discrete field map values at each location r = (x, y, z) as Nf . This is a key difference with the uniform

graph assumed in GOOSE, where the field map values of the nodes are uniformly spaced with a frequency

difference of ∆ (See Fig.1.(a) and Fig.1.(b)).

Let Col(r) represent a column ofNf nodes at the spatial location r = (x, y, z), where x ∈ [0, . . . Nx−1],
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y ∈ [0, . . . Ny − 1] and z ∈ [0, . . . Nz − 1]. The frequency values of the Nf nodes in Col(r) are specified

by the set f(r) ∈ LM(r). The node cost (cost of each node) is specified by D (f(r)), where f(r) is the

frequency value of the node. In our formulation, a node in Col(r) is connected with all nodes in the adjacent

column Col(s), provided s is in the neighborhood of r (i.e., s ∈ N (r)). The smoothness cost between the ith

node in Col(r) and jth node in Col(s) is specified by µ wr,s |fi(r)− fj(s)|2. This is another key difference

with the graph construction in GOOSE, where each node was only allowed to connect with a subset of nodes

in the adjacent column, specified by the smoothness constraint. With the new graph construction, solving

Eq.[4] translates into a surface estimation problem. We seek to find a surface S(r) = f̂(r) that intersects

with only one node in each column and the sum of node costs and smoothness costs are minimized.

We search for the optimal surface using the algorithm introduced in (22), which is designed for graphs

with non-uniform spacing. Since the smoothness penalty involves a convex (quadratic in our setting) dis-

tance measure, the graph algorithm (22) is guaranteed to converge to the global minimum of Eq.[4]. The

readers are referred to (22) for details.

mR-GOOSE

Since R-GOOSE ensures convergence to global minimum as shown in (22), we only use multi-resolution

strategies to further reduce the computation complexity. In Fig.2(b), we first subsample D(r) along the

spatial dimensions to obtain the data consistency prior at each low-resolution pixel, which is the sum of

D(r) from the corresponding square pixel neighborhood in the high-resolution volume. The downsampling

factor is the size of a side of the square neighborhood. Fig.2(b) provides an example of the data consistency

prior at the low-resolution pixel obtained from a 2 by 2 neighborhood in the original volume of D(r). Here,

the downsampling factor is 2. After the local minima set LM(r) in low resolution is identified, the graph

search algorithm is executed to determine the coarse estimate of the field map.

In the refinement step, the above coarse estimate is interpolated onto the finer grid. Specifically, the set

LM(r) in the original resolution is formed by only selecting the minimizers closest to coarse scale estimate.

In our implementation, we only selected two local minima at each pixel in the original-resolution dataset,

which are the closest to the interpolated coarse scale estimate. A graph with only two layers in the second

search resulted in a further reduction of computational time.
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Experiments and Parameters

In this work, results of the 17 datasets from 2012 ISMRM Challenge by applying the R-GOOSE and mR-

GOOSE frameworks are compared against those from GOOSE in quantitative accuracy and computation

time. The quantitative accuracy, or the score is determined by the percentage of pixels in the pre-defined

mask in which the difference of fat fraction between the tested result and the reference is less than a threshold

(0.1). Details can be found at the ISMRM Challenge website (http://www.ismrm.org/challenge/). We

adopt the parameters of the reference signal model in the judging section of the 2012 ISMRM Challenge.

Specifically, we use six fat spectral peaks at δi = [-242.7060, -217.1580, -166.0620, -123.9078, -24.9093,

38.3220] Hz at 1.5T, with relative weight βi = [0.0870, 0.6930, 0.1280, 0.0040, 0.0390, 0.0480]. A single

T ∗2 constant is used at each voxel. The search of 1/T ∗2 = R∗2 is separated as a preprocessing step before

field map estimation, and is repeated with the obtained field map after graph search for optimization. All

algorithms were computed on the Linux Workstation with 3.2 GHz Intel Xeon CPU and 23.6GB RAM.

Three parameters need to be optimized in the proposed algorithm: 1) Nf , the number of graph layers,

or the number of entries in LM . Nf should be able to cover the field inhomogeneity range which can be

estimated by 1/∆TE for uniformly sampled data. D(f(r)) is periodic and contains at least two minimizers

in each period in a typical case with both fat and water for the pixel. The largest range of field inhomogeneity

for all the 17 datasets is about [0, 1020]Hz in dataset 12 and contains up to 5 periods (around 10 minimizers)

. Therefore, we test Nf = 3 up to 12 to ensure the coverage of the entire field inhomogeneity. 2) Nr, the

number of discrete values of R∗2. We adopt the search range of R∗2 as 0 s−1 to 500 s−1 with the number of

discrete values Nr = [2, 10, 20, 30, 40, 50, 60, 70, 80]. 3) µ, the regularization parameter in Eq.[4]. Similar

to (12) and (15), the optimization is conducted in the range of [0.01, 100].

Optimal parameters are determined by applying R-GOOSE with the above-mentioned different values

and benchmarking the quantitative scores with the reference in the first four uniformly sampled datasets.

Note that the proposed framework can still be applied to non-uniformly sampled dataset such as dataset 3.

Since the pattern of minima D(f(r)) is different from the other datasets, it is excluded from the experiment

to optimize Nf for the rest of uniformly sampled datasets.
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RESULTS

Parameter Optimization

The study of Nf with respect to the average score is shown in Fig.3(a). The average score starts to plateau

around 9980 for R-GOOSE when Nf = 8. A better quantitative performance as Nf increases is because the

field variation is not fully accounted for until Nf = 8. In Fig.3(b), the average score reaches the maximum

around 9980 when Nr is larger than 30. Therefore, we chose Nr = 30 for the rest of the study. The average

scores remain relatively unchanged between µ = 0.1 and µ = 10 in Fig.3(c), which is expected since the

solutions are restricted to the set of local minima as a benefit of the proposed formulation. µ is set as 0.5

for the rest of experiments with the highest performance. The average run-time increases as the number

of Nf goes bigger as in Fig.3.(d). Since Nf = 8 is able to guarantee a highly accurate and also efficient

performance (around 8 seconds) overall, we set Nf = 8 as the optimal size of LM for all experiments.

Comparison with GOOSE

The proposed method employs a three-dimensional graph search scheme that takes into account the field

map smoothness across slices. For example, in Fig.4(a) we were not able to correct the fat-water swap in

one slice of a breast dataset in GOOSE, whereas the separation is correct on all slices using R-GOOSE. In

Fig.4(b), the liver dataset is challenging because the dome of the liver is surrounded by a signal void at the

2nd slice. This large low SNR region results in a swap in GOOSE and other state-of-the-art algorithms (See

(19) Fig.7). In GOOSE, the difference between adjacent field map values is strictly set to be less than the

hard constraint F in Eq.[3]. However, the soft constraint as the smoothness penalty term in Eq.[4] in the

proposed formulation permits a necessary ‘jump’ of field map from one node to its next. Both R-GOOSE

and mR-GOOSE successfully resolve the fat water swap as pointed by the arrow in the figure.

Table 1 shows quantitative scores and run-time from GOOSE (G), R-GOOSE (RG) and mR-GOOSE

(mRG, with a downsampling factor of 4) across the 17 datasets. Both R-GOOSE and mR-GOOSE obtain

higher scores than GOOSE over the 17 datasets. The average run-time is 323 seconds for GOOSE while it

is 8.1 for R-GOOSE on average and 4.5 for mR-GOOSE. The new graph construction with the non-uniform

spacing effectively mitigates this discretization error while also reducing the computational complexity in

GOOSE.

9



DISCUSSION & CONCLUSION

As an extension of GOOSE, this paper introduced a new graph search model for efficiently solving 3D

fat-water separation problem. The new graph model enables the existence of non-uniform spacing between

nodes, reducing the number of graph layers in GOOSE by an order of magnitude (10-12 layers). Since the

nodes are non-uniformly spaced, a novel graph based surface estimation method (22) is introduced to solve

the optimization problem. This gives rise to significant reduction in graph connectivity. The employment of

non-uniformly spaced nodes and the new graph construction result in fast computation and lower memory

demand.

Meanwhile, the proposed approach incorporates a smoothness term which penalizes the difference be-

tween two neighboring solutions using a quadratic penalty. Since we restrict the solutions to the local

minima at each location, the algorithm is also robust to the selection of the smoothness regularization pa-

rameter. The restriction of graph search to local minima also improves the accuracy of fat-water recovery

compared to GOOSE. In particular, R-GOOSE and mR-GOOSE achieve full score in dataset 9 and 13.

This is possible because the proposed method only chooses solutions from the exact minimizers, whereas

GOOSE also considers possible field map values in the vicinity of the minimizers. With the high accuracy

and reduced run-time, both R-GOOSE and mR-GOOSE can be potentially used in difference applications

such as Quantitative Susceptibility Mapping (QSM). R-GOOSE or mR-GOOSE can be considered as an

alternative to the current phase unwrapping procedure and the field inhomogeneity removal, through which

a more accurate QSM can be obtained.

This smoothness-penalized optimization formulation in [4] is identical to (12). The main difference

here is the restriction of the feasible solutions at each pixel to the set LM(r). A similar strategy was used

in (15), where the solutions are restricted to two local minima at each pixel. Since the quadratic pseudo

boolean optimization (QPBO) algorithm in (15, 23) can only yield a partial solution, iterated conditional

modes (ICM) (23) or multi-scale optimization was used (15) to ensure global convergence. However, we

rely on a single-step algorithm (R-GOOSE) with guarantee of convergence to the global optimum of the cost

function. The results of R-GOOSE and mR-GOOSE are comparable and multi-scale scheme (mR-GOOSE)

is solely to reduce the run-time.

As we note in Introduction, though GOOSE, R-GOOSE and mR-GOOSE benefit from the global opti-

mality of cost functions to achieve high performance without an iterative process, the global convergence
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property alone will not guarantee the correct separation of water and fat, particularly in challenging datasets.

Like all methods that rely on optimization, the cost function needs to be designed and optimized carefully

to ensure that the global minimizers are free of fat-water swaps. The benefit of the proposed formulation

is that the proposed scheme does not need require additional steps to ensure global convergence and is not

sensitive to initialization, unlike current methods (e.g (12, 15)) .

Though the proposed work has significantly reduced the memory demand for graph construction (100

layers to 9 layers per slice on average), one limitation of the proposed work is the memory requirement

for hardware in solving large 3D cases. In order to perform a globally optimal search, the graph search

method, by nature, is designed to include all entries of the set LM(r) at each voxel and the associated edge

connectivity in the neighborhood of the voxel. With the edge connectivity among slices, the constructed

4D graph volume (3 spatial dimensions plus a 4th frequency dimension) will need larger memory storage

than the summation of the 3D graph volumes at each slice. Therefore, a certain assessment for hardware

capacity might be taken into account before the proposed method is applied on very large 3D datasets. One

possible workaround is to reduce the size of LM(r) by only keeping entries with smallest data costsD(f(r)).

This can be achieved by using techniques such as thresholding the data costs among all minimizers at each

location.

In conclusion, a non-equidistant graph search model is proposed in this work to improve the fully dis-

cretized model in our previous work GOOSE. Both frameworks, R-GOOSE and mR-GOOSE achieve high

accuracy for fat water separation in ISMRM Challenge datasets, while the computation time is reduced by

an order of magnitude compared to GOOSE.
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Legends

Figure. 1Illustration of the graph constructions in GOOSE (a) and R-GOOSE (b). For simplicity, we restrict

our attention to 2-D graphs, while our implementation is in 4-D. The maximum likelihood measurement

specified by D(f(r)) are discretized on a uniform grid of field map values; the plot of D(f(r)) at a specific

pixel is shown in (c). (a) In GOOSE, the fieldmap is uniformly discretized with each node corresponding to

a discrete frequency, indicated by the black dotted lines in (c) and the black circles in (a) and (c). A graph

smoothness constraint was used in GOOSE, where each node is connected to only (2α+ 1) nearby nodes in

the adjacent pixels. Here, the smoothness constraint α is 1. The node costs were chosen as D(f(r)), while

no smoothness costs were considered. (b) In R-GOOSE, we only consider the local minimizers of D(f(r)),

which correspond to the nodes at each voxel, indicated by the green circles in (b) and (c). Note that the

nodes are not equispaced in the R-GOOSE setting. We use a graph smoothness penalty in R-GOOSE as

opposed to the smoothness constraint in GOOSE. Hence, each node in a voxel is connected to all the nodes

in the adjacent voxels. The node costs are still chosen as D(f(r)), while the smoothness cost between the

ith node in pixel r and the jth node in its neighboring pixel s are chosen as wr,s|fi−fj |2.The objective here

is to find the surface (S) that minimizes the total of both costs.

Figure. 2 The information flow in the implementation of (a) R-GOOSE and (b) mR-GOOSE. In (a), we

discretizedD(f(r)) in Eq.[4] on a uniform grid. Then we extract all minimizers (colorcoded in green) using

finite difference method and import them to the graph model. The field map and the initial R∗2 = 1/T ∗2

map are obtained after the globally optimal surface estimation using the proposed smoothness penalized

optimization formulation. The R∗2 are then updated in refinement using field map from graph search, which

in conjunction with the field map is used for estimating fat water concentrations. In the multi-resolution

frame (b), the new downsampledD(f(r)) is computed as a summation of the local patch of the original data

consistency. Once the initial field map is acquired from graph search, the set of minimizers is chosen to be

the two candidates closest in frequency to the initial coarse estimate at each location. Then the final field

map is refined by running the graph search for the second time. The fat and water recovery can be achieved

in steps after Graph Search in Fig.2 (a) and (b).

Figure. 3 Dependence of the solution on the parameters. In (a), the change of the average score as a function
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of the number of layers (minimizers)Nf at 3 to 12 is plotted. The overall performance of R-GOOSE reaches

the similar level as GOOSE (the dashed line) when Nf = 9. (b) is the plot for the averages score obtained

from R-GOOSE as a function of the number of R∗2 points, Nr. Here, we use Nf = 9 and µ = 100. We

choose Nr = 30 for the rest of the experiments. Nr is observed to have little impact in computational time

so the result of the time change with respect to Nr is not shown here. The score change with respect to

the penalty parameter µ is shown in (c) for R-GOOSE. The scores are consistent across all Nf when µ is

between [0.1, 2.0]. (d) is the plot for the relation between the average use of time and Nf . The average time

of Nf = 8 is around 8 seconds and is reduced by an order of magnitude overall compared to GOOSE, the

dotted line in the figure. Together with (a), we can see that R-GOOSE is able to achieve the same level of

accuracy with at least 30 times of time saving in comparison with GOOSE.

Figure. 4 (a) Qualitative comparisons between GOOSE and R-GOOSE on a breast dataset (2012 Chal-

lenge dataset 15). Since the proposed method incorporates the inter-slice correlation in the 3D graph surface

search, the proposed method is able to correct a fat-water swap that occurs in GOOSE as pointed by arrows.

(b) Qualitative comparisons between GOOSE, R-GOOSE, and mR-GOOSE on a liver dataset (2012 Chal-

lenge dataset 12). The fat fraction map shows that both R-GOOSE and mR-GOOSE resolve the swap while

it remains in the the result from GOOSE. Overall, the proposed methods outperforms GOOSE by more than

6% in quantitative scoring.

Table. 1 Quantitative and computational time comparisons of the proposed scheme against GOOSE. The

first three rows are quantitative scores of GOOSE (Q(G)), the proposed method (Q(RG)) and the proposed

method with the multi-resolution scheme (Q(mRG)) for the 17 datasets. The last three rows are the compu-

tational time in seconds of graph search for GOOSE (T(G)), the proposed method (T(RG)) and the proposed

method with the multi-scaled scheme (Q(mRG)).).
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Figure 1: Illustration of the graph constructions in GOOSE (a) and R-GOOSE (b). For simplicity, we restrict
our attention to 2-D graphs, while our implementation is in 4-D. The maximum likelihood measurement
specified by D(f(r)) are discretized on a uniform grid of field map values; the plot of D(f(r)) at a specific
pixel is shown in (c). (a) In GOOSE, the fieldmap is uniformly discretized with each node corresponding to
a discrete frequency, indicated by the black dotted lines in (c) and the black circles in (a) and (c). A graph
smoothness constraint was used in GOOSE, where each node is connected to only (2α+ 1) nearby nodes in
the adjacent pixels. Here, the smoothness constraint α is 1. The node costs were chosen as D(f(r)), while
no smoothness costs were considered. (b) In R-GOOSE, we only consider the local minimizers of D(f(r)),
which correspond to the nodes at each voxel, indicated by the green circles in (b) and (c). Note that the
nodes are not equispaced in the R-GOOSE setting. We use a graph smoothness penalty in R-GOOSE as
opposed to the smoothness constraint in GOOSE. Hence, each node in a voxel is connected to all the nodes
in the adjacent voxels. The node costs are still chosen as D(f(r)), while the smoothness cost between the
ith node in pixel r and the jth node in its neighboring pixel s are chosen as wr,s|fi−fj |2.The objective here
is to find the surface (S) that minimizes the total of both costs.
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Figure 2: The information flow in the implementation of (a) R-GOOSE and (b) mR-GOOSE. In (a), we
discretizedD(f(r)) in Eq.[4] on a uniform grid. Then we extract all minimizers (colorcoded in green) using
finite difference method and import them to the graph model. The field map and the initial R∗2 = 1/T ∗2
map are obtained after the globally optimal surface estimation using the proposed smoothness penalized
optimization formulation. The R∗2 are then updated in refinement using field map from graph search, which
in conjunction with the field map is used for estimating fat water concentrations. In the multi-resolution
frame (b), the new downsampledD(f(r)) is computed as a summation of the local patch of the original data
consistency. Once the initial field map is acquired from graph search, the set of minimizers is chosen to be
the two candidates closest in frequency to the initial coarse estimate at each location. Then the final field
map is refined by running the graph search for the second time. The fat and water recovery can be achieved
in steps after Graph Search in Fig.2 (a) and (b).
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Figure 3: Dependence of the solution on the parameters. In (a), the change of the average score as a function
of the number of layers (minimizers)Nf at 3 to 12 is plotted. The overall performance of R-GOOSE reaches
the similar level as GOOSE (the dashed line) when Nf = 9. (b) is the plot for the averages score obtained
from R-GOOSE as a function of the number of R∗2 points, Nr. Here, we use Nf = 9 and µ = 100. We
choose Nr = 30 for the rest of the experiments. Nr is observed to have little impact in computational time
so the result of the time change with respect to Nr is not shown here. The score change with respect to
the penalty parameter µ is shown in (c) for R-GOOSE. The scores are consistent across all Nf when µ is
between [0.1, 2.0]. (d) is the plot for the relation between the average use of time and Nf . The average time
of Nf = 8 is around 8 seconds and is reduced by an order of magnitude overall compared to GOOSE, the
dotted line in the figure. Together with (a), we can see that R-GOOSE is able to achieve the same level of
accuracy with at least 30 times of time saving in comparison with GOOSE.
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Figure 4: (a) Qualitative comparisons between GOOSE and R-GOOSE on a breast dataset (2012 Challenge
dataset 15). Since the proposed method incorporates the inter-slice correlation in the 3D graph surface
search, the proposed method is able to correct a fat-water swap that occurs in GOOSE as pointed by arrows.
(b) Qualitative comparisons between GOOSE, R-GOOSE, and mR-GOOSE on a liver dataset (2012 Chal-
lenge dataset 12). The fat fraction map shows that both R-GOOSE and mR-GOOSE resolve the swap while
it remains in the the result from GOOSE. Overall, the proposed methods outperforms GOOSE by more than
6% in quantitative scoring.
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Method Mean 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Q(G) 99.27 99.84 99.81 96.50 99.87 99.94 99.88 99.90 99.94 99.97 99.72 99.75 95.58 99.91 99.87 99.15 99.13 98.80

Q(RG) 99.39 99.83 99.81 95.95 99.90 99.99 99.79 99.91 99.95 100.0099.73 99.61 97.63 100.0099.71 99.52 99.57 98.75

Q(mRG) 99.46 99.84 99.83 96.12 99.89 100.0099.87 99.91 100.00100.0099.88 99.79 97.75 100 99.72 99.69 99.67 98.93

T(G) 323.9 220.7 183.5 269.2 319.1 318.8 160.8 314.4 700.9 829.3 224.9 536.7 522.4 192.4 422.7 76.7 154.8 59.4

T(RG) 8.1 9.1 8.3 9.1 10.5 14.5 10.9 10.6 9.4 7.1 8.9 4.2 10.2 2.3 9.5 7.4 2.7 3.5

T(mRG) 4.5 4.2 4.8 3.6 5.1 5.5 5.0 5.8 3.6 4.6 4.7 5.6 4.9 2.7 5.0 4.8 3.3 3.2

Table 1: Quantitative and computational time comparisons of the proposed scheme against GOOSE. The first three
rows are quantitative scores of GOOSE (Q(G)), the proposed method (Q(RG)) and the proposed method with the
multi-resolution scheme (Q(mRG)) for the 17 datasets. The last three rows are the computational time in seconds
of graph search for GOOSE (T(G)), the proposed method (T(RG)) and the proposed method with the multi-scaled
scheme (Q(mRG)).
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