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Introduction: Dynamic MRI (DMRI) is relevant in cardio-vascular, pulmonary, contrast enhanced, flow, and vocal tract imaging applications. The 
emergence of highly accelerated DMRI based on sparse sampling and constrained reconstruction has created an exciting opportunity to improve the 
achievable spatio-temporal resolution, volumetric coverage, and signal-to-noise ratio. Here, we present an open-source MATLAB package of data-
adaptive reconstruction algorithms [1-10] for accelerated DMRI.  This package contains five data-adaptive constrained reconstruction algorithms [5-
10], which adapt the representation to the data in four different ways that are appropriate for different DMRI applications, as discussed below. We 
provide easy to run demo code for all algorithms, using retrospective under-sampling of simulated and fully sampled in vivo DMRI raw data.  
 
MATLAB package for data-adaptive reconstruction: The package is hosted at https://research.engineering.uiowa.edu/cbig/content/software. We 
briefly describe the objective function of all the algorithms provided in the package. We denote Γ	  (𝒙, 𝑡) as the dynamic image series, and b as the 
vector containing all the measured k-t data, and A the forward model accounting for coil sensitivity encoding and Fourier under-sampling.  
(a) k-t SLR (sparsity, and global low rank constrained reconstruction) : k-t SLR [5,6] is formulated as a spectral and sparsity regularized 
optimization problem, where the Schatten p-norm (p<1) is used as a surrogate for the rank of the matrix, and the spatio-temporal total variation norm 
is used to exploit sparsity of underlying dynamic data:	  𝑚𝑖𝑛+| 𝐴 𝚪 − 𝐛 |11 + 𝜆4 𝚪 |5

5 + 𝜆1𝑇𝑉 𝚪 .	   Representative examples using a numerical first-
pass cardiac phantom, in vivo myocardial perfusion data are provided with k-t SLR.  
(b) k-t SLLR (sparsity, and patch-based locally low rank constrained reconstruction): k-t SLLR [7] is formulated to exploit patch-based local low 
rank structure, in addition to exploiting transform domain sparsity:	  𝑚𝑖𝑛+| 𝐴 𝚪 − 𝐛 |11 + 𝜆4 | 𝐂𝒃𝚪 |5

5
;<= + 𝜆1𝑇𝑉 𝚪 ; (2) 

where Cb is the operator to extract the 𝑏th patch from 𝚪 and reform it into a Casorati matrix, 
and Ω is the total number of patch matrices extracted from 𝚪. Representative examples 
using cardiac cine data provided by the 2014 ISMRM reconstruction challenge committee 
are provided with k-t SLLR (also see fig 1).  
(c) BCS (blind compressed sensing): BCS [8,9] models the dynamic signal time profile as a 
sparse linear combination of learned temporal basis functions from a dictionary. BCS 
estimates the temporal basis functions (VRXN), and the sparse spatial weights/model 
coefficients (UMXR) jointly from the under-sampled data, where M, N and R are respectively 
the number of voxels per frame, total number of times frames, and number of basis 
functions. The optimization is formulated as: 𝑚𝑖𝑛𝐔,𝐕| 𝐴 𝐔𝐕 − 𝐛 |11 + 𝜆4 𝐔 4
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Representative examples using dynamic lung data, myocardial perfusion data, are provided 
with BCS (also see fig 2).  
(d) DC-CS (deformation corrected-compressed sensing): DC-CS [10] is a generalized 
deformation corrected compressed sensing frame-work that simultaneously estimates, and 
corrects for inter-frame motion, while impose constraints on the deformation corrected 
data-set. The optimization is formulated as: 	  𝑚𝑖𝑛𝚪,𝛉| 𝐴 Γ − 𝐛 |11 + 𝜆𝜙(𝜏F ∙ Γ); 
where 𝜏F is the non-rigid image warping operator; 𝜽(x,t) are the deformation parameters 
that describe voxel wise displacements due to motion, which are estimated from under-
sampled data. 𝜙(𝑢)  denotes an arbitrary sparsity/compactness prior (eg. transform 
sparsity, low rank prior) applied on the deformation corrected dataset 𝜏F ∙ Γ. 
Representative examples using free breathing myocardial perfusion data are provided with 
DC-CS (also see fig 3).  
(e) PRICE (Patch regularization for Implicit motion 
compensation): PRICE [11] is a spatio-temporal patch 
smoothness regularization scheme, which implicits 
compensates for inter-frame motion. It avoids expensive 
motion estimation steps, and has computational complexity 
comparable to simple constraints such as TV regularization. 
The formulation and optimization of PRICE are detailed in 
[11]. Representative examples using cardiac cine, and 
myocardial perfusion data are provided with PRICE (also see 
fig 3).  
Discussion: Data adaptive reconstruction algorithms have 
demonstrated superior performance over conventional pre-
determined transform sparsity constraints. Reconstruction 
formulations are typically non-convex and are challenging to 
optimize, and challenging to prove convergence. The provided package includes a variety of strategies that have been found to be robust in practice, 
and incorporate efficient continuation via variable splitting, majorize-minimize techniques, etc. This is a “first” release of the package, and we intend 
to include additional data-driven reconstruction algorithms, additional example applications, and performance improvements in the future.   
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Fig. 1: Accelerated cardiac cine reconstructions from k-t 
SLLR, k-t SLR, LLR, Total Variation sparsity 
reconstructions at rate x20 using 2D variable density 
random under-sampling. 
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Fig. 2: Accelerated dynamic lung MRI reconstructions from 
BCS compared to view-sharing and CS with x-f sparsity 
using 16 spokes/frame with radial trajectories. 

Fig. 3: Accelerated myocardial perfusion MRI from explicit motion estimation correction 
schemes (DC-CS with different sparsity/compactness priors), and implicit motion 
correction scheme (PRICE) at x 5.6 fold using pseudo radial under-sampling.  


