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Abstract

We provide a two-step approach to recover a jointly k-sparse matrix X, (at most k rows of X are nonzero),

with rank r << k from its under sampled measurements. Unlike the classical recovery algorithms that use the same

measurement matrix for every column of X, the proposed algorithm comprises two stages, in each of which the

measurement is taken by a different measurement matrix. The first stage uses a standard algorithm, [4] to recover any

r columns (e.g. the first r) of X. The second uses a new set of measurements and the subspace estimate provided

by these columns to recover the rest. We derive conditions on the second measurement matrix to guarantee perfect

subspace aware recovery for two cases: First a worst-case setting that applies to all matrices. The second a generic case

that works for almost all matrices. We demonstrate both theoretically and through simulations that when r << k our

approach needs far fewer measurements. It compares favorably with recent results using dense linear combinations,

that do not use column-wise measurements.

Index Terms

Joint sparsity, low rank, rank aware ORMP, dynamic imaging.

I. INTRODUCTION

The multiple measurement vector (MMV) problem considers the recovery of a matrix X =
[
x1 x2 · · · xn

]
∈

Rm×n that is jointly k-sparse (i.e, only k-rows of X are nonzero) [1–6]. Current schemes sample all the columns

of the matrix using the same measurement matrix A ∈ Rs×m, s < m, [1, 2, 4–7]:

Y = AX. (1)

The theoretical results show that X can be recovered from Y using combinatorial searches if

k<
rank(X) + spark(A)− 1

2
, (2)

where spark(A) is the smallest number of linearly dependent columns of A [1, 5].
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When the signal matrix Y has full row rank, this approach thus offers a two fold reduction in the number of

measurements over the independent recovery of the columns using classical compressed sensing [1].

In several applications, including the recovery of dynamic MRI data motivating this paper [8, 9], xi live in a

subspace of dimension r << k. Consequently both X and Y have rank much smaller than k. In such cases the

gain offered by the classical MMV schemes over independently recovering the vectors using compressed sensing

is small [2, 4, 5]. In this setting, there is another class of previous work that involves recovery of low-rank and

jointly sparse matrices from their undersampled measurements [10, 11]. Unlike (1), [10, 11] do not assume column-

wise measurements. Such measurement schemes are unrealizable in applications like diffuse optical or fluorescent

tomography, and dynamic imaging, where each column of X corresponds to a frame in the image time series, and

each measurement is the linear combination of entries of just one specific column.

Motivated by dynamic imaging applications, we assume the measurement setting of (1) with r = rank(X) << k.

We consider the partition of X, specified by

X =
[
X1 X2

]
, (3)

where X1 ∈ Rm×r and X2 ∈ Rm×(n−r). We assume the observations to be specified by

Y1 = A1X1 (4)

Y2 = A2X2, (5)

where Ai ∈ Rsi×m. We introduce a two stage algorithm to recover X. In the first stage, we measure X1 as in

(4) and recover it from Y1 using the classical MMV scheme. Since we rely on classical MMV scheme and results

from [1, 5] to solve for X1, our theoretical results for the recovery of X1 also assume combinatorial search. The

recovered columns of X1 provide an estimate of the r-dimensional subspace spanned by the xi. Once the subspace

of X is estimated from X1, the subspace aware recovery of X2 follows from a matrix inversion. To guarantee

that any X1 ∈ Rm×r captures the entire subspace of X, we require spark(X) = r + 1. This condition is not too

restrictive, since xi drawn from an r-dimensional subspace will generically satisfy this requirement. In this two step

recovery method, the results of the second stage potentially depends on the accuracy of the support and subspace

recovered in the first step. Our simulations show that the error in the first step is small with more measurements.

Since only few columns are recovered in the first step, increasing the number of measurements in the first step

does not considerably increase the total number of measurements.

The main contributions of this paper are formulating this two stage recovery approach and providing sufficient

conditions for subspace aware recovery of X2. In particular, with respect to the latter, we show the following.

(a) We show that spark(A2) ≥ k is a sufficient condition to guarantee the subspace aware recovery of any jointly

k-sparse X2 (assuming that the first step has successfully recovered X1), with spark r + 1, from (4) and (5).

We term this condition as the worst-case sufficient condition.

(b) We show that for any X2 of rank r, a matrix A2 with r rows that does not uniquely recover X2, lies on a

set of zero measure. This condition is termed as the generic case sufficient condition.
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The worst case yields a two-fold gain over traditional schemes. The generic case result shows that the worst

case conditions are pessimistic: in practice, perfect recovery is possible with far fewer measurements with almost

all r row measurement matrices. This is so as for a given X2 an A2 with r rows that does not provide unique

recovery lies on a set of measure zero. Thus such a randomly selected A2 should effect exact recovery with high

probability. Indeed as is well known in the vast literature on random matrices, an A2 with elements from i.i.d.

Gaussian distributions, [13] should effect recovery with high probability. The number of measurements that are

sufficient to recover almost all matrices compares favorably with that quantified in the dense sampling setting of

[10, 11].

The intuition behind the above results on subspace recovery of X2 can be easily illustrated using a rank-1 matrix

X. If the first column x1 = X1 is available, the remaining columns X2 can be recovered using only one non-zero

measurement per column, by choosing A2 to be a row vector, provided A2x1 6= 0. The set of all row vectors

A2, which satisfy A2X2 = 0, has zero measure for any specific X2; this is the generic case sufficient condition.

Thus, one measurement per column (e.g. using a row vector, whose entries are e.g. Gaussian random variables)

will suffice to recover X2. The condition A2x1 6= 0 can be ensured for all k-sparse x1 if the spark of A2 is at

least k+1, which implies that A2 has at least k rows; this is the worst-case sufficient condition on A2, which will

guarantee the recovery of any X2, including the worst possible X2.

Section II formulates the MMV problem and justifies our approach. A practical algorithm is presented in Section

III. Section IV gives simulations and Section V concludes.

II. THE MULTIPLE MEASUREMENT VECTOR PROBLEM

Since MMV scheme applies the same measurement matrix to all columns of X, the total number of measurements

in (1) is at least NMMV = (2k− r+ 2)n; r is the rank of Y. Thus in the best case scenario (r = spark(A)− 1),

MMV can provide a factor of two reduction in the number of measurements over the independent recovery of

the vectors NSSV = 2kn. However, the gain is minimal when rank(X) << k and hence rank(Y) << k. Yet

intuitively, when rank(X) is small, there is a great deal of redundancy in the matrix X, which should substantially

reduce the number of measurements. We provide a way to achieve this reduction.

A. Proposed approach

We make the following assumption.

Assumption 1. In (3) X1 ∈ Rm×r, X2 ∈ Rm×(n−r), X has at most k nonzero rows, rank(X) = r and spark(X) =

r + 1.

Thus any r columns of X are linearly independent and span the column space of X. We show that A2 can have

far fewer rows than A1.
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B. Recovery of X1

As rank(X1) = r, the method of [1] can be used to recover X1 if spark(A1) > 2k − r + 1; The original result

in [1] relied on rank(Y1) = r, which was later shown to be equivalent to rank(X1) = r [5].

As s1 ≥ spark(A1) and the same matrix is used for r columns in X1, the total number of measurements required

to estimate X1 is at least s1r, and equals that required by the scheme of [1]. The gains in our approach is in the

recovery of X2 especially when r << k. Thus s1,min = 2k− r+2 is the fewest measurements required to get the

subspace.

C. Recovery of X2

As spark(X) = r + 1 and rank(X) = r, every column of X is a linear combination of the r columns of X1.

Thus there exist Q ∈ Rr×(n−r) such that X2 = X1Q i.e.

Y2 = A2X1Q. (6)

As X1 has been determined in step one, the recovery of X2 entails estimating Q. The unique recoverability in

particular is equivalent to A2X1 having full column rank. Recovery entails

Q =
(
X>1 A>2 A2X1

)−1
X>1 A>2 Y2. (7)

We first provide a worst-case condition on A2 that ensures that rank(A2X1) = r whenever X1 obeys Assumption

1.

Theorem 1. Under Assumption 1 consider A2 ∈ Rs2×m. If spark(A2) ≥ k + 1 then rank(A2X1) = r. If

spark(A2) ≤ k then there is an X1 obeying Assumption 1 for which rank(A2X1) < r.

Proof. Suppose spark(A2) ≥ k + 1 but rank(A2X1) < r. Then there exists a nonzero δ ∈ Rr such that

A2X1δ = 0. (8)

As X1 has at most k nonzero rows so does X1δ. As X1 has full column rank, X1δ 6= 0. Thus (8) implies that A2

has k linearly dependent columns. Thus spark(A2) ≤ k. The contradiction proves the first part of the theorem.

Suppose spark(A2) ≤ k i.e. A2 has at most k linearly dependent columns. Without loss of generality suppose

these are the first k. Thus for some A21 ∈ Rs2×k one has A2 = [A21,A22] where for some 0 6= η ∈ Rk,

A21η = 0. As k ≥ r one can find X11 ∈ Rk×r with rank r that has η in its range space. In particular, X11 is such

that there exists a δ 6= 0 such that X11δ = η. Choose

X1 =

 X11

0(m−k)×r

 .
Clearly X1 obeys Assumption 1. As

A2X1δ = [A21,A22]

 X11δ

0(m−k)×r

 = A21η = 0,
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rank(A2X1) < r. This proves the second part of the theorem.

Under the above conditions, the recovery of Q through (7) is well defined. Combining the number of measurement

needed at each step of the two-step algorithm, the total number of measurements that are sufficient for the recovery

of all matrices is Nworst = r(2k−r+2)+k(n−r). When the number of snapshots are much greater than the rank

(n >> r), this setting provides approximately a factor of two savings over NSMV = 2kn, with r << k. Contrast

this with the classical MMV scheme which provides a factor of two savings only when r = k. When the support

is specified, X can be represented using Nfreedom = r(k+n− r) parameters; comparing the worst-case result with

the degrees of freedom, the gap between the two is given by Nworst −Nfreedom = n(k − r) + 2r.

This worst case bound is pessimistic. The theorem below provides sufficient conditions for the recovery with

almost all matrices.

Theorem 2. Under Assumption 1, the matrix A2X1 is nonsingular for almost all matrices A2 ∈ Rr×m.

Proof. Observe that det(A2X1) is a polynomial in the entries of A2 that is either the zero polynomial or takes

nonzero values every where, except on a manifold of zero volume [12]. Thus it suffices to show that there is at

least one A2, possibly complex, for which det(A2X1) 6= 0.

Under Assumption 1, X1 = W1 Λ WH
2 . Here W1 ∈ Cm×r and W2 ∈ Cr×r obey WH

1 W1 = I, WH
2 W2 = I

and Λ ∈ Rr×r is a nonsingular diagonal matrix. With A2 = WH
1 , A2X1 = ΛWH

2 is invertible. This proves the

result.

The above result shows that A2X1 has full column rank for almost all A2 ∈ Rs2×m, for s2 ≥ r. Combining

the required measurements at each step, we obtain Ngeneric = (2k − r + 2)r + r(n − r). For r << k of course

Ngeneric << Nworst. Thus, the gain offered by the proposed framework over classical settings is quite significant,

especially since r << k and the second step dominates. Unsurprisingly, the generic number of measurements per

snapshot that are required to recover X approaches r as the number of snapshots n→∞. The difference between

the degrees of freedom and the sufficient number of measurements for the recovery of almost all matrices is given

by Ngeneric − Nfreedom = r(k − r) + 2r. Since r << k, the gap is considerably smaller than the worst-case

considered above.

III. RECOVERY ALGORITHM

We now describe the two-step sequential recovery algorithm to estimate X1 and X2. The analysis above for

the perfect recovery of X1 and X2 assumes that measurements are not corrupted by noise. Moreover, since `0

recovery is computationally infeasible, surrogates such as greedy optimization or `1 minimization algorithms will

be used. Hence, we expect the number of measurements required for practical and stable recovery algorithms to be

significantly larger than the theoretically predicted values above. However, the same remarks also apply to classical

MMV recovery, and our two-step approach still delivers commensurate improvements over recovery algorithms

based on the classical MMV model.
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(a) Support recovery (b) SER(X1)

Fig. 1: Performance of RA-ORMP algorithm in recovering X1 (1st step of the algorithm). The left subfigure shows the accuracy

of support recovery as a function of normalized measurements s1/s1,min. The SER(X1) is shown on the right subfigure. The

solid curve shows the noiseless case & dashed curve is for SNR(Y1)= 5 db.(see (10,11))

One cannot use the algorithm specified by (2) to estimate X1 from Y1 as it involves a computationally infeasible

combinatorial search. If Y1 were full rank, the solutions can be obtained using the MUSIC algorithm. As we assume

r << k, this approach is infeasible. We use a greedy algorithm to determine X1. As classical greedy algorithms

for joint sparse recovery fail to exploit the subspace structure of the problem, we use the rank aware order recursive

matching pursuit (RA-ORMP) algorithm to improve the recovery [5].

We estimate X2 using a pseudo-inverse as X2 = X1Q
∗ where

Q∗ = argmin
Q
||Y2 −A2X1Q||2. (9)

IV. NUMERICAL SIMULATIONS

The main focus of this section is to demonstrate the ability of the two step recovery algorithm to considerably

reduce the number of measurements using numerical simulations. We use the greedy RA-ORMP scheme [5] for

the joint sparse recovery of X1. Hence, our simulations are not in full agreement with MMV guarantees that

assume combinatorial optimization [1–6]. As with classical MMV schemes, for robustness we use more than the

postulated minimum number of observations. Our goal is to show that our approach achieves the same accuracy as

the algorithms using single measurement matrices, with far fewer measurements.

We consider several random realizations X ∈ Rm×n, each of which are of rank r and are jointly k-sparse.

We generate these random signal realizations as X = UV by setting k randomly selected rows of the matrix

U ∈ Rm×r, where entries of U and V ∈ Rr×n are zero mean Gaussian random variables with unit variance. All

matrices satisfy the condition spark(X) = r + 1. We assume m = 240, n = 130, r = 4, k = 33 . The columns

of the above matrices are grouped as X = [X1,X2], where X1 ∈ Rm×r and X2 ∈ Rm×n−r. We consider the

recovery of X from Y1 = A1X1 and Y2 = A2X2, where A1 ∈ Rs1×m and A2 ∈ Rs2×m are measurement

matrices whose entries are Gaussian distributed zero-mean random variables with variance of one.

The performance of the joint sparse recovery of X1 using the RA-ORMP algorithm is studied in Fig. 1. The

solid curve corresponds to recovery from noiseless measurements. The dashed curve is the noisy setting, where

SNR(Y1) is 5 dB. The percentage of the support indices that are correctly recovered and the signal to error ratio
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(a) Noiseless (b) SNR(Y1) & SNR(Y2) = 5 dB

Fig. 2: Support-aware recovery of X2 (2nd step of the algorithm) as a function of normalized measurements s2/r. The SER of

the estimate (in dB) as a function of the normalized measurements are shown for the noiseless (left) and noisy setting (right),

respectively. (See main text).

(SER) of the estimated X1 averaged over 1000 runs, are respectively in the plots on the left and right. SER & the

signal to noise ratio (SNR) of the noisy measurements Y1 are defined as

SER(X1) = −20 log
‖X1 −X1,estimated‖F

‖X1‖F
(10)

SNR(Y1) = −20 log
‖Y1 −Y1,noisy‖F

‖Y1‖F
. (11)

The vertical lines correspond to s1,min = 2k− r+2 measurements, which is the minimum required for successful

recovery in the absence of noise (see (2)). With s1,min measurements the accuracy of the support recovery is close

to 100% in the noiseless setting. More measurements are needed for support recovery with lower SER of 5 dB.

We study the performance of the subspace aware recovery of X2 in Fig. 2. The plot on the left is the noiseless

setting, while the one on the right corresponds to the noisy case. The three curves in each of the plots correspond

to recovery with different support estimates. The solid line marked with circles corresponds to the case when

the support is accurately known, while the dashed curve corresponds to the support estimated using ORMP with

1.5s1,min measurements. Similarly, the square marked curve corresponds to the support estimate where 2s1,min

measurements are used by ORMP. The vertical lines correspond to s2/r = 1, which is the minimum predicted by

Theorem 2 for subspace aware recovery. We observe that perfect recovery is obtained in the noiseless setting if

the support is known perfectly (cyan curve) and when s1 = 2s1,min. The lower SER of the estimated X2 when

s1 = 1.5s1,min resulted from incorrect support estimates during X1 recovery. Specifically, a small fraction (≈ 1%

of runs) resulted in one of the sparse locations being wrongly estimated. This error propagated to the subspace

aware recovery of X2.

We compare the signal to error ratio of the reconstructions obtained by the proposed scheme against the classical

MMV and the convex optimization scheme using dense measurements described in [10] setting in Fig. 3. The dense

measurements were obtained by computing the inner-products with Gaussian random matrices. The matrix recovery

is posed as the convex optimization scheme with σ2 as noise variance:

X = argmin
x
‖X‖`1−`2 + λ‖X‖∗ s.t ‖Adense(X)− y‖2F ≤ σ2, (12)
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which was implemented using the CVX package. The λ parameter was optimized for each under-sampling factor

to yield the best possible results. We normalize the total number of measurements by dividing it by Ngeneric. We

assumed m = 45, n = 40, r = 2, and k = 6 in these experiments, to keep the computational complexity of the

convex optimization scheme tractable. We consider the noiseless setting as well as the noisy case, where SNR(Y1)

and SNR(Y2) = 5 dB. The classical MMV recovery implemented using ORMP is indicated by the dashed curve

marked by plus sign. The curve marked by crosses, corresponds to the recovery using dense measurements using

convex optimization. The other curves correspond to the proposed scheme with different number of measurements

for recovering X1, expressed as a factor of s1,min. We observe that the proposed scheme provides good recovery

when the number of measurements in the first step equals 2.s1,min. By contrast, the classical MMV scheme requires

more measurements to achieve the same signal to error ratio. We observe that the performance of the proposed

scheme is slightly better than the dense measurement scheme, possibly because of the convex optimization prescribed

by [10] for the latter. For the dense measurement scheme, a non-convex optimization method may have provided

better recovery, as indicated by the theoretical results in [11] but is computationally infeasible.

(a) Noiseless (b) SNR(Y1) & SNR(Y2) = 5 dB

Fig. 3: SER of the entire matrix (X) vs. the number of normalized measurements (normalized to Ngeneric). The SER of the

estimates (in dB) are shown for the noiseless (left figure) and noisy setting (right figure), respectively. See text for more details.

V. CONCLUSIONS AND DISCUSSION

A two step scheme is given to recover a jointly k-sparse, low rank matrix X of rank r << k and spark r + 1

from its under sampled measurements, using a separate measurement matrix for each step. The first step recovers r

columns using classical MMV schemes providing a basis of X. The basis is used to recover the remaining columns

in the second step. Conditions on the second measurement matrix are given for both worst case and generic settings.

The use of two, as opposed to one, measurement matrices considerably reduces the number of samples required to

recover a jointly sparse, low-rank matrix. Our scheme compares favorably with schemes requiring dense sampling,

even though they are inapplicable to a number of settings such as MRI.
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