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ABSTRACT

The presence of missing entries pose a hindrance to data analysis and interpre-
tation. The missing entries may occur due to a variety of reasons such as sensor
malfunction, limited acquisition time or unavailability of information. In this thesis,
we present algorithms to analyze and complete data which contain several missing
entries. We consider the recovery of a group of signals, given a few under-sampled and
noisy measurements of each signal. This involves solving ill-posed inverse problems,
since the number of available measurements are considerably fewer than the dimen-
sionality of the signal that we aim to recover. In this work, we consider different data
models to enable joint recovery of the signals from their measurements, as opposed
to the independent recovery of each signal. This prior knowledge makes the inverse
problems well-posed. While compressive sensing techniques have been proposed for
low-rank or sparse models, such techniques have not been studied to the same extent
for other models such as data appearing in clusters or lying on a low-dimensional
manifold. In this work, we consider several data models arising in different appli-
cations, and present some theoretical guarantees for the joint reconstruction of the
signals from few measurements. Our proposed techniques make use of fusion penal-
ties, which are regularizers that promote solutions with similarity between certain
pairs of signals.

The first model that we consider is that of points lying on a low-dimensional mani-
fold, embedded in high dimensional ambient space. This model is apt for describing a
collection of signals, each of which is a function of only a few parameters; the manifold
dimension is equal to the number of parameters. We propose a technique to recover
a series of such signals, given a few measurements for each signal. We demonstrate
this in the context of dynamic Magnetic Resonance Imaging (MRI) reconstruction,
where only a few Fourier measurements are available for each time frame. A novel

acquisition scheme enables us to detect the neighbours of each frame on the manifold.
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We then recover each frame by enforcing similarity with its neighbours. The proposed
scheme is used to enable fast free-breathing cardiac and speech MRI scans.

Next, we consider the recovery of curves/surfaces from few sampled points. We
model the curves as the zero-level set of a trigonometric polynomial, whose bandwidth
controls the complexity of the curve. We present theoretical results for the minimum
number of samples required to uniquely identify the curve. We show that the null-
space vectors of high dimensional feature maps of these points can be used to recover
the curve. The method is demonstrated on the recovery of the structure of DNA
filaments from a few clicked points. This idea is then extended to recover data lying
on a high-dimensional surface from few measurements. The formulated algorithm has
similarities to our algorithm for recovering points on a manifold. Hence, we apply the
above ideas to the cardiac MRI reconstruction problem, and are able to show better
image quality with reduced computational complexity.

Finally, we consider the case where the data is organized into clusters. The goal
is to recover the true clustering of the data, even when a few features of each data
point is unknown. We propose a fusion-penalty based optimization problem to cluster
data reliably in the presence of missing entries, and present theoretical guarantees for
successful recovery of the correct clusters. We next propose a computationally efficient
algorithm to solve a relaxation of this problem. We demonstrate that our algorithm
reliably recovers the true clusters in the presence of large fractions of missing entries
on simulated and real datasets.

This work thus results in several theoretical insights and solutions to different
practical problems which involve reconstructing and analyzing data with missing en-
tries. The fusion penalties that are used in each of the above models are obtained
directly as a result of model assumptions. The proposed algorithms show very promis-
ing results on several real datasets, and we believe that they are general enough to

be easily extended to several other practical applications.



PUBLIC ABSTRACT

Large datasets often contain a wealth of information, and it is the task of data
analysis algorithms to discover patterns in this data and make useful inferences from
them. Such algorithms are now found abundantly, for various different applications.
However, many of these algorithms cannot handle situations when a part of the data
is corrupted or missing. A simple example is a survey response where the respondent
has chosen to not answer certain questions. Another example is that of satellite data,
when images on certain days have obstructions due to cloud cover. Netflix is also
a good example of this situation where a large database of movies exists, yet each
user is only able to rate a tiny fraction of these. In all the above examples, the cause
of missing information is different. Yet, they all create problems for traditional data
analysis tools. One aim of this work is to develop techniques to recover the data which
has corrupted measurements, i.e. to fill in the missing or corrupted measurements.
We develop theory which describes the situations under which the missing entries may
be reliably recovered. We also develop some tools to detect patterns in data in the
presence of missing entries. The common link between all our developed algorithms
is the use of fusion penalties’ which fills in the missing entries of a particular signal,
by searching for other signals that are similar to it.

An important application that we consider is Magnetic Resonance Imaging (MRI).
This is a very popular medical imaging modality to study the structure and function
of different body parts. We look at dynamic applications such as speech and cardiac
imaging, where the aim is to capture the motion of these organs as a function of time.
In order to accurately capture the motion, we need to acquire a large number of time
frames in a short time. Since, MRI is a very slow imaging modality, it is possible to
only partially acquire the samples for each image frame. This results in many missing
entries which need to be filled in before the images can be analyzed. The current

clinical practice to make the problem less challenging is to ask to patient to hold
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his/her breath during each acquisition. We were able to come up with a technique to
perform the MRI scan in the free-breathing mode, followed by estimating the missing
samples. This is very helpful for critically ill patients who are unable to sustain
long breath-holds. We have tested our scheme on several patients in our University
Hospital.

Another application that we consider is the estimation of the structure of DNA
strands from a few points manually clicked in very poor quality and noisy images. The
method can be applied to other problems where we have only a few points in 2D or 3D
space, and we want to estimate the underlying curve and surface respectively. We also
consider the problem of finding clusters within datasets. An example application is
to detect groups of people who have similar interests from some personal information
we have regarding each of them. The problem of missing entries is very significant
here, since we may not have all the information regarding each person. We apply
our proposed technique to the classification of Wine datasets and words from an
Australian Sign Language dataset, where have only partial information regarding
each data point. We demonstrate that we are able to find accurate clusters even in
the presence of these missing entries.

We thus present algorithms for use in a wide variety of applications where missing
data is encountered. Our presented algorithms are quite general, and we believe that
they can be extended for use in other applications that have not been considered here,

which require the estimation of missing entries.
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[lustration of the annihilation relations in 2-D. We assume that the curve
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Mlustration of sampling conditions: The Fourier support A of the minimal
function v, the overestimated support I' used to evaluate the maps, and
the possible shifts of A in I" denoted by I' : A are shown in (a). In (b),
we show a phase transition plot for recovery using known Fourier support,
where the red curve is the one predicted by the theory, and the blue curve
is for N = |A|. Here, black indicates perfect recovery and white denotes
poor recovery. (c) shows an example of a trigonometric polynomial with
5 x 5 Fourier support, along with its zero-level set. (d) shows the recovery
of the curve in (c) from its samples denoted by red points. This experiment
assumes that the size of the Fourier support is known. (e) shows the case
where the support size was unknown and we assumed I' to be a 11 x 11
region. The sum of square of several null space filters uniquely identifies
the curve. . . . . . ..

Recovery of DNA filaments from few clicked points. The first column
shows 3 noisy cryo-electron microscopy images where the DNA filaments
are very faintly visible. The second column shows a few points in red that
were manually clicked on the noisy images. The third column shows the
recovered curves from the clicked points. . . . . . . . ... ... ... ..

Ilustration of denoising of 2-D points on a curve using (3.14): The first,
second and third columns shows the noisy data, the first iteration of (3.15),
and the 50" iterate respectively. Note that the kernel low-rank algorithm
provides good recovery of the points with 50 iterations. . . . .. .. ..

Outline of b-SToRM. The free breathing and ungated data is acquired using a
navigated golden angle acquisition scheme. We estimate the Laplacian matrix
from navigator data using the kernel low-rank model. The entries of the Lapla-
cian matrix specify the connectivity of the points on the manifold, with larger
weights between similar frames in the dataset. The manifold is illustrated by
the sphere, while the connectivity of the points are denoted by lines whose thick-
ness is indicative of proximity on the manifold. Note that neighbouring frames
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manifold recovery scheme uses the Laplacian matrix to recover the images from
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easy visualization of thedata. . . . . . . . . .. .. ... ... .. ... ..
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4.2

4.3

4.4

Visualization of the basis images and temporal functions. We compare the
matrices U, and V, defined in (4.14) obtained using different methods that
employ factorization of the Casorati matrix. (a) corresponds to b-SToRM,
while (b) & (¢) correspond to the STORM approach (exponential weight matrix,
followed by truncation) of estimating the Laplacian matrix, where 2 and 5
neighbours per node are retained. The temporal basis functions are the eigen
vectors V of the estimated Laplacian matrix with the smallest eigen values.
For the PSF scheme, the temporal basis functions are the eigen vectors of the
navigator signal matrix with the smallest eigen values. These are shown in
(d). It is observed that b-SToRM provides more accurate estimates of cardiac
and respiratory motion than the other schemes, thus facilitating the recovery
of smooth signals on the manifold. Moreover, by comparing (b) and (c), it
is observed that the basis functions are quite sensitive to the choice of the
threshold used to compute the SToORM exponential weight matrix. . . . . . .

Comparison with other methods. Few frames and temporal profiles are shown
from two datasets reconstructed using (a) b-SToRM (b) SToRM using few basis
functions (c) SToRM [68] (d) PSF scheme [45]. It is observed that b-SToRM
yields the best overall results, followed by SToRM that shows some degradation
in image quality indicated by the red arrows. Note that b-SToRM also benefits
from a speed-up due to the factorization of the Casorati matrix. It is also
observed from (b) that using a few basis functions of the SToRM Laplacian
matrix results in artefacts in the images and the temporal profile. Specifically,
the approximation of the SToRM Laplacian matrix using few basis functions
is poor, which translates to poor recovery. The PSF method also shows some
image artefacts as compared to b-SToRM, which shows the benefit of the non-
linear manifold modeling over subspace approximation. The red arrows in the

64

figure point to artefacts in the images reconstructed using the competing methods. 65

Comparison to XD-GRASP: Images corresponding to a few cardiac and respi-
ratory phases reconstructed using XD-GRASP are shown in (a). Since both
methods use drastically different reconstruction strategies, we rearrange the
images obtained using b-SToRM into respiratory and cardiac phases in (b) for
direct comparison to (a). Likewise, the recovered frames of XD-GRASP are
also re-arranged to form a temporal profile. It is seen that the images and
temporal profiles in (a) have more artefacts as compared to (b). Specifically, it
is seen from the temporal profile of (a) that respiratory motion is suppressed.
The images in (a) also contain speckle-like artefacts. The image artefacts are
more pronounced in the dataset at the bottom where there are sudden gasps of
breath, and thus some respiratory phases are very poorly sampled. In compar-
ison, b-SToRM can recover more natural-looking images and temporal profiles.
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4.5

4.6

4.7

Sensitivity of the algorithm to high motion. We illustrate b-SToRM on datasets
acquired from two patients with different types of motion. For both datasets, we
show a temporal profile for the whole acquisition to give an idea of the amount
of breathing and cardiac motion present. We also show a few frames from
time points with varying respiratory phase. The dataset on the left has regions
with abrupt breathing motion at a few time points. Since these image frames
have few similar frames in the dataset (poorly sampled neighbourhood on the
manifold), the algorithm results in slightly noisy reconstructions at the time
points with high breathing motion (red box). The regions with low respiratory
motion (blue and light blue boxes) are recovered well. The dataset on the right
shows consistent, but low respiratory motion. By contrast, the heart rate in this
patient was high. We observe that b-SToRM is able to produce good quality
reconstructions in this case, since all neighbourhoods of the manifold are well
sampled. . . . ...

Effect of number of navigator lines on the reconstruction quality. We perform
an experiment to study the effect of computing the Laplacian matrix L from
different number of navigator lines. For this purpose, we use one of the acquired
datasets with 4 navigator lines per frame. We compute the ground-truth L
matrix using all 4 navigators. Next, we also estimate the L matrix using 2
navigator lines (keeping only the 0° and 90° lines) and 1 navigator line (keeping
only the 0° line). We now reconstruct the full data using these three Laplacian
matrices, as shown in the figure. We observe that two navigator lines are
sufficient to compute the Laplacian matrix reliably. Using one navigator line
induces some errors, especially in the frames highlighted in green which are
from a time point with higher respiratory motion. As a comparison, note that
the error images are in the same scale as those for Fig 4.7. . . . . . . . . ..

Effect of number of frames on the reconstruction quality. We perform an ex-
periment to study the effect of reconstructing the data from a fraction of the
time-frames acquired. The original acquisition was 45 seconds long, resulting
in 1000 frames. We compare the reconstruction of the 15 250 frames, using (1)
all 1000 frames (2) only 550 frames, i.e. 22 s of acquisition (3) only 350 frames,
i.e. 12 s of acquisition. As can be seen from the temporal profiles, Dataset-1
has more respiratory motion than Dataset-2. Consequently, the performance
degradation in Dataset-1 is more pronounced with decrease in the number of
frames. Moreover, the errors due to decrease in the number of frames is mostly
seen in frames with higher respiratory motion, as pointed out by the arrows.
As a comparison, note that the error images are in the same scale as those for
Fig 4.6. . . . . . . e
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4.8

4.9

5.1

5.2

5.3

Binning into cardiac and respiratory phases. We demonstrate that the recon-
structed ungated image series can easily be converted to a gated series of im-
ages if desired. For this purpose, the 2"® and 3"? eigen-vectors of the estimated
Laplacian matrix are used as an estimate of the respiratory and cardiac phases
respectively. The images can then be separated into the desired number of car-
diac and respiratory bins. Here, we demonstrate this on two datasets that have
been separated into 8 cardiac and 4 respiratory phases. Representative images
from these bins have been shown in the figure. . . . . . . . . . ... ... ..

Comparison to breath-held scheme. We demonstrate that b-SToRM produces
images of similar quality to clinical breath-held scans, in the same acquisition
time. Note that there are differences between the free-breathing and breath-held
images due to variations in contrast between TRUFI and FLASH acquisitions,
and also due to mismatch in slice position. However, the images we obtain
are of clinically acceptable quality. Moreover, unlike the breath-held scheme
we reconstruct the whole image time series (as is evident from the temporal
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CHAPTER 1
INTRODUCTION

1.1 Overview

The problem of data recovery from under-sampled measurements has received
much attention in compressive sensing literature. However, the data models consid-
ered have mostly been sparse [21] or low rank [11]. Alternate models such as data
lying on a low-dimensional manifold or data drawn from multiple clusters have not
been studied to the same extent. We propose to develop algorithms for data recov-
ery and analysis, considering such alternate models, motivated by real-world datasets
where sparsity or low-rank assumptions do not hold.

We assume that we have a group of signals satisfying a particular data model.
An example that we consider here is that the signals lie on a low-dimensional mani-
fold, embedded in high dimensional space. Given some under-sampled measurements

of each signal, we study the problem of jointly recovering these signals. Let there

be k such signals xq,Xs,...,x,. We have the following under-sampled and noisy
measurements by, bs, ..., by:
./41 (Xl) = b1
./42 (Xg) = b2
(1.1)
.Ak (Xk) = bk

where {A;} are the known measurement operators. The independent recovery of
x; from its corresponding measurements b; is an ill-posed problem. We thus con-
strain our solutions to the model satisfied by the group of signals {x;}, and recover
them jointly from the measurements {b;}. We design regularizers which impose our

assumed data model. In this work, we consider fusion penalties, which encourage



solutions with similarity between certain pairs of the recovered signals. Thus, the
redudancies present in the dataset are exploited using these penalties. The form of
these fusion penalties vary depending on the assumed data model.

We next present the general idea behind joint recovery of signals using fusion
penalties. This is followed by some background on the different data models that
we consider, as well as a brief discussion on the Magnetic Resonance Imaging (MRI)

reconstruction problem, which is one of our important applications.

1.1.1 Joint recovery of signals using fusion penalties
We consider the problem of jointly recovering the signals by solving the following

optimization problem:

{xi} = argrg}(i?z 1A (3¢:) = Bill® + A Y du(llxi — xy1l5) (1.2)

i,jES

The first term is the data consistency term which imposes an agreement between
the recovered signals and our measurements. The second term is a regularizer which
imposes pairwise similarity between the recovered signals. This is termed the "fusion
penalty’, since it encourages certain recovered signals to 'fuse’ and become similar.
This behaviour is controlled by the positive non-decreasing functions {¢;;}. In our
work, these functions are chosen depending on the assumed data model. The "p’ value
in the argument of ¢; ; is usually chosen as 1 or 2. The regularization parameter A
controls the relative importance between the two terms.

One of the earliest applications of the fusion penalty was in [43], where ¢, ; = Z,
and S was chosen to contain temporal neighbours. This was later extended in [87]
with the introduction of the fused lasso, which enforced sparsity of the recovered signal
as well as similarity between successive elements. Later works have also used these
penalties for solving inverse problems for signals satisfying the sparsity assumption

[27,35,50]. However, most existing works on solving inverse problems using fusion



penalties impose similarity only between temporal neighbours, thus disregarding any
non-local structure that may be present in the data. Moreover, the functions ¢; ; = 7
are not able to exploit any non-linear behaviour in the data. In our work, we we
consider models where it is helpful to take into account the non-local redundancies

and non-linear behaviour of the data.

1.1.2 Points lying on a low-dimensional manifold

Real data lying in high-dimensional space can often be expressed in terms of
only a few parameters. An example is a dataset of face images of the same person
with varying pose and illumination. Each image is thus a function of a very low-
dimensional parameter vector. Such data points lie on a low-dimensional manifold
(with dimension equal to the length of the parameter vector) embedded in high-
dimensional space. This is illustrated in Fig 1.1 using the example of the Swiss Roll,
which is a 2D manifold embedded in 3D space. Each point lying on the Swiss Roll
can be characterized using a 2D parameter vector. Manifold learning techniques deal
with the recovery of this underlying parameterization. A number of methods exist
for manifold learning; ISOMAP [86], Laplacian Eigenmaps [5] and Locally Linear
Embedding [75] are just a few examples. The underlying idea behind most of these
methods is to construct a weighted graph, where each data point is represented by a
node and the edge weights represent the similarity between a particular pair of nodes.
Such graphs are then processed using different methods to identify the underlying pa-
rameterization. The output of such methods is the lower-dimensional representation
of the data, which preserves certain characteristics of the data in the high-dimensional
space. Often, the objective is to preserve the local neighbourhood structure that is
present in high-dimensional space. Such techniques always consider full knowledge of
the whole dataset. Some studies have also been conducted on techniques for recov-
ery of the data from under-sampled measurements, considering the knowledge of the

underlying manifold [22]. However, in most practical problems, the structure of the



(a) Swiss Roll is a 2D manifold (b) Points on the manifold
embedded in 3D space

Figure 1.1: Points on a low-dimensional manifold: The Swiss Roll shown in (a) is an
example of a 2D manifold embedded in 3D space. A number of points are sampled
from the Swiss Roll uniformly in (b). Each of these points can be fully characterized
by a 2D parameter vector specifying the position of the point on the manifold.

underlying manifold will not be known apriori. Thus, we aim to develop an algorithm
that recovers data lying on a manifold from under-sampled measurements, without
the prior knowledge of the manifold structure. Our developed algorithm is inspired
by the Laplacian Eigenmaps [5] manifold learning algorithm. It aims at recovering
the data points by enforcing similarity between neighbouring points in the manifold,
much like manifold learning techniques preserve local neighborhoods while comput-
ing maps to low-dimensional space. This is achieved by applying fusion penalties to
data points within a small neighbourhood on the manifold. We apply the developed
algorithm for the recovery of under-sampled data lying on a manifold, to the problem

of dynamic cardiac MR image acquisition and reconstruction.
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(a) Pipeline for ECG-gated breath-held cardiac MRI acquisition

(b) Pipeline for proposed free-breathing MRI acquisition

Figure 1.2: Acquisition pipelines of gated breath-held and ungated free-breathing
cardiac MRI: (a) shows the case where each slice requires a separate breath-hold
and the acquisition is synced with the ECG signal. The patient is allowed to rest
between breath-holds. In our proposed acquisition scheme in (b), no ECG monitors
or breath-holds are required.

1.1.3 Dynamic MR image reconstruction

MRI is a slow imaging modality which collects data in the Fourier domain. Car-
diac MR imaging is a challenging problem due to the presence of large cardiac and
respiratory motion. Clinically diagnosable imaging quality requires a good spatial
and temporal resolution. The desired temporal resolution is around 40 ms, which is
too short a time interval to acquire an image of the desired spatial resolution. The
usual practice in clinical cardiac cine MRI is to ask the patient to hold his/her breath
and then acquire and combine data from multiple heartbeats using ECG gating. The
acquisition pipeline is shown in Fig 1.2. Each slice to be acquired requires a sepa-
rate breath-hold of around 20 s followed by a rest period, which is quite demanding
for critically ill patients and paediatric patients. Thus, we propose a free-breathing
acquisition and reconstruction scheme which enhances patient comfort and enables

the scanning of critically ill patients. This scheme, termed SToRM (Smoothness reg-



(a) Curves modelled as zero-level set of a trigonometric polynomial (b) Recovery of curve
from few sampled points

Figure 1.3: Zero-level sets of trigonometric polynomials: (a) shows curves of arbitrary
complexity generated as zero-level sets of trigonometric polynomials. (b) shows the
problem of recovering the curve uniquely from a few sampled points.

ularization on manifolds) was published in [68]. It shows performance comparable to
ECG-gated breath-held techniques, without requiring any physiological monitors or
breath-holds. We have also demonstrated that the technique is fairly general, and

also showed good performance on the problem of accelerating speech MRI.

1.1.4 Recovery of points on a curve/surface

We next look at the problem of recovery of curves from a few sampled points. We
model the curves as the zero-level set of a trigonometric polynomial. This model can
represent curves of arbitrary complexity, determined by the bandwidth of the trigono-
metric polynomial, as shown in Fig 1.3. A practical application which motivated this
problem is the reconstruction of DNA filaments from a few clicked points on noisy
cryo-electron microscopy images. We show that the matrix of high dimensional fea-
ture of points on the curve is rank-deficient, and present techniques to recover the
curve from the null-space vectors of this feature matrix. We also derive the sampling

conditions required to guarantee unique recovery. The number of samples required



is shown to depend on the bandwidth of the underlying trigonometric polynomial.
We demonstrate that the technique is able to recover the DNA filaments from a few
points. We next extend the analysis to higher dimensions, where it is computationally
infeasible to explicitly form the large feature matrix and find its null-space. In this
case, we study the problem of recovery of points satisfying this model from noisy or
under-sampled measurements. We formulate the recovery as an optimization prob-
lem, where the nuclear norm of the feature matrix is acts as a regularizer. We solve a
relaxation of this problem using iterative reweighted algorithms, which only requires
the computation of the Gram matrix of the feature matrix. Since the size of the
Gram matrix is independent of the ambient dimension of the data, the algorithm
is computationally efficient. The algorithm to solve the relaxed optimization prob-
lem iterates between the computation of a Laplacian-like matrix and an optimization
problem involving fusion penalties. Our proposed model forms the basis for popular
kernel low-rank schemes [79]. We show that the proposed scheme is a generalization
of the SToRM scheme [68], and show show improved computational efficiency and
performance on the cardiac MRI reconstruction problem. This work resulted in the

paper [71] and the manuscript [73].

1.1.5 Data arranged in clusters

The problem of clustering data involves grouping different data points such that
points within the same group are more similar to each other than to those in other
groups. Fig 1.4 shows an example of data which appears in clusters. A real-world
example would be to group together different people with similar movie tastes based
on their ratings of a common collection of movies. The clustering problem has received
considerable attention, which is evident from the huge amount of literature available
on the subject. However, classical clustering algorithms such as k-means [32] and
spectral clustering [58] suffer from a number of disadvantages such as requiring the

prior knowledge of the number of clusters and the sensitivity to initialization due
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Figure 1.4: Points arranged in clusters: (a) shows an example of 3 distinct clusters
in red, green and blue. In (b), a higher dimensional space is considered, and missing
feature values are simulated using a mask.

to the non-convexity of the problem being solved. In order to address these issues,
recently some convex clustering techniques such as sum-of- norms clustering [34] have
been proposed. These algorithms associate an auxiliary variable to each data point,
which is to be estimated as the centre of the cluster to which that point belongs.
Using fusion penalties as regularizers in the optimization problem, many of these
auxiliary variables are estimated to be identical, thus reflecting the cluster structure
of the data. However, theoretical guarantees for the various formulations of these
convex techniques have not been studied in detail to make inferences about their
relative merit. Moreover, these techniques have not been extended to the case where
there are missing entries in the available data. We extend the existing sum-of-norms
clustering formulation to deal with missing entries, using a ¢3 norm based fusion
penalty. We present theoretical guarantees for correct clustering using the proposed
algorithm, and show that the probability of success is higher for well-separated clusters
where the cluster membership is not determined by only a few feature values. Since
the above problem is NP-hard, we propose a relaxation of the optimization problem

using saturating non-convex penalties and present an efficient iterative reweighted



least squares (IRLS) scheme to solve it. The algorithm is demonstrated on simulated
as well as real data such as the Wine and the Australian Sign Language (ASL)
datasets. It is shown that the proposed scheme is also to detect the clusters present
in the datasets even in the presence of a large number of missing entries. This work

has resulted in the manuscript [70].

1.2 Contributions
We make several contributions in this thesis to extend traditional compressive
sensing algorithms developed for sparse and low-rank models to other data models
which are satisfied for real-world data. The algorithms presented are general enough,
and we believe that they can also be applied to a variety of other problems which

satisfy the same signal models. We list our main contributions below:

1. Recovery of data on a low-dimensional manifold: We present an al-
gorithm to recover a series of data, under the assumption that they lie on a
low-dimensional manifold embedded in high dimensional space. We devise a
novel acquisition scheme which enables us to detect the neighbours of each data
point on the manifold. The reconstruction algorithm then proceeds by enforc-
ing similarity between neighbouring points on the manifold. Our technique
was inspired by the Laplacian Eigenmaps [5] algorithm, and to the best of our
knowledge, we are the first to adapt ideas from such dimensionality reduction
algorithms to the reconstruction problem. In addition, we do not require the
explicit knowledge of the underlying manifold structure as opposed to other

compressive sensing based techniques for this particular data model.

2. Enabling fast free-breathing dynamic MR scans: We demonstrate tech-
niques to perform fast dynamic MRI scans with good spatio-temporal resolution
in the free-breathing mode, without the need for any physiological monitors.

The method is computationally efficient, and has been demonstrated to work
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well on a large number of real datasets, and produces images of comparable
quality to the clinical standard ECG-gated breath-held scan. This has major
clinical significance since many critically ill patients and paediatric patients are
unable to perform multiple long breath-holds. We have demonstrated the supe-
riority of our approach over several state-of-the-art techniques. Many of these
techniques reconstruct a few cardiac phases as opposed to the full time series

recovered by our technique which has more clinical information.

. Recovery of curves from few samples: We formulate the problem as the
recovery of the zero-level set of a trigonometric polynomial from a few sam-
ples. This model allows the representation of arbitrary, possibly non-smooth
curves, whose complexity is determined by the bandwidth of the polynomial.
We show that the matrix of high dimensional feature maps of these points is
rank deficient, and use the null-space vectors to recover the curves from few
measurements. We provide sampling conditions to guarantee perfect recovery
of the curves from their samples. The approach is used to recover DNA filaments

from a few clicked points on noisy cryo-electron microscopy images.

. Denoising and reconstruction of surfaces from few measurements: We
extend the model of zero-level sets of trigonometric polynomials to higher di-
mensions. We study the problem of denoising or reconstruction from few sam-
ples for this data model. We propose to solve an optimization technique which
penalizes the nuclear norm of the feature matrix. For such high dimensional
data, it is not possible to explicitly form the feature matrix. We show that the
problem can be solved efficiently using the Gram matrix of the feature matrix,
which is much smaller in size, without having to explicitly form the feature
matrix. Thus, our proposed model provides a basis for kernel low-rank based

algorithms used in literature.
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5. Clustering of data with missing entries: We propose a technique to cluster
data when a few feature values may be unknown for each data point. Our
technique is inspired by the sum-of-norms clustering algorithm [34]. We extend
the idea to account for missing entries and provide theoretical guarantees for
its success. Moreover, we propose a relaxation of the scheme which is more
computationally efficient and use it to cluster real world datasets. The proposed
scheme shows good performance even in the presence of a large fraction of

missing entries.

1.3 Organization

Chapter 2 introduces a technique for recovery of signals lying on a low-dimensional
manifold from a few measurements. This is demonstrated on the problem of free-
breathing dynamic MRI acquisition and reconstruction from few Fourier samples.
Chapter 3 presents a technique for recovering curves /surfaces from few measurements.
The proposed algorithm is used to recover DNA filaments from noisy cryo-electron
microscopy data. A computationally efficient algorithm is presented for higher di-
mensional data. This algorithm is demonstrated on cardiac MRI reconstruction in
Chapter 4. Chapter 5 presents a technique for clustering data when a few feature
values are unknown for each data point. The technique is analyzed theoretically and
a computationally efficient relaxed algorithm is also described. This algorithm is
demonstrated on Wine and ASL datasets. Finally, conclusions and future directions

are discussed in Chapter 6.
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CHAPTER 2
SIGNAL RECOVERY USING MANIFOLD SMOOTHNESS FUSION
PENALTIES

2.1 Introduction

We study the problem of recovery of points from their under-sampled measure-
ments, under the assumption that they lie on a low-dimensional manifold. Our idea is
to recover the signals by enforcing similarity between the signals in a local neighbour-
hood on the manifold. Our proposed approach is inspired by the manifold regulariza-
tion schemes that are widely used in machine learning applications [4,85,89]. While
our reconstruction algorithm is quite general, we mainly focus on the application
of dynamic MR image reconstruction from few Fourier samples. For this particular
application, we propose a novel acquisition scheme, which enables us to detect local
neighbourhoods on the manifold. The ideas behind this acquisition scheme can be
extended to enable the use of our technique on other inverse problems where the same
model is satisfied.

Dynamic MR imaging plays a central role in several applications such as structural
and functional imaging of the heart, lung and liver, as well as vocal tract imaging
in speech. While breath-held and ECG gated imaging is the default acquisition
strategy in cardiac MRI, free-breathing un-gated acquisitions can enable the imaging
of patients that have difficulty holding their breath [28] (e.g. COPD, obese, and
paediatric subjects). Such free running sequences, where the acquisitions are not
triggered by physiological signals, can also offer higher acquisition efficiency. The
main challenge with free-breathing and ungated strategies (often termed as real-time
(RT) imaging), is the slow nature of MR acquisition, which severely restricts the
achievable spatial and temporal resolution.

Several model-based reconstruction algorithms that recover dynamic data from
undersampled measurements have been introduced to improve the spatial and tem-

poral resolution. The popular approaches include k-t SPARSE methods [39,51], total
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variation (TV) regularization [42], and low rank methods such as k-t PCA [67] or par-
tially separable functions (PSF) [17,94]. k-t SPARSE methods model the intensity
profiles as a sparse linear combination of exponentials. Temporal TV regularization
relies on the similarity of each frame with its neighbours in time. PSF and k-t PCA
methods exploit the linear dependencies between the intensity profiles by modelling
them as a linear combination of basis functions, which are estimated from navigator
signals. The main drawback of these schemes in the context of real-time MRI is the
degradation in performance with extensive inter-frame motion.

Our proposed scheme, termed SToRM (SmooThness Regularization on Mani-
folds), exploits the non-linear and non-local dependencies between images in the time
series to enable image reconstruction from highly under-sampled measurements. In
many RT applications, each image frame in the dataset is a non-linear function of a
few physiological parameters (e.g. cardiac and respiratory phase in real-time cardiac
cine). Thus the image frames can be modelled as points on a smooth and low di-
mensional non-linear manifold. Unlike motion resolved reconstruction strategies that
bin the data to a few cardiac and respiratory phases and recover them, we propose
to recover the entire dynamic dataset from the undersampled k-t data as a manifold
smoothness regularized reconstruction problem. We introduce a navigator acquisition
scheme to estimate the graph Laplacian matrix. We consider both ¢y and ¢; regular-
ization penalties. We show that the ¢5-SToRM formulation can be solved analytically
in the Fourier domain in the single receiver coil setting, while it can be solved effi-
ciently using a simple conjugate gradients algorithm in the multi-channel case. We
introduce a variable splitting based algorithm to solve for the ¢;-SToRM formulation.
We demonstrate the utility of our method in accelerated cardiac and speech imaging.
The comparisons of the proposed method with the state of the art methods show
improved image quality. We expect that our proposed scheme can also be used to

accelerate other MR imaging applications such as lung, bowel and liver imaging. The
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early version of the proposed algorithm was presented in the conference paper [72],

and later extended in [69].

2.2 Background
2.2.1 Manifold regularization
We assume that the points lie on a smooth low-dimensional image manifold i.e.
X1,Xg,...,Xx € M CRY. Here M is a smooth m-dimensional manifold (m << N)
and N specifies the dimensionality of the signal. The regularized recovery of continu-
ous multi-dimensional functions of a manifold has received considerable attention in
the context of machine learning [4]. We present some background on the Laplacian
Eigenmaps [5] algorithm to solve this problem, since our work is motivated by this

technique. The problem is formulated as:

f =argmin V(f) + )\/ |V i f||Pdx (2.1)
f M

where f is the continuous function, V is the desired loss function and Vf is the
derivative of f on M. The second term contains the roughness prior on the manifold

which can also be expressed as:

/M IV s fIPdx = (Vaafy Vaaf) = (. Saaf)
:/ F A dx (2.2)
M

where A, is the Laplace-Beltrami operator on the manifold. When one is only
interested in recovering discrete function values specified by f = f1, fo,..., fr at

points Xy, Xa, ..., Xy, the common practice is to approximate the problem as [4]:

f:argmfin V() + A Zzwi]’ Ifi = filI? (2.3)
i
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where the weights w;; are specified by:

Note that the weights decay with distance. Specifically, w;; will assume a high value
if x; and x; are similar to each other, and a small value if they are different. The

penalty term can also be expressed as:

7

> Z wi|| fi — f;]1* = 2Tr (FL£H) (2.5)

where Tr denotes the trace operator and L is the graph Laplacian operator. The L

matrix is related to the weight matrix W (with entries defined by (2.4)) as:
L=D-W (2.6)

where D is a diagonal matrix with entries D(i,4) = 3, w;;. For example, in a three

node graph, the Laplacian is:

W12 + W13 —W12 —W13
L= —W12 W12 + Was —Wa3 (2.7)
—wW13 —Wa3 w13 + Wag

Note the similarity between the discrete approximation (2.5) and (2.2). When the
manifold is uniformly sampled, the discrete graph Laplacian operator converges to
the Laplace Beltrami operator on the manifold in the limit (as the distance between
samples tend to zero) [83]. When M = R™, then L is exactly the finite difference dis-

cretization of the continuous Laplacian operator on a regular lattice (up to a constant
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factor) [85]:

D) = 3oL )T IE—e) 220 (LA 8)

1=1

where e, ... e, form an orthogonal basis for R™ with ||e;|| = .

2.2.2  Acquisition scheme in MRI
We now briefly summarize the MR image acquisition process. We model the raw

dynamic multi-channel MRI data from the i*" image frame x; as:

bij = SZFCJ X; + nijv j = 17 ) Ncoils (29)
——

where C; is the receive sensitivity of the j coil, S; is the sampling pattern for
the i*" frame and 7;; is the noise. F is the discrete Fourier transform matrix. For
our problem of dynamic MR image reconstruction, the operator S; selects very few
samples from the Fourier transform of each frame, resulting in highly under-sampled

measurements. The above can be simplified and re-written as:
B=AX)+n (2.10)

where X = [x1,...,X;] is the Casorati matrix obtained by stacking the vectorized

images as columns.

2.3 Proposed scheme
We model the signals in the dataset as points on a smooth low-dimensional man-
ifold parameterized by a few variables. For example, the images in a free-breathing
and ungated cardiac MRI dataset are non-linear functions of their cardiac and res-
piratory phases. The proposed framework is general enough to be applied to several

dynamic imaging applications like imaging of the vocal tract in speech, where there
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is no concept of phases equivalent to cardiac and respiratory phases in cardiac imag-
ing. We propose to recover the signals from their undersampled measurements (2.9)
by exploiting the manifold structure of the data. Motivated by (2.3), we pose the

recovery as:

{X"} = argmin | A(X) — B[} +

A (Vs = xll,)" (2.11)

where we use the ¢, (p < 2) norm of the signal differences in the regularizer. We
will consider the special cases p = 2 and p = 1 in the later subsections. The above
optimization problem promotes solutions where each data point is similar in the Ip
norm sense to its neighbours on the manifold and the degree of similarity is determined
by the weights w;;.

In classical manifold embedding applications, the weights are derived from the
signals themselves. This approach is not practical in our setting since we only have a
few measurements available from each signal. We now present a technique to estimate
these weights for the case of dynamic MR imaging. The idea can be extended to other
applications where there is some flexibility in controlling the acquisition procedure.
Our acquisition strategy is similar to [17,94], and uses navigators to estimate the

weights to be used in (2.11).

2.3.1 Estimation of manifold structure from navigators
Consider that each of the k images is observed by the same M x N matrix ¥
(M < N). This mapping is a stable embedding if the distance between any two points
x; and x; is preserved after the mapping ¥x;. Wakin et al [22] have shown that a
random orthoprojector W provides a stable embedding of the manifold. Specifically,

for some 0 < e < % and a sufficient number of measurements M, the following holds
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with high probability for every pair x; and x;:
(1= e)llxi = x5 < [[¥x; — Wx;f] < (1 + €)[Jxi — x| (2.12)

The number of measurements M required to yield stable embedding is independent
of the ambient dimension N and is almost linearly proportional to the dimension of
the manifold m. The required number of measurements also depends on the charac-
teristics of the manifold which are captured by its condition number and volume [59].
Motivated by the above result, we propose to sample the same k-space locations in
every temporal frame. We term the common measurements as navigator acquisitions,
which are often used in many dynamic MRI applications for calibration [17,94]. We
define the measurement operator A;; corresponding to the ith frame and the j* coil

as (see (2.9)):
b;; = ® FC; xi+mn; (2.13)

T

The first operator ® samples the same k-space locations every frame, regardless of
the frame number ; the corresponding samples (termed navigator signals) enable the
estimation of the neighbours of each frame. The second operator B; which samples
different k-space locations every frame aids the image recovery algorithm by sampling

the neighbours of a particular image frame at complementary k-space locations. We

propose to estimate the inter-image distances as:

Neoils

diy =Y llza — 2zl (2.14)
1=1
where z;; are the navigator signals given by:

Zi] = PF Cl X; + Ny, [ = 17 -choils (215)
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We compute the weights as:

e -2 if x; and x; are neighbours.

0 , otherwise.

We set the neighbourhood of each frame to be a fixed number of nearest neighbours.
For example, in order to retain the 5 nearest neighbours for each frame, the i and
the j' frames are considered to be neighbours if the i** frame is among the 5 frames
most similar to the j** frame or the j** frame is among the 5 frames most similar to

the it frame.

2.3.2 Special case: ¢, smoothness prior

When p = 2, the recovery using (2.11) simplifies to:
X* = argmin [ A(X) — B||% + 2\ Tr(XLX), (2.17)

where the Laplacian matrix L is obtained from the weights using (2.6). We refer to
this implementation as fo-SToRM. We can view (2.17) as an analysis formulation since
the regularizer is based on the analysis of X (specified by XQ), where L = QQ¥.

The problem (2.17) can be rewritten as:

{X'} = argmjn | AX) — BJ}% +2 A|XQI" (2.18)
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The k x k(k —1)/2 matrix Q specifies a gradient operator. For example, in a 4 node
graph, the matrix Q is specified by:

\/@12 _\/Elz 0 0

0 \/523 _\/E23 0

0 0 w —\/w
QT _ \/_34 \/_34 (219)
ﬁ13 0 _\/613 0

0 \/624 0 _\/624

\/614 0 0 _\/614

Note that this approach is very similar to Tikhonov temporal regularization, when the
sparse matrix Q is the temporal finite difference operator. The proposed scheme uses
an operator that computes differences between the neighbours on the manifold, rather
than the temporal neighbours. Since the neighbours on the manifold are expected to
be more similar than the ones in time, we expect to obtain better recovery.

We will now show that this formulation is also equivalent to a synthesis formulation
by a simple change of variables. In addition to providing additional insights, this offers
an approach to represent the data efficiently, while working with large datasets. The

Laplacian matrix has a singular value decomposition specified by:

L=VIVv¥4 (2.20)

The eigen vectors of the Laplacian matrix denoted by v; are ideally suited to represent
smooth signals on the manifold. A simple special case worth discussing is when the
graph has r disjoint clusters. In this case, spectral graph theory shows that L will have

r zero singular values. The corresponding r singular vectors V with an appropriate
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rotation matrix R will yield a set of sparse temporal basis functions:

E, = RV, (2.21)

Each of the basis functions in Eq will assume a value of zero for frames that are not in
a particular cluster, and a constant value for all the frames in the cluster. This prop-
erty is exploited in spectral clustering. If the images in the cluster are the same, these
temporal basis functions are sufficient to represent the signal. Note that this repre-
sentation is strikingly different from principle component analysis used in k-t PCA
or PSF methods [17,94]. Unlike the global subspace model used in these methods,
the proposed approach captures the geometry of the data on the manifold, enabled
by the non-linear mapping (2.16). By minimizing the cross talk between images in
distinct cardiac/respiratory phases, it is expected to reduce temporal blurring.

In the general setting, one would need more basis functions to account for the vari-
ability of images within clusters/on the manifold. Substituting L in the regularization

penalty term in (2.17), we obtain:

k
Tr | (XV)EXV)T | =3 oflul?, (2.22)
T i—1

where u; = Xv; is the projection of X onto the i singular vector v; and o; is the
i" singular value of L. Substituting for X in terms of U in (2.17), we obtain the

equivalent synthesis formulation:
k
U* = argmin [A(UVT) - Bi + 2\ > ol (2.23)
i=1

Note that the above formulation is very similar to the k-t PCA or PSF [17] algo-
rithms that are now widely used in dynamic MRI. The columns of U correspond to

representative images, while the columns of V are the corresponding temporal basis
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functions.

2.3.3 Special case: ¢; smoothness prior
We consider the ¢; norm of the differences between neighbouring images on the

manifold:

{X*} = argmin [ A(X) = B| +2A[XQ]h (2.24)

We term this implementation ¢;-SToRM. Note that the above approach simplifies to

the popular temporal total variation formulation when:

1, if j=i+1,i—1.

0, otherwise.

We expect our method to achieve better reconstruction than temporal TV since
it enforces the differences between the closest neighbours of a frame on the manifold
to be sparse. These frames might not be the frames that are close to it temporally,
especially in case of high motion between frames.

Considering that Q has a singular value decomposition:
Q=VX:T (2.26)

we can also find the equivalent synthesis formulation for the ¢; problem by a change

of variable X = UV H:
U = argmin | AUVY) - B[7. + 2 |Us2T||,, (2.27)

Note that this approach has similarities to ¢, regularized PSF regularization schemes

[94], except that the ¢; norm of UX2T is penalized rather than that of U.
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2.4 Implementation
We consider separately the solutions for the 2 cases described in the previous

section: p =2 and p = 1.

2.4.1 {5 smoothness prior
In the single coil case, problem (2.17) has an analytical solution in the Fourier

domain. We rewrite (2.17) in this special case as:
X* = argmin ) _[[Si%; — b3 + 2ATr( XL X") (2.28)
X =

where the columns of X = [X1,...,Xy| are the Fourier coefficients of the images given
by: x; = Fx;. The key observation is that the above expression can be decoupled into
several independent subproblems, each involving the recovery of a row of X. Let X(j,.)
denote the j*® row of X and B;.) denote the vector of measurements corresponding

to this row. Then, we can solve for X(j,.) analytically as:
Xy = (D¥D; +2AL)'D¥ By (2.29)

where D is the sampling matrix corresponding to the j® row. The solutions for the
different rows of X can be computed in parallel. This analytic approach can give us
a significant speed-up over solving for the whole matrix X using iterative algorithms
such as conjugate gradient.

In the multi-channel setting, it is possible to solve for each coil using the above
method and combine them using a sum-of-squares strategy. Since this approach is
suboptimal, we propose to directly solve (2.17) using the conjugate gradient algorithm
(accounting for the coil sensitivities) to obtain a more accurate solution. The gradient
of the cost function in (2.17) can be computed as: 247 A(X)+4XL. The computation

of AT A(X) can be broken down into blocks (each containing a few temporal frames
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of X) and the blocks can be processed in parallel in order to reduce computational

complexity.

2.4.2 ¢, smoothness formulation

We rely on a variable splitting strategy using an auxiliary variable Z to solve

(2.24):

{X*.2"} = argmin | A(X) - B} +

2M|Z]le, + B1IXQ — Z|I5 (2.30)

We solve the above problem by alternating between minimization with respect to the

2 variables:

X(n) = argm}én HA(X) _BH%—F
5IXQ ~ 2| (23
Z ~ argmin BIXQ — Z|% +2A|Z (2:82)

We use a homotopy continuation strategy on the parameter 3, where f is initialized to
a very small value and then increased gradually to a very large value till the algorithm
converges. As in the ¢, case, (2.31) can be solved analytically in the Fourier domain
for single coil data. For multi-coil data, we use the conjugate gradient algorithm.
(2.32) can be solved using shrinkage. The matrix Z is large and storing it explicitly
will result in huge memory demands. We observe that the evaluation of (2.31) only
requires ZQ?, which is considerably smaller in dimension than Z. We perform in-
place computation of the variable ZQ” and store it instead of Z to reduce the memory

demand of the algorithm.



25

2.4.3 Acquisition scheme

The acquisition scheme used follows from the discussion in section 2.3.1. We
used a set of uniformly spaced radial navigator acquisitions (corresponding to ®),
separated by 180°/N; degrees where N; is the number of navigator lines per frame.
The remaining k-space samples (corresponding to B;) were acquired using a golden
angle radial k-space trajectory, where each line was separated by an angle of 111.25°
from the previous line. Thus, B; varies from frame to frame. The acquisition and
reconstruction pipeline is illustrated in Fig 2.1, where we consider the single coil setup

for simplicity.

2.4.4 Datasets
We use a numerical cardiac phantom and a retrospectively undersampled speech
dataset for quantitative comparisons. We also consider the recovery of prospectively

undersampled real-time cardiac MRI data.

2.4.4.1 PINCAT phantom
A short axis view of the PINCAT phantom [80] heart with matrix size 128x128
and 500 frames was used for numerical simulations. The dataset has around 26 cardiac

cycles and 5 respiration cycles.

2.4.4.2 Speech imaging
We use the MR dataset titled 'F1’ in the USC-TIMIT database [57] to demonstrate
our method. The raw k-space data for the images in the database was acquired
using a spiral trajectory and this data was gridded to reconstruct the images. The
reconstructed images have been made available in the dataset as a movie in the
coil-combined form with matrix size 68x68 and frame-rate 23.18 frames/s. This
corresponds to a temporal resolution of around 43 ms. The Fourier data corresponding

to the first 6000 image frames was retrospectively undersampled using 9 golden angle
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Figure 2.1: Summary of the proposed data acquisition and reconstruction scheme for
the single coil case. The blue radial lines denote the navigators that sample the same
k-space locations in every frame. The weight matrix is estimated from the k-space
data acquired using these navigator lines as described in (2.16). The final images are
recovered from the entire measurements by solving (2.11).

radial lines and 1 spiral navigator per frame and used for our experiments.

2.4.4.3 Cardiac Imaging

A prospectively undersampled free-breathing ungated radial dataset was acquired
using a SSFP sequence on a Siemens 3T TIM Trio scanner with a 18 channel cardiac
array from a healthy volunteer who was asked to breathe normally. The scan parame-
ters were TR/TE = 4.2/2.2 ms, number of slices = 5, slice thickness = 5 mm, FOV =
300 mm, spatial resolution = 1.17 mm. A temporal resolution of 42 ms was achieved
by sampling 10 lines of k-space per frame, out of which 4 were navigator lines. 10000
radial lines of k-space were acquired per slice which resulted in an acquisition time of
around 42 s per slice. For 5 slices this resulted in a total acquisition time of around
3.5 mins.

The raw k-space data was interpolated to a Cartesian grid and a SVD based coil-

compression technique was used in order to create 4 virtual coil elements from the
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Frames (1-500)

2 frames from phantom data

Frames (1-500)

(c) Weight matrix

=== | Frame in Fig (a)

Frame in Fig (b)

----| Neighbours of (a)
----| Neighbours of (b)

(d) Temporal intensity profile along red dotted line in Fig (a)

Figure 2.2: Illustration of the weight matrix and the ability of the scheme to enable
implicit motion resolved recovery. (a,b) Two frames from the PINCAT dataset. (c)
Weight matrix computed from the fully sampled k-space data. The green and blue
lines show the rows corresponding to the frames in (a) and (b) respectively. The
neighbours of these frames can be obtained using the weight matrix. (d) Temporal
intensity profile corresponding to the cut shown by the red dotted line in (a). Frames
(a) and (b) and a few of their neighbours are marked.

initial 18. We reconstructed low temporal resolution images for the original coils by
binning k-space data from a large number of frames. We then performed an SVD
on these images and retained only the 4 most significant singular vectors. The data
from the original coils was coil-combined to form virtual coil data using the singular
vectors obtained. This was done in order to reduce the computational complexity
of the reconstruction procedure. The coil sensitivity maps were estimated from this
compressed data using the method by Walsh et al [91]. To reduce computational

complexity, the coil sensitivity maps were assumed to be constant over time.
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Figure 2.3: Effect of different navigator trajectories on weight matrix estimation. (a)
Percentage error in the weight matrix estimation (computed using ¢ norm), using
different navigator trajectories. Spiral and radial trajectories are chosen such that
the time taken to acquire 1 spiral shot is the same as that for 1 radial line. (b)
The 274,34 and 4*® eigen vectors of the Laplacian matrix estimated from (1) fully
sampled k-space, shown in blue (2) 1 radial spoke, shown in green (3) 1 spiral readout,
shown in pink. We observe that these vectors capture the respiratory motion, the
2nd harmonic of the respiratory motion, and the cardiac motion modulated by the
respiratory frequency respectively.

2.4.4.4 Comparison between breath-held and free-breathing cardiac acquisitions
In order to compare the image quality obtained using our method to that obtained

by a breath-held protocol, we acquired 2 cardiac datasets:
e A prospectively undersampled free-breathing ungated radial dataset.
e A fully-sampled breath-held ECG-gated radial dataset.

The first dataset was acquired using a SSFP sequence on a Siemens 3T TIM Trio
scanner with a 5 channel cardiac array from a healthy volunteer who was asked to
breathe normally. A TRUFI frequency scout was performed prior to data acquisition
to prevent banding artifacts due to the presence of field in-homogeneity. The scan
parameters were TR/TE = 3.2/1.62 ms, number of slices = 5, slice thickness = 5
mm, FOV = 300 mm, spatial resolution = 1.17 mm. A temporal resolution of 41.6
ms was achieved by sampling 13 lines of k-space per frame, out of which 4 were

navigator lines. 13000 radial lines of k-space were acquired per slice which resulted
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Figure 2.4: Effect of weight matrices estimated using different navigator trajectories
on reconstruction. (a) Signal to error ratio of the reconstructions with the Laplacian
matrix estimated from different navigator trajectories. The k-space samples used to
reconstruct the images are the same for all cases (10 golden angle radial lines per
frame). Only the navigator trajectory used to compute the weight matrix are varied.
(b) A reconstructed frame is shown for a few of the trajectories reported in (a).

in an acquisition time of around 42 s per slice. For 5 slices this resulted in a total
acquisition time of around 3.3 mins.

The fully-sampled ECG-gated breath-held dataset was acquired by a SSFP se-
quence on the same subject immediately after the free-breathing scan. The sampling
trajectory was uniform radial and the scan parameters were: TR/TE = 3.4/1.72 ms,
number of slices = 5, slice thickness = 5 mm, number of channels = 5, FOV = 300
mm, spatial resolution = 1.17 mm, number of cardiac phases = 18, radial views per
cardiac phase = 253. Each slice required a breath-hold of around 16 s followed by a
resting period of around 25 s. For 5 slices this resulted in a total acquisition time of
around 3 mins.

Pre-interpolation to a Cartesian grid, coil sensitivity estimation and coil compres-
sion were performed using the acquired k-space data as described in the previous

section. 3 virtual coils were created in this case.



30

2.4.5 State of the art methods used for comparison

The in vivo data reconstructed using f5 and ¢;-SToRM was compared to the
reconstructions by 3 other methods: kt-LR [48], temporal TV and PSF. The kt-
LR and temporal TV methods do not require the acquisition of navigators. Thus,
we did not include navigator lines in our sampling pattern for the speech data, for
generating the results for these 2 methods. However, we could not do the same for the
cardiac datasets since they were prospectively undersampled. For the PSF method,
we used the Frobenius norm of the basis images as a regularizer. The approach
followed was similar to [17], with the same weighting applied to all basis images.
For all 3 competing methods, the regularization parameter giving the highest SER
reconstruction was chosen in case of the speech dataset. For the cardiac dataset,
since the ground-truth was not available, the regularization parameter which seemed
to best preserve the features of the data was chosen. Spatial TV regularization was

not used with any of the algorithms.

2.5 Results
2.5.1 Simulations using phantom data
We first conducted some numerical simulations on the PINCAT phantom. Two

frames of the phantom dataset are shown in Fig 2.2.(a) and Fig 2.2.(b).

2.5.1.1 Weight matrix estimate from fully sampled data
We computed the weight matrices from the fully sampled k-space data, corre-
sponding to different o values. These matrices were thresholded to retain only the 5
nearest neighbours for each frame. The k-space data was then under-sampled (10 lines
per frame sampled on a pseudo golden angle trajectory). Images were reconstructed
from this under-sampled data using ¢5-SToRM with the weight matrices correspond-
ing to different o values. The o value giving the highest SER reconstruction was

chosen to form the optimal weight matrix. This matrix is shown in Fig 2.2.(c). The
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temporal intensity profile of the original dataset (along the cut given by the red dot-
ted line in Fig 2.2.(a)) is shown in Fig 2.2.(d). The frames in Fig 2.2.(a) and Fig
2.2.(b) and a few of their neighbours (obtained from the weight matrix) are marked
along the profile. We observe that the frames in Fig 2.2.(a) and Fig 2.2.(b) are very

similar to their neighbours estimated by the weight matrix.

2.5.1.2 Effect of navigator trajectory on weight matrix estimation

The effect of different navigator schemes on weight estimation is studied in Fig
2.3. The weights estimated from different trajectories were compared quantitatively to
the ground-truth weights obtained from the fully sampled data (Section 2.5.1.1). The
normalized ¢, norm of the weight estimation error was used as the error metric. The
optimal o parameter varies from trajectory to trajectory, depending on the number of
k-space points. We chose the best ¢ value in each case to obtain fair comparisons. We
did not threshold the weight matrices for this experiment. We considered spiral and
radial navigators with the same readout duration (TR = 4.3 ms). The percent errors
in weight estimation (computed using ¢, norm) are plotted in Fig 2.3.(a). We observe
that 1 spiral shot (4.3 ms) is almost as accurate in estimating the weights as 5 radial
lines (21.5 ms). The percent errors incurred in the two cases are 7.34% and 6.99%
respectively. The 224 3™ and 4" eigen-vectors of the L matrix estimated from: (1)
the fully sampled data, (2) 1 radial line, and (3) 1 spiral shot are shown in Fig 2.3.(b).
The experiments show that the eigen vectors in all three cases are quite similar. We

also observe that the 2"d

eigen-vector captures the respiratory motion of the data
(5 respiratory cycles can be seen). The 3" eigen-vector shows the 2% harmonic of
the respiratory motion. The dominant frequency of this eigen-vector is double that
of the dominant frequency of the respiratory motion. The 4" eigen vector captures

the cardiac motion modulated by the respiratory frequency (26 cardiac cycles can be

seen).
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2.5.1.3 Effect of weight matrix on image reconstruction

The effect of different weight matrices (computed using the navigator trajectories
described in Section 2.5.1.2) on image reconstruction quality is studied in Fig 2.4.(a).
The phantom data was under-sampled in k-space using a golden angle trajectory with
10 lines per frame and this data was used for all reconstructions. The navigator data
was used only for weight computation. The weight matrices were thresholded to re-
tain only the 5 nearest neighbours for each frame. In Fig 2.4.(b), we show a single
image frame from the time series, as reconstructed using different weight matrices.
The weights computed using a 1 radial line navigator produced reconstructed images
of comparable quality (31.87 dB) to the case of ground-truth weights (32.25 dB). The
single shot spiral navigator trajectory, which takes the same acquisition time as 1
radial line, performed slightly better (32.18 dB) than the single radial line case. Esti-
mation of weights using only the centre k-space signal gave very poor reconstructions
(20.57 dB). Using a 3 x 3 patch around center k-space as the navigator signal (instead
of the centre only) improved the results considerably (30.33 dB), though the error
images show more artifacts than when using radial or spiral trajectories.

We clarify that for the above experiment we used the navigator data only for
estimating the weights and not for reconstruction. However, the navigator data was
used for reconstruction in all the subsequent in-vivo experiments on the speech and
cardiac data. For the experiment in Sec 2.5.1.2, we were studying the relative merits
of different sampling schemes on the weight computation. The analysis was extended
in the above experiment, where we studied the effect of those computed weights on
image reconstruction. If we included the navigator signals for the reconstruction
step, then the quality of our reconstructed images would be dependent on: (1) The
accuracy of the computed weights (2) The incoherence of the sampling patterns used
for each trajectory. Since we were only studying effect (1), we used the same samples

for reconstruction in each case.
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2.5.2 Experiments on in vivo data

In the in vivo experiments, the parameter o used for the calculation of the weight
matrix W was automatically computed using the strategy described in [84]. For this
purpose, we computed the weight matrix for a range of o values and evaluated (o) =
S 2521 W;;(o) for each weight matrix obtained. A log-log plot of [(o) revealed 2
constant asymptotes at ¢ — 0 and ¢ — oo, smoothly connected by an approximately
straight line. The approximate o value at the middle of this linear portion was
selected to form our weight matrix. The weight matrix was thresholded to retain
only the 4-6 nearest neighbours for each frame. For the multi-slice cardiac datasets,
we had to compute the weight matrix separately for each slice. This is because
our acquisition scheme was 2D, i.e. the k-space samples from a particular slice were
completely acquired before moving on to the next slice. The regularization parameter
A was chosen emperically. All reconstructions were done on a desktop computer (Intel
Xeon E5-1620 CPU, 3.6 GHz, 32 GB RAM). The algorithms were implemented in

MATLAB, and may be further optimized to produce lower reconstruction times.

2.5.2.1 Retrospective undersampling experiments on speech dataset

The speech dataset was reconstructed from under-sampled k-space data using dif-
ferent techniques, as shown in Fig 2.5. The first row (a) shows the ground-truth
images, while each subsequent row corresponds to datasets reconstructed by different
methods. The techniques used for reconstruction from under-sampled k-space data
along with their reconstruction times are: (b) kt-LR (4.8 hrs) (c¢) temporal TV (21
mins) (d) PSF [17] (3 mins) (e) fo-SToRM (7 mins) (f) ¢;-SToRM (32 mins). For the
kt-LR and temporal TV reconstructions, 10 golden angle radial lines of k-space were
used per frame and no navigator lines were included. For the PSF and SToRM meth-
ods, k-space was undersampled using 9 golden angle radial lines and 1 spiral navigator
per frame. SToRM produces reconstructions with higher SER than the other meth-

ods. Though the ¢; and ¢5-SToRM reconstructions have comparable SER, it can be
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seen than the ¢; formulation reduces blurring and preserves borders better. The com-
peting techniques have more artifacts compared to the proposed methods, as pointed
out in the figure. The ability to recover high quality images from under-sampled data
indicates that our method can be used to improve the temporal resolution and also

acquire multiple slices in a shorter scan.

2.5.2.2  Recovery of prospectively undersampled RT cardiac dataset

The multi-slice free-breathing highly undersampled cardiac dataset described in
Section 2.4.4.3 was reconstructed using different methods, as illustrated in Fig 2.6.
The techniques used for reconstruction in the different rows along with their recon-
struction times are: (a) kt-LR (7.5 hrs) (b) temporal TV (4.7 hrs) (c¢) PSF (4 mins)
(d) ¢5-SToRM (24 mins) (e) £;-SToRM (4.9 hrs). The temporal intensity profile along
a vertical cut of the image frames (given by the red dotted line in Fig 2.6.(a)) is also
shown for each method. The comparisons are only qualitative since the ground truth
dataset was not available. We observe that SToRM reduces streaking artifacts and
spatial blurring, compared to other state of the art methods. Specifically, we observe
that the myocardial borders are well captured, while details such as the papillary
muscles are better defined. We also note that while the image frames of the ¢; and
l5-SToRM reconstructions look similar, the temporal intensity profiles of the ¢, for-

mulation appear sharper.

2.5.2.3 Comparison between free-breathing and breath-held cardiac reconstructions

The quality of the reconstructed free-breathing and breath-held cardiac datasets
described in Section 2.4.4.4 are compared in Fig 2.7. The breath-held dataset was re-
constructed using CG-SENSE [74], while the free breathing dataset was reconstructed
using fo-SToRM. We show the data corresponding to 2 out of the 5 reconstructed
slices. The figure shows results from a particular slice of the breath-held dataset and

also its best matching slice from the free-breathing dataset; it was difficult to find
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perfect matches between the breath-held and the free-breathing acquisitions. Fig 2.7
shows: (a) 3 cardiac phases from the breath-held cine reconstruction and temporal
intensity profile along the yellow dotted line. (b) 3 frames from a single cardiac cycle
of the free-breathing dataset and temporal intensity profile along a vertical cut (same
cut as the breath-held dataset). Note that the breath-held dataset has a few cardiac
phases averaged over many cardiac cycles, while the free-breathing dataset consists of
several cardiac cycles. Images from the cardiac cycle of the free-breathing reconstruc-
tions which best matched the breath-held images are shown here. We observe that

the reconstructed dataset is of comparable quality to the breath-held cine datasets.

2.6 Discussion

We proposed a technique to recover signals from under-sampled measurements,
assuming that they lie on a low-dimensional manifold embedded in high-dimensional
space. Such a model is satisfied by many real-world signals which can be characterized
by low-dimensional parameter vectors. Our reconstruction technique was inspired by
the Laplacian Eigenmaps algorithm for dimensionality reduction. The technique relies
on exploiting the similarities between signals in local neighbourhoods of the manifold.
While our results were demonstrated on dynamic MR image reconstruction problems,
the technique is general enough to be used for a variety of applications where the
signal model is satisfied, particularly for dynamic imaging using other modalities.
In such cases, the acquisition scheme needs to be modified accordingly to enable the
estimation of the weight matrix. Once this is done reliably, the reconstruction scheme
can be extended fairly easily.

For the problem of dynamic MR image reconstruction, the technique estimates
the proximity of the images on the manifold using navigator signals, followed by a
manifold aware recovery of the images from highly undersampled measurements. The
reconstructed image quality was observed to be superior to that achieved by other

state-of-the-art ungated reconstruction methods. Moreover, the experiment on the
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speech dataset demonstrated that SToRM can recover images in case of repeating
frames, irrespective of whether the repetitions are periodic. In fact, the method
does not distinguish between periodic and aperiodic changes. The quality of our
reconstructed images is quite dependent on the degrees of freedom of the underlying
physiological process. If the degrees of freedom is low, then every frame will have a
sufficient number of neighbours very similar to it with high probability (provided that
our acquisition time is long enough). If the degrees of freedom is high, then many
frames may not have any other frames very similar to it, and the recovered frames
will be of poor quality. However, in such situations, other model-based reconstruction
schemes should also perform poorly due to lack of redundancy in the data.

While the original stable embedding theory deals with random ortho-projectors
[22], our empirical comparisons in section 2.5 show that the radial k-space sampling
scheme can estimate the neighbourhood of each image frame quite accurately. More-
over, our experiments also show that approximate estimates of the weight matrix
(using one radial line of k-space) are often sufficient to ensure good recovery of im-
ages. Our experiments also reveal that spiral navigators are more efficient than radial
navigators. We used the radial acquisition scheme for ease of implementation on the
scanner. We will investigate the utility of spiral navigators in the future, which may
translate to improved temporal resolution or reconstruction quality.

The proposed scheme has a few free parameters: (1) o (2) the number of neigh-
bours (3) A. The optimal ¢ value is dependent on the k-space trajectory as well as
the number of points. However, we observed that the reconstruction quality is not
very sensitive to the exact value of o. Specifically, changing ¢ by a factor of 10 does
not significantly affect the reconstruction quality. The number of neighbours is a data
dependent parameter determined by the degree of redundancy in the dataset. If a
sufficient number of similar frames is available for each frame, then a small increase

in the number of neighbours will not affect the image quality. However, if the number
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of neighbours is made very high, then all the neighbours of a particular frame will
not be very similar to it, and the resulting reconstructed image will have motion blur.
If the number of neighbours is made very low, then we will have aliasing artefacts.
Similarly, the regularization parameter A is also data dependent.

We show that ¢5-SToRM has similarities to the k-t PCA and PSF methods, with
the exception that the temporal basis functions are the singular vectors of the Lapla-
cian matrix rather than that of the covariance matrix. These basis functions promote
smoother solutions on the manifold, enabling the exploitation of the non-linear de-
pendencies between images. ¢;-SToRM is similar to the temporal TV scheme, with
the exception that the standard finite difference matrix is replaced by an adaptive
finite difference operator; this enables the exploitation of non-local dependencies be-
tween images in the dataset. The ¢,-SToRM scheme has similarities to the recent
work [7]. Specifically, their solution is a clever approximation of our analytic solu-
tion in the /5 setting for the single channel case. Our approach also has conceptual
similarities to [88], where the cardiac and respiratory phase information is recovered
from the singular vectors of the graph Laplacian. This approach has been inspired by
dimensionality reduction methods such as ISOMAP and LLE [75,86] that are used
to embed the data on a manifold to a lower dimensional subspace. [88] identifies the
cardiac and respiratory phases from the dimensionality reduced data, followed by
explicit motion-resolved binned reconstructions similar to [25]. In contrast, STORM
performs an implicit motion-resolved recovery of the entire RT dataset. In addition,
SToRM does not need the explicit identification of individual phases, which is diffi-
cult in applications with both cardiac and respiratory motion and require additional
pre-processing steps [26,88]. The estimation of the cardiac and respiratory phases
using band-pass filtering as in [25,26] may be challenging in cases with irregular res-
piratory motion and arrhythmia. In addition, many applications like speech imaging

have no concept of phase equivalent to cardiac and respiratory phases in cardiac
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imaging. SToRM extends readily to such applications. The proposed scheme also
has conceptual similarities to recent kernel PCA based approaches, introduced to ex-
ploit non-linear similarities between image patches. Specifically, [56] learns the basis
functions using linear PCA on non-linearly transformed patches from low-resolution
images. They then iterate between projecting each non-linearly transformed patch
from the high-resolution images to this subspace, and solving for pre-images that
satisfy data-consistency. This approach may be seen as a synthesis formulation of

l5-SToRM, when re-engineered for image patches.

2.7 Conclusion

We introduced a novel acquisition and reconstruction scheme for reconstruction of
signals from under-sampled measurements. We demonstrated the technique termed
SToRM on real-time dynamic MR imaging. The central assumption is that the images
in the dynamic dataset are points on a smooth, low dimensional manifold embedded in
high dimensional space. We formulated the recovery of the dataset from highly under-
sampled measurements as a manifold smoothness regularized optimization problem.
The neighbours of each image on the manifold were estimated from the navigator
acquisition. SToRM was demonstrated to be useful in accelerating free breathing
cardiac imaging and speech imaging, without compromising on image quality and
slice coverage. This approach improves the spatio-temporal resolution, while ensuring
patient comfort and reducing the total scan time. It can be easily extended to other

dynamic imaging applications like liver, bowel and lung imaging.
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Figure 2.5: Reconstruction of the speech dataset. (a) Ground-truth images. The
subsequent rows correspond to reconstructions from under-sampled k-space data using
(b) kt-LR, (c) temporal TV, (d) PSF, (e) ¢2-SToRM, and (f) ¢,-SToRM. The data
used for (b) and (c) had a golden angle radial trajectory without navigators. The
data used for (d), (e) and (f) had a spiral navigator. The arrows point out artefacts
in the images reconstructed by the competing methods, which are not present in the
images reconstructed by SToRM.
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Figure 2.6: Reconstruction of the free-breathing cardiac dataset. Selected image
frames and temporal intensity profiles along a vertical cut given by the red dotted
line in (a) are shown. The images were reconstructed from under-sampled k-space
data using (a) kt-LR, (b) temporal TV, (c) PSF, (d) ¢,-SToRM, and (e) ¢;-SToRM.
The arrows point out artefacts in the images reconstructed by the competing methods,
which are not present in the images reconstructed by SToRM.



41

Image Phases
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(a) Breath-held dataset (b) Free-breathing dataset

Figure 2.7: Comparison between proposed free-breathing (FB) reconstruction and
breath-held (BH) reconstruction. The BH dataset was reconstructed using CG-
SENSE. The FB dataset was recovered using /,-SToRM. Two matching slices from
both datasets are shown. The rows represent different slices. (a) Images in different
cardiac phases from the BH dataset. The voxel profiles along the yellow dotted line
are also shown. (b) Image frames from a particular cardiac cycle of the FB dataset.
The voxel profiles for a few cardiac cycles of the FB dataset are also shown (along
the same cut as the BH dataset).
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CHAPTER 3
SIGNAL RECOVERY ON SMOOTH CURVES/SURFACES:
THEORETICAL GUARANTEES

3.1 Introduction

The main focus of this chapter is to introduce a continuous domain perspective
on the recovery of points drawn from a smooth surface in very high dimensions. This
work reveals fundamental links between recent advances in superresolution theory
[10,62, 78] and kernel based machine learning methods [79] as well as graph signal
processing [82]. We assume that the high dimensional points live on an smooth
surface, which is the zero level set of a trigonometric polynomial. This is termed the
annihilation relation and it is shown that this relation can be expressed as a weighted
linear combination of the exponential features of the point; the dimension of the
feature maps is equal to the bandwidth of the polynomial. These properties enable us
to determine the sampling conditions, which will guarantee the recovery of the surface
from finite number of points. Our analysis also shows that when the bandwidth is
overestimated, there are multiple such annihilation relations, suggesting that the
exponential feature maps of the points on the surface live in a finite dimensional
space. Note that similar non-linear maps are widely used in kernel methods; our
results show that these maps can be approximated by a few basis functions, when the
points are restricted to a bandlimited surface.

The rank deficient matrix of feature maps translate to a low-rank kernel matrix,
computed from the points using a shift invariant kernel such as the Dirichlet function.
We minimize the nuclear norm of the feature maps of the points to recover them from
noisy data. Since the direct estimation of the surface in higher dimensions suffers
from the curse of dimensionality, we use the "kernel trick” to keep the computational
complexity manageable. We rely on an iterative reweighted algorithm to recover
the denoised points. The resulting algorithm has similarities to iterative non-local

methods [29,41,54,55,93] that are widely used in image processing and graph signal
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processing. Specifically, it alternates between the estimation of a graph Laplacian,
which specifies the connectivity of the points, and the smoothing of points guided by
the graph Laplacian.

This work is built upon our prior work [2,3,60-62,64] and the recent work by Ongie
et al., which considered polynomial kernels [63]. Our main focus is to generalize [63]
to shift invariant kernels, which are more widely used. We also introduce sampling
conditions and algorithms to determine the surface, when the dimension is low. In
addition, the iterative algorithm using the kernel trick shows the connections with

graph Laplacian based methods used in graph signal processing.

3.2 Exploiting annihilation relations for signal recovery
We assume the point cloud to be supported on a surface in [—1/2,1/2]", which is

the zero level-set of a bandlimited potential function:

{r e R"|¢(r) = 0}, where ¢(r) = ch exp(j 2rk’r) (3.1)

keA

Here, {cx : k € A} is the smallest set of coefficients (minimal set) that satis-
fies the above relation. A C Z" is a set of contiguous locations that indicates
the support of the Fourier series coefficients of . Consider an arbitrary point x

on the above surface (3.1). By definition (3.1), we have the annihilation relation

Y(x) = Yeercrexp(j 2rkTx) = 0. We re-express the annihilation relation as
c’pp(x) = 0 using a non-linear mapping ¢, : R® — CI:
T
oA(X) = |exp(j 2nkTx) ... exp(j 27Tk‘7;\‘x) (3.2)

This annihilation relation is illustrated in Fig 3.1.
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Figure 3.1: Hlustration of the annihilation relations in 2-D. We assume that the curve
is the zero-level set of a bandlimited function 1(x). Each point on the curve satisfies
P(x;) = 0 = c?' ¢ (x;), which can be seen as an annihilation relation in the non-linear
feature space ¢, (x). Specifically, the maps of the points lie on a plane orthogonal to
c.

3.2.1 Curve recovery: sampling conditions
The annihilation relation introduced in the previous sub-section can be used to
estimate the surface, or equivalently ¢(r) from a few number of points. The least
square estimation of the coefficients from the data points {x; : i = 1,..., N} can be

posed as the minimization of the criterion:

Cle) =Y Iv(a)* = " Qac (3.3)

i=1

where Q) = Zfil da(x;:)Pa(x;)T. The coefficients can be estimated as:

c* = argminc’ Q, ¢ such that |[c|* =1 (3.4)
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The solution is the minimum eigen vector of Q.

In the remainder of the section, we will restrict our attention to 2-D. We will
leave the generalization to higher dimensions for future work. We will now determine
the sampling conditions for the perfect recovery of the curve 1(x) = 0 using (3.4).
Specifically, we will determine the minimum number of samples for the successful
recovery of the curve, when A is a rectangular neighborhood in Z? of size K; x K.
In addition, we assume that v is the function with the smallest Fourier support
(minimal polynomial), whose zeros define the curve. We first focus on the case where

A is known.

Proposition 3.2.1. Let x;;¢ = 1,.., N be points on the zero-level set of a band-
limited function ¢(r),r € R?, where the bandwidth of the surface v is specified by
|A| = Ky x Ky and ¢(r) has J irreducible factors. If N; points are sampled on the j*

irreducible factor, then the curve 1(r) =0 can be uniquely recovered by (3.4), when:

N; > (K, + Ky) (K] + K3) (3.5)

forg=1,...,J.

Thus, the total number of points required are N > (K;+ K3)(K;+ Ky +2(J —1)).
The above proposition is proved in Appendix A.1. We compare this setting with the
sampling conditions for the recovery of a piecewise constant image, whose gradients
vanish on a bandlimited curve [62]. The minimum number of Fourier measurements
required to recover the function there is |3A|; when K| = Ky = K, then 3K? complex
Fourier samples are required. In contrast, we need 4K? real samples. When the true
support A is not known, it is a common practice to overestimate it as I' O A. In this

case, Qr will have multiple null space vectors, as shown below.

Proposition 3.2.2. We consider the polynomial 1 (r) described in Proposition 1. Let
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A CT with |T'| =Ly X Ly and for j=1,...,J:
N; > (Ly + Ly)(K{ + K3) (3.6)

points be sampled on the j irreducible factor of 1(r). Then all nullspace vectors

o ' of the matriz Qr will be of the form:

where n(x) is an arbitrary function such that supp(c’) =T.

Thus, the total number of points required are N > (L + L) (K1 + Ko+ 2(J —1)).
The above proposition is proved in Appendix A.2. Since 1(x) is the common factor of
all the annihilating functions, all of them will satisfy ¢/'(x) = 0, for any point on the
original curve. Depending on the specific 7, they will have additional zeros. Hence,
the above result provides us a means to compute the original curve, even when the
original bandwidth /support of the function is unknown.

We now consider a collection of N points on the curve, stacked into a matrix

X = [x1,X2,...Xy|. Let the feature matrix of size |I'| x N be denoted by:

Or(X) = |pp(x1), . .. ¢r(xy) (3.8)

We state a result about the rank of the above feature matrix.

Proposition 3.2.3. We consider the polynomial 1(r) described in Proposition 1 and
A cCT. Then:
rank (¢p (X)) < || = T : Al (3.9)
—_——

r

with equality if the sampling conditions of Proposition 2 are satisfied.

The above proposition is proved in Appendix A.3. Here, |I' : A| denotes the
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number of valid shifts of the set A within I" as shown in Fig 3.2. Note that as
|A| gets smaller, the number of shifts of it within I" increases, and hence the rank
decreases. The rank of the matrix can be used as a surrogate for the bandwidth of 1),
or equivalently the complexity of the curve. Note that A may be an irregular shape
in Z". For example, if the points lie on a line in R™, then A could be concentrated
along a line in Z", resulting in a small |A|, even when the number of features in T’
may be considerably high. The low-rank structure of the feature maps can be used
to denoise the original points, while the sum of squares function obtained from the
nullspace filters can be used to estimate the surface in low-dimensions when (3.6) is

satisfied, as illustrated in Fig 3.2.

3.2.2  Recovery of noisy point clouds in high dimensions

The explicit approach of estimating the surface is feasible, when the dimension of
the points n is small. However, this approach suffers from the curse of dimensionality.
Since the shape of the data, or equivalently the shape of the support A is not known,
one needs to use a large I" to ensure that A C I'. Note that the dimension of the feature
space specified by |I'| grows exponentially with n, making this approach impractical
in applications involving point clouds of images or patches.

We hence rely on the right nullspace relations to recover the points from their
noisy and undersampled measurements. Specifically, we are interested in the null
space relations

be(X)H@F(X) v;i =0 (3.10)

J/

-~

KF

where the entries of the |N| x |N| Gram matrix Kr are

(Kr),,; = ér(x:)"ér(x;) =Y exp (j 27k" (x; — x;)) (3.11)

kel
A

J/

~~
HF(X]'—XZ‘)
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The function sr(r) in (3.11) is shift invariant and is dependent on the shape of I'. For
example, when I' is a centered cube in R”, kr(r) is a Dirichlet function. The kernel

matrix satisfies rank(Kr) < r, where r is given by (3.9).

3.2.3 Dirichlet and Gaussian surface representation

The bandlimited function ¥(r) in (3.1) can equivalently be expressed as:

) = 3 dyprlr — 1) (3.12)

leTe

where ¢r(x) is the Dirichlet function dependent on I' and I'® is the set of sampled
locations on the curve. Using reciprocity, the non-linear maps in this case can be

shown to be:
T

¢F(X): §0F<X—X1) g0p<X—X‘Fc|) (313)

Since the implicit curve is the zero level set of a linear combination of Dirichlet

functions, it may be highly oscillatory. An alternative would be to use a level set ex-

pansion in terms of weighted exponentials exp(—m2c? szHQ). exp(j27k’r), which could
give smoother surfaces. In this case kr approaches a periodized Gaussian function,
as [' = Z", and the Gaussian kernel matrix Kr is theoretically full rank. However,
we observe that the Fourier series coefficients of a Gaussian function can be safely
approximated to be zero outside |k| < 3/7o, which translates to |A| ~ (£)"; ie.,

TO

the rank will be small for high values of o.

3.2.4  Denoising using nuclear norm minimization
We rely on the low rank structure of the kernel matrix K to recover the noisy
points. Specifically, with the addition of noise, the points deviate from the zero set of
1. A high bandwidth potential function is needed to represent the noisy surface. We

propose to use the nuclear norm of the feature matrix as a regularizer in the recovery



49

of the points from noisy measurements:
X* :argm}énHX—YHQ—I—/\||<I>(X)||* (3.14)
We use the IRLS algorithm, where X is updated as:
XM = arg m}én X = Y||? + X trace[K(X)Q™)] (3.15)

and QM = [K(X(™ D) 4 M=z, Note that the solution for (3.15) involves a sys-
tem of non-linear equations. Instead, we use gradient linearization to simplify our

computations, where K(X) is a Gaussian kernel matrix:
X™ = arg m)%n X —Y|? + A trace(X"LMX) (3.16)
with L™ = D™ — W™, DI = S W, and
wm — —%K(X(”l)) ® Q™ (3.17)

We note the equivalence of the above optimization strategy with widely used non-
local means and graph optimization schemes. These schemes estimate a Laplacian
matrix L, followed by the minimization of the cost function (3.16). These approaches
can thus be seen as fitting a smooth bandlimited surface to the point cloud of patches

or signals that are assumed to be on the graph.

3.3 Results
We demonstrate propositions 3.2.1 and 3.2.2 through simulations in Fig 3.2. The
various notations used are summarized in Fig 3.2 (a). A phase transition plot in (b)
illustrates the probability of correct recovery of the curve from few sampled points,

under the assumption that the bandwidth of the underlying trigonometric polynomial
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Figure 3.2: Ilustration of sampling conditions: The Fourier support A of the minimal
function v, the overestimated support I' used to evaluate the maps, and the possible
shifts of A in I denoted by I' : A are shown in (a). In (b), we show a phase transition
plot for recovery using known Fourier support, where the red curve is the one predicted
by the theory, and the blue curve is for N = |A|. Here, black indicates perfect recovery
and white denotes poor recovery. (c) shows an example of a trigonometric polynomial
with 5 x 5 Fourier support, along with its zero-level set. (d) shows the recovery of the
curve in (c) from its samples denoted by red points. This experiment assumes that
the size of the Fourier support is known. (e) shows the case where the support size
was unknown and we assumed I" to be a 11 x 11 region. The sum of square of several
null space filters uniquely identifies the curve.

is known. A particular example of a curve is shown in (c). Its recovery from sampled

points are shown under the assumption of known size of the Fourier support in (d),
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Original images Clicked points Generated curves

Figure 3.3: Recovery of DNA filaments from few clicked points. The first column
shows 3 noisy cryo-electron microscopy images where the DNA filaments are very
faintly visible. The second column shows a few points in red that were manually
clicked on the noisy images. The third column shows the recovered curves from the
clicked points.

and over-estimated size in (e).

We apply the technique of recovering curves from a few sampled points to the
problem of DNA filament reconstruction, as shown in Fig 3.3. In this problem, very
noisy cryo-electron microscopy images were available where the DNA filaments were
visible very faintly. A few points were manually clicked on the filaments. From these
few points, the whole filament was recovered. We also demonstrate the utility of
(3.14) in a simple 2-D denoising example in Fig 3.4. It is observed that after a few

IRLS iterations, the original denoised points are recovered.

3.4 Discussion
We studied the problem of reconstruction of curves/surfaces modelled as the zero-

level set of a trigonometric polynomial. In the case of low-dimensional signals, we
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Figure 3.4: Hlustration of denoising of 2-D points on a curve using (3.14): The first,
second and third columns shows the noisy data, the first iteration of (3.15), and
the 50" iterate respectively. Note that the kernel low-rank algorithm provides good
recovery of the points with 50 iterations.

consider the case where a few points are sampled on the curve and provide sampling
theorems for the perfect recovery of the curves. The number of required points de-
pends on the bandwidth of the underlying trigonometric polynomial. However, we
do not consider the effect of noise. Since our technique relies on the detection of the
null-space of a large feature matrix, we expect that it may be highly sensitive to noise.
This will be studied in future work. Moreover, our theoretical guarantees have also
been derived only for 2-D curves, and their extension to higher dimensions also needs
to be studied in detail. Our experimental results on the problem of recovering DNA
filaments also requires a large number of points to be clicked for perfect recovery. We
plan to investigate techniques to reduce this sampling requirement in the future, by
studying the effect on the location of the samples on the recovery guarantees.

We study the problem of recovering signals from noisy/under-sampled measure-
ments under the assumption that they satisfy our model. For this purpose, we solve
an optimization problem where the regularizer is the nuclear norm of the feature ma-
trix. The feature matrix that is computed depends on the dimension of the signal,

and thus for high dimensional signals, this is not memory efficient. For such signals,
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we compute the Gram matrix of the feature matrix, whose size is independent of the
dimensionality of the signals. We show that the IRLS iterations to solve the proposed
scheme can be performed using the Gram matrix alone, without the need for com-
puting the large feature matrix. Our signal model thus provides a basis for several
machine learning algorithms which assume that a high-dimensional mapping of the

data results is a low-rank matrix.

3.5 Conclusion

We introduced a continuous domain framework for the recovery of points on a
bandlimited surface. We show that the exponential maps of the points lie in a
lower dimensional subspace, which translates to a kernel matrix that is low-rank.
We introduce a nuclear norm minimization algorithm to recover the points. The
proposed framework connects the continuous domain surface recovery problem with
kernel methods and approaches in graph signal processing. We apply our developed
techniques to recover curves from few samples in simulated examples, and also in
the context of DNA strand reconstruction. We also demonstrate the scheme on the

recovery of points lying on curves from their noisy measurements.
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CHAPTER 4
RECOVERY OF CURVES/SURFACES: APPLICATION TO
DYNAMIC MRI

4.1 Introduction

We had introduced the SToRM [68] framework for dynamic image reconstruction
in chapter 2, which assumes that the images in the free-breathing MRI dataset lie
on a smooth and low-dimensional manifold, parameterized by a few variables (e.g.
cardiac & respiratory phases). The acquisition scheme relies on navigator radial
spokes, which are used to compute the graph Laplacian matrix that captures the
structure of the manifold. Conceptually similar manifold models have been proposed
by other groups [7,14,88]. We, as well as others [7,88], have relied on the widely
used exponential kernel to evaluate the Laplacian entries. To reduce oversmoothing,
the entries were then truncated to keep the number of neighbours (degree) of each
node fixed, resulting in a regular graph. Note that in practice, we do not have much
control on the sampling of the manifold; some manifold neigborhoods are oversampled,
while some others are not as well sampled; the use of a regular graph to capture its
structure may result in a tradeoff between oversmoothing of poorly sampled regions
and good performance in well-sampled regions. We observe that the image quality is
quite sensitive to the choice of the node degree. Another challenge with the SToRM
algorithm is the need to reconstruct and store the entire dataset (around 1000 frames),
which makes the algorithm memory demanding and computationally expensive, and
restricts the eventual extension to 3-D applications.

We now propose to use a kernel low-rank formulation for the recovery of dynamic
imaging data from undersampled measurements. This approach reconciles SToRM
and related approaches [7,14,68,88] with previous kernel low-rank methods [56] that
rely on explicit mapping of the data to non-linear features; the explicit approach [56]
is restricted to low dimensional signals such as patches or voxel time profiles because

of the curse of dimensionality. We model the images as high dimensional points on
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a smooth surface/curve, which is represented as the zero level-set of a band-limited
function. Under this assumption, feature maps of the images lie on a low-dimensional
subspace. We note that previous methods [56] made the assumption of a low-rank
kernel matrix, without specifying the underlying model on the images. Since the
feature maps are low dimensional, we recover the points from their missing entries
using a nuclear norm penalty on their feature maps. The direct implementation
of the approach would involve the lifting of the images to high dimensional feature
maps, projection to lower-dimensional subspaces, followed by back-projection of the
feature maps to images as in [56]; this approach, which is conceptually similar to
structured low-rank methods that rely on lifting [30,38, 60, 64], is prohibitive from a
computational and memory perspective when the manifold structure of large images
are to be considered. In addition, analytical back-projection steps as in [56] are not
available for many feature maps of practical relevance. Motivated by [63], we propose
an iteratively reweighted least square (IRLS) algorithm with gradient linearization to
directly solve the nuclear norm minimization scheme. This approach does not require
the explicit lifting and hence is considerably efficient. IRLS algorithms typically
alternate between the estimation of a null-space matrix and a quadratic subproblem,
where the penalty term is the energy of the projection to the null-space. In our setting,
we alternate between the estimation of a Laplacian-like matrix from the current set of
images, and a quadratic SToORM-like subproblem involving the Laplacian-like matrix.

The above link with the proposed kernel low-rank algorithm enables us to fur-
ther improve the performance of SToRM. To make the recovery from undersampled
data well-posed and to further reduce computational complexity, we propose to pre-
estimate the Laplacian matrix from k-space navigators; this approach is motivated
by similar approaches in low-rank regularization [30,45,62,81,94]. We estimate the
Laplacian matrix from the navigators using an iterative reweighted algorithm. This is

a more systematic approach compared to the SToRM approach of using exponential
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maps, followed by truncating the neighbours. To further reduce the computational
complexity and memory demand of SToRM by an order of magnitude, we approx-
imate the Laplacian matrix by a few of its eigen vectors. The eigen vectors of the
Laplacian are termed as Fourier exponentials on the manifold/graph [65]. Instead of
reconstructing the entire dataset, we propose to only recover the coefficients of the
Laplacian basis functions. Since the framework is an improvement over SToRM using
bandlimited modelling of the manifold, we refer to the proposed scheme as b-SToRM.
We validate b-SToRM on nine adult congenital heart disease patients with different
imaging views, as an add-on to the routine contrast enhanced cardiac MRI study.
We study the impact of patient motion, reduced number of navigators, and reduced
acquisition time on the algorithm. We also demonstrate that the reconstructed im-
ages can be sorted into respiratory and cardiac phases using the eigen-vectors of the

estimated Laplacian matrix, facilitating the easy visualization of the data.

4.2 Proposed scheme
We propose to use the low-rank property of the feature matrix to recover the

images from the undersampled measurements:
X = argmin |A(X) ~ BJ% + A @ (X),. (4.1)

where || - ||« denotes the nuclear norm and ®(X) denotes a matrix whose columns are
the non-linear maps of the columns of X (corresponding to different frames). Note
that this formulation is similar to structured low-rank methods [30,31,44,60,62,64,81],
where the low-rank property of a matrix, whose entries are dependent on the original
signal, is exploited. The main difference is that the lifted matrix is now dependent
on X by a non-linear relation, as opposed to linear lifting operators in the classical
structured low-rank settings. Note that the above formulation simplifies to low-rank

recovery, when ® = 7, which is the identity map.
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Figure 4.1: Outline of b-SToRM. The free breathing and ungated data is acquired using a
navigated golden angle acquisition scheme. We estimate the Laplacian matrix from naviga-
tor data using the kernel low-rank model. The entries of the Laplacian matrix specify the
connectivity of the points on the manifold, with larger weights between similar frames in
the dataset. The manifold is illustrated by the sphere, while the connectivity of the points
are denoted by lines whose thickness is indicative of proximity on the manifold. Note that
neighbouring frames on the manifold may be well separated in acquisition time. The ban-
dlimited manifold recovery scheme uses the Laplacian matrix to recover the images from the
acquired k-space measurements. The Laplacian matrix also facilitates the easy visualization
of the data.

This low-rank formulation has conceptual similarities to the approach in [56],
where the low-rank structure of pixel intensity profiles that are considerably smaller
in dimensions than the images in our setting are considered. In addition, we consider
shift invariant kernels unlike the polynomial setting in [56]. Note that the dimension
of the feature matrix is even higher than the dimension of the large dynamical imaging
dataset X. Hence, the direct approach of lifting the signals, followed by projection
to a subspace, and backprojection as in [56] is not feasible in our setting. We hence

propose to use the iterative reweighted least squares (IRLS) algorithm [18].
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The IRLS algorithm relies on the property:

Y. =tr |Y*Y (Y*Y)? :HY\/§H2 (4.2)
— F

P

N

to realize an algorithm which alternates between the update of P = (Y*Y) 2 and
the minimization of the quadratic cost function with penalty |[Y+/P|%. Applying

the IRLS algorithm to (4.2), we obtain the following iterations:

Xny1 = arg m)én | A(X) — BJ|% + A trace (K(X)P,,)

C

(4.3)

where P, = [K(X,)+™I] ® (4.4)

Here, the KC(X) = ®(X)”®(X) is the k x k Gram matrix of ®(X) and €™ is a small

(n) _ 6('nfl)

positive constant added to ensure invertibility. We choose € , where n > 11is
a constant. Note that this matrix can be computed without explicitly evaluating the
feature matrix ®(X); the use of this property to speed up algorithms is often termed
as the kernel trick [79].

The second term on the RHS of (4.3) involves the non-linear map ®. Motivated
by [63], we focus on the gradient of (4.3) with respect to X. The gradient of the

objective function with respect to the i'" image X; is given by:

Vx,C = 2A (AX; —b)+2)) Vx [K(X))]; P
J

When K is a Gaussian kernel, we can simplify Vx,[K(X:)]; P& = w™(X; — X;),

v )
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) entry of the matrix:

where wg.L) is the (i,

n 1 n n
AWARES -5 K (X™) o P™. (4.5)
Here, ® indicates the point-wise multiplication of two matrices. In matrix form, we

thus have:

VxC = 2A" (A(X) — b) 42X\ XL™, (4.6)

where

L™ =DM — W, (4.7)

and D™ is a diagonal matrix with elements defined as DE? ) = > Wl(;z) The steepest

descent update of (4.3) is given by:
X1 = X — Y (247 (A(X) — b) + 2\ XL™) (4.8)

4.2.1 Relation to SToRM regularization
We note that (4.8) can also be viewed as the steepest descent update of the

quadratic cost function:
X411 = arg m)%n |AX) = B||% + A tr (XL(“)XH) , (4.9)

which is essentially the main cost function solved in SToRM [68]. Thus, the IRLS
scheme can also be interpreted as an algorithm that alternates between SToRM and
an update of L using (4.7) and (4.5). This result shows the link between kernel low-
rank regularization and SToRM. The main difference between the methods is that the
matrix W is derived from the current iterate using a fundamentally different formula
as in (4.5), as opposed to its estimation from the navigators using (2.16), followed by

truncation to obtain a regular graph.
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The computational complexity and memory demand of the above iterative reweighted

algorithm is expected to be high, especially since the data involving 500— 1000 frames
is heavily undersampled in k —t space. Two-step algorithms have been introduced by
several researchers in low-rank regularization to reduce the computational complex-
ity and memory demand of structured low-rank algorithms. These methods estimate
the signal subspace (or equivalently the null-space) from fully sampled k-space sub-
regions or navigator data, which is then used to solve for the signal. In our prior work
in the context of structured low-rank matrix regularization, we estimated the matrix
P in (4.2) that approximates the null-space of the matrix, which was used to solve
for the signal. We now propose a similar strategy, where we estimate the L matrix in

(4.9), to obtain a computationally feasible framework.

4.2.2 Two step recovery using k — t space navigators
We acquire multi-coil £ — t space navigators Z = ®X as described in Section
2.3.1. Since this data is corrupted by noise and subtle subject motion, we propose to

estimate L using kernel low-rank regularization. Specifically, we solve:
R* :argmfi{nHR—ZH%—i-)\ 12 (R)], - (4.10)

Solving the above optimization scheme using IRLS as discussed in Section 4.2, we

obtain the alternating algorithm
R™ = argm}i{nHR—ZH;—i—)\ tr (R L™ RY), (4.11)

where

L™ =DM - wm, (4.12)

1
Here, W = —LIC(R™) ® PM™, where P = [K (R™)) + ¢™I] 2. Note that the

size of Z is considerably smaller than X; the computational complexity of the above
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algorithm to solve (4.10) is significantly lower than (4.9). When the above iterations
converge, we use the final L to recover the image frames from their undersampled
measurements.

Our empirical results show that the estimation of the L matrix as the by-product of
the above IRLS scheme is considerably more robust than the use of (2.16). In addition
to being more robust to noise and subject motion, this approach do not require us to
artificially truncate the weight matrix or restrict the number of neighbours to obtain
a regular graph. Note that we do not constrain the degree of the nodes, and hence
they can be arbitrary. In our experiments, we observe that the off diagonal entries of

L for any specific row are often small with few significant entries.

4.2.3 Approximation of Laplacian matrix for fast computation
We now propose to use the property of the L matrix to reduce the computational
complexity and memory demand of the algorithm. Denoting the eigen decomposition
of the symmetric Laplacian matrix as L = VXV we rewrite the STORM cost

function in (2.17) as:

X* = argmin |AX) - B||% + X tr [(XV) Z(XV)H)
X N—— N—_——

U UH
2

k
= argm)énHA(X) —B|%+ A Zai \)E’VJ (4.13)
i=1 M
Here, the columns of V form an orthonormal temporal basis set and u; are the spatial
coefficients.
We observe that the eigen values often increase rapidly, if L is the Laplacian
matrix. Hence, the weighted norm in the penalty encourages signals X that are
maximally concentrated along the eigen vectors v; with small eigen values; these

eigen vectors correspond to smooth signals on the manifold. While this reformulation
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was introduced in [68] to show similarity with PSF methods, we did not make use of
this property to accelerate the algorithm.

We now observe that in the optimization scheme (4.13) the projections of the
recovered signal onto the higher singular vectors are expected to be small. We pick

the r smallest eigen vectors of L to approximate the recovered matrix as:
X =U,V# (4.14)

where U, is a matrix of r basis images (typically around r ~ 30) and V, is a matrix
of r eigen vectors of L with the smallest eigen values. Thus the optimization problem

(2.17) now reduces to:
* . Hy 2 ) 112
U* = arg min |AUVTY) —Bl|% + A El oillu]| (4.15)

We observe r ~ 30 is sufficient to approximate (4.13) with high accuracy. Since
we only have to recover r coefficient images from the measurements, the optimization
problem is an order of magnitude more computationally efficient than (2.17). The

outline of our scheme is illustrated in Fig 4.1.

4.2.4 Visualization using manifold embedding

Laplacian eigen-maps rely on the eigen vectors of the Laplacian matrix to embed
the manifold to a lower dimensional space. When the signal variation in the dataset
is primarily due to cardiac and respiratory motion, the second and third lowest eigen
vectors are often representative of the cardiac and respiratory phases. This informa-
tion may be used to bin the recovered data into respiratory and cardiac phases for
visualization as in Fig 4.8, even though we do not use explicit binning for image re-
covery. This post-processing step can be thought of as a manifold embedding scheme

using an improved Laplacian eigen-maps algorithm [5], where the main difference
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with [5] is the estimation of the Laplacian.

4.3 Results

Cardiac data was collected in the free-breathing mode from nine patients at the
University of lowa Hospitals and Clinics on a 1.5 T Siemens Aera scanner. The in-
stitutional review board at the local institution approved all the in-vivo acquisitions
and written consent was obtained from all subjects. A FLASH sequence was used to
acquire 10 radial lines per frame out of which 4 were uniform radial navigator lines
and 6 were Golden angle lines. The sequence parameters were: TR/TE=4.3/1.92 ms,
FOV=300mm, Base resolution=256, Bandwidth=574Hz/pix. 10000 spokes of k-space
were collected in 43 s. Data corresponding to two views (two-chamber/short-axis and
four-chamber) was collected for each patient, resulting in a total of 18 datasets. We
used b-SToRM to reconstruct these datasets. The parameters of the image recon-
struction algorithm were manually optimized on one dataset, and kept fixed for the
rest of the datasets.

We compare the reconstructions from 2 datasets using our technique to a few

other competing methods:

1. PSF scheme [45]: For this method, we estimated the temporal profiles using the
navigator signals. The recovery of the spatial coefficients was then posed as a
least-squares optimization problem, regularized by the Frobenius norm of the

spatial coefficients. The number of basis functions was fixed to 30.

2. SToRM [68]: The SToRM scheme was applied using our default parameter
settings for both datasets. The exponential weight matrix was thresholded to

retain only 2 neighbours per frame.

3. SToRM with few basis functions: For this method, we estimated the weight
matrix as in STORM and formed the Laplacian matrix corresponding to it. A

few eigen-vectors of the Laplacian matrix were retained as the temporal basis
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Figure 4.2: Visualization of the basis images and temporal functions. We compare the
matrices U, and V, defined in (4.14) obtained using different methods that employ factor-
ization of the Casorati matrix. (a) corresponds to b-SToRM, while (b) & (c) correspond
to the STORM approach (exponential weight matrix, followed by truncation) of estimating
the Laplacian matrix, where 2 and 5 neighbours per node are retained. The temporal basis
functions are the eigen vectors V of the estimated Laplacian matrix with the smallest eigen
values. For the PSF scheme, the temporal basis functions are the eigen vectors of the nav-
igator signal matrix with the smallest eigen values. These are shown in (d). It is observed
that b-SToRM provides more accurate estimates of cardiac and respiratory motion than the
other schemes, thus facilitating the recovery of smooth signals on the manifold. Moreover,
by comparing (b) and (c), it is observed that the basis functions are quite sensitive to the
choice of the threshold used to compute the SToRM exponential weight matrix.

functions. The spatial co-efficients were then obtained using (4.15). The number

of basis functions was fixed to 30.

4. XD-GRASP [25]: We adapted the authors’ code that is available online for
contrast enhanced liver MRI, to the setting of free-breathing cardiac MRI, using
[25] as a guideline. For both datasets, we assumed 10 respiratory phases and
18 cardiac phases, and manually tuned the regularization parameters for best

visual quality.

The basis images and temporal profiles obtained using different schemes that
utilize the factorization of the Casorati matrix are illustrated in Fig 4.2. We note

that the temporal basis functions obtained with the b-SToRM scheme in (a) captures
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Figure 4.3: Comparison with other methods. Few frames and temporal profiles are shown
from two datasets reconstructed using (a) b-SToRM (b) SToRM using few basis functions
(c) SToRM [68] (d) PSF scheme [45]. It is observed that b-SToRM yields the best overall
results, followed by SToRM that shows some degradation in image quality indicated by the
red arrows. Note that b-SToRM also benefits from a speed-up due to the factorization of the
Casorati matrix. It is also observed from (b) that using a few basis functions of the STORM
Laplacian matrix results in artefacts in the images and the temporal profile. Specifically,
the approximation of the SToORM Laplacian matrix using few basis functions is poor, which
translates to poor recovery. The PSF method also shows some image artefacts as compared
to b-SToRM, which shows the benefit of the non-linear manifold modeling over subspace
approximation. The red arrows in the figure point to artefacts in the images reconstructed
using the competing methods.

the physiological components of the motion. Specifically, we observe that the 2"¢ and
37 lowest eigen vectors correspond to the respiratory and cardiac motion respectively,
while the higher eigen vectors can be thought of as harmonics of the above dynamics.
By contrast, the STORM estimates show mixing of the dynamics. The comparison of
(b) and (c) show the sensitivity of the estimates to the degree of the regular graph;
the approximation of the manifold samples by a regular graph is poor. While the
PSF scheme also relies on the factorization of the Casorati matrix, the non-linear
manifold model facilitates the better representation of the non-linear dynamics in
free-breathing datasets with large respiratory motion.

The b-SToRM scheme is compared to other competing methods in Fig 4.3. A few

reconstructed images and temporal profiles are shown for (a) b-SToRM (b) StoRM
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with few basis functions (¢) SToORM (d) PSF method. It is observed that the images
in (a) show less artefacts as compared to the competing methods. In addition, the
computational complexity of (a) is significantly lower than (c¢). The PSF scheme
shows some streaking artefacts. In (b), we observe that there are some artefacts
in the temporal profile, especially in the challenging dataset to the right which has
sudden gasps of breath. This could be because a few eigen-vectors do not capture the
physiological motion in this case, or equivalently the approximation of the SToRM
Laplacian matrix using few eigen vectors is poor. More frames of this challenging
dataset as reconstructed by b-SToRM are shown in Fig 4.4 and Fig 4.5.

We show the comparison of b-SToRM with XD-GRASP in Fig 4.4 (a). Only 4
respiratory and 5 cardiac phases are shown here for better visualization. The recon-
structions using b-SToRM are also re-arranged in Fig 4.4 (b) for a direct comparison
to (a). For the purpose of re-arranging the frames of the b-SToRM dataset, we
used the cardiac and respiratory signals that were estimated using XD-GRASP from
the centre k-space temporal profile. It is observed that the images obtained using
b-SToRM have less artefacts due to motion and noise, especially in cardiac and res-
piratory phases which only have a few k-space samples (bottom row). The frames
reconstructed using XD-GRASP are also re-arranged to recover a temporal profile.
It is observed that the temporal profile is quite noisy and motion is also suppressed,
which is due to the discrete segmentation of the frames into phases.

We conduct a few experiments to study the performance of our method in different
datasets, and with different acquisition parameters. We study the impact of motion
patterns on the reconstructions, using two of the most challenging datasets, with
different breathing and cardiac patterns. The datasets in Fig 4.5 have a high amount
of respiratory and out-of plane motion, compared to the other datasets that we have
collected. The first dataset shows a normal cardiac rate (68 beats/min) accompanied

by a very irregular breathing pattern, characterized by several large gasps of breath.
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Figure 4.4: Comparison to XD-GRASP: Images corresponding to a few cardiac and res-
piratory phases reconstructed using XD-GRASP are shown in (a). Since both methods
use drastically different reconstruction strategies, we rearrange the images obtained using
b-SToRM into respiratory and cardiac phases in (b) for direct comparison to (a). Likewise,
the recovered frames of XD-GRASP are also re-arranged to form a temporal profile. It is
seen that the images and temporal profiles in (a) have more artefacts as compared to (b).
Specifically, it is seen from the temporal profile of (a) that respiratory motion is suppressed.
The images in (a) also contain speckle-like artefacts. The image artefacts are more pro-
nounced in the dataset at the bottom where there are sudden gasps of breath, and thus
some respiratory phases are very poorly sampled. In comparison, b-SToRM can recover
more natural-looking images and temporal profiles.
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Figure 4.5: Sensitivity of the algorithm to high motion. We illustrate b-SToRM on datasets
acquired from two patients with different types of motion. For both datasets, we show a
temporal profile for the whole acquisition to give an idea of the amount of breathing and
cardiac motion present. We also show a few frames from time points with varying respiratory
phase. The dataset on the left has regions with abrupt breathing motion at a few time
points. Since these image frames have few similar frames in the dataset (poorly sampled
neighbourhood on the manifold), the algorithm results in slightly noisy reconstructions at
the time points with high breathing motion (red box). The regions with low respiratory
motion (blue and light blue boxes) are recovered well. The dataset on the right shows
consistent, but low respiratory motion. By contrast, the heart rate in this patient was high.
We observe that b-SToRM is able to produce good quality reconstructions in this case, since
all neighbourhoods of the manifold are well sampled.
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We show a few reconstructed frames from different time points, at various states of
motion. The reconstruction quality is better in presence of less respiratory motion
since there are frames similar to it in the dataset; the manifold neighbourhood is
well sampled in these neighbourhoods. By contrast, the images are seen to be more
noisy in manifold regions that are not well-sampled (red box). The second dataset
shows a high cardiac rate (107 beats/min) accompanied by heavy regular breathing
(42 breaths/min). We observe that the algorithm is able to reconstruct this case
satisfactorily, despite the rapid motion since the manifold is well-sampled.

We also study the effect of the number of navigator lines on the quality of the
recovered images using a dataset with a large amount of breathing motion. The main
goal is to determine the minimum number of navigator lines per frame to acquire in
future studies. For this purpose, we compared the reconstruction using 4 navigator
lines to that using only 1 or 2 navigator lines. Two experiments were conducted using
2 navigator lines per frame (corresponding to 0° and 90°) and 1 navigator line per
frame (corresponding to 0°) respectively to estimate the weights. For the purpose
of reconstruction, we used the full data (6 golden angle lines and 4 navigators).
We observe from Fig 4.6 that for both high and low motion regions, there is no
degradation in image quality when the number of navigator lines are reduced to
two from four. Only using one navigator spoke induces some error, especially for the
frames highlighted in green since they have more respiratory motion. This is expected
since the approach will only be sensitive to the motion in one direction and not to
the direction orthogonal to it. As a result of this experiment, we plan to keep only
two navigator lines per frame in the future, and consequently increase the number
of golden angle lines to 8 (from 6 in the current acquisition). This should improve
image quality by making the sampling patterns between frames more incoherent.

We also study the impact of the acquisition duration on image quality. For 2

datasets with different types of motion patterns, we compare the reconstruction using
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Figure 4.6: Effect of number of navigator lines on the reconstruction quality. We perform an
experiment to study the effect of computing the Laplacian matrix L from different number
of navigator lines. For this purpose, we use one of the acquired datasets with 4 navigator
lines per frame. We compute the ground-truth L matrix using all 4 navigators. Next, we
also estimate the L matrix using 2 navigator lines (keeping only the 0° and 90° lines) and
1 navigator line (keeping only the 0° line). We now reconstruct the full data using these
three Laplacian matrices, as shown in the figure. We observe that two navigator lines are
sufficient to compute the Laplacian matrix reliably. Using one navigator line induces some
errors, especially in the frames highlighted in green which are from a time point with higher
respiratory motion. As a comparison, note that the error images are in the same scale as

those for Fig 4.7.
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(a) Dataset 1: Reconstructions using different acquisition times

(b) Error Images for Dataset-1
i
(c) Dataset 2: Reconstructions using different acquisition times
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Figure 4.7: Effect of number of frames on the reconstruction quality. We perform an
experiment to study the effect of reconstructing the data from a fraction of the time-frames
acquired. The original acquisition was 45 seconds long, resulting in 1000 frames. We
compare the reconstruction of the 15¢ 250 frames, using (1) all 1000 frames (2) only 550
frames, i.e. 22 s of acquisition (3) only 350 frames, i.e. 12 s of acquisition. As can be
seen from the temporal profiles, Dataset-1 has more respiratory motion than Dataset-2.
Consequently, the performance degradation in Dataset-1 is more pronounced with decrease
in the number of frames. Moreover, the errors due to decrease in the number of frames is
mostly seen in frames with higher respiratory motion, as pointed out by the arrows. As a
comparison, note that the error images are in the same scale as those for Fig 4.6.
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the entire data, 450 contiguous frames corresponding to 22 s, and also 300 frames
corresponding to 12 s. The effect of reducing acquisition time is illustrated in Fig 4.7.
The dataset at the top has more breathing motion as compared to the bottom one.
We observe that the bottom dataset is robust to decrease in the number of frames;
it can be reliably recovered even from 12 seconds of data. The top dataset is more
sensitive to reduction in scan time. The green line corresponds to the lowest position
of the diaphragm, which is less frequent in the dataset. By contrast, the blue line
corresponds to a more frequent frame. The frames around the green line, shown in the
green box are more noisy when the scan time is reduced to 12 seconds, compared to
the reconstructions within the blue box. We observe negligible errors in both datasets
when the acquisition time is reduced to 22s, whereas relatively noisy reconstructions
are seen in high motion frames when it is reduced to 12 second acquisition windows.
The error images for Fig 4.6 and Fig 4.7 are on the same scale, to illustrate the relative
effects of changing the number of navigators and the number of frames.

We demonstrate that the recovered data can be automatically binned into respi-
ratory and cardiac phases using two eigen-vectors of the estimated Laplacian matrix.
Thanks to the accurate and robust estimation of the Laplacian matrix, these eigen-
vectors accurately represent the respiratory and cardiac motion of the patient over
the entire acquisition. Using this information, each image frame can be assigned a
bin depending on its respiratory and cardiac phase. Images from each bin can be
viewed to find representative members of a particular cardiac or respiratory phase.
The results in Fig 4.8 show that the improved Laplacian eigen maps approach facili-
tates the easy visualization of the data. In general, we observe that the eigen-vectors
of the Laplacian matrix with the second and third lowest eigen values correspond
to respiratory and cardiac motion. It can be appreciated from Fig 4.2 that such a
binning strategy is not possible when the exponential weights are used.

Fig 4.9 demonstrates the potential of b-SToRM to replace clinical breath-held
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Figure 4.8: Binning into cardiac and respiratory phases. We demonstrate that the recon-
structed ungated image series can easily be converted to a gated series of images if desired.
For this purpose, the 2"® and 3"¢ eigen-vectors of the estimated Laplacian matrix are used
as an estimate of the respiratory and cardiac phases respectively. The images can then be
separated into the desired number of cardiac and respiratory bins. Here, we demonstrate
this on two datasets that have been separated into 8 cardiac and 4 respiratory phases.
Representative images from these bins have been shown in the figure.
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Figure 4.9: Comparison to breath-held scheme. We demonstrate that b-SToRM produces
images of similar quality to clinical breath-held scans, in the same acquisition time. Note
that there are differences between the free-breathing and breath-held images due to vari-
ations in contrast between TRUFI and FLASH acquisitions, and also due to mismatch in
slice position. However, the images we obtain are of clinically acceptable quality. Moreover,
unlike the breath-held scheme we reconstruct the whole image time series (as is evident from
the temporal profile). This can provide richer information, such as studying the interplay
of cardiac and respiratory motion.

and gated techniques. There is some difference in the appearance of the breath-held
and free-breathing reconstructions due to mismatch in slice position. Moreover, the
breath-held acquisition was done using a TRUFI sequence, and thus shows higher
contrast than the free-breathing data which was acquired using a FLASH sequence.
In spite of these differences, we note that the images reconstructed using b-SToRM

are of clinically acceptable quality.

4.4 Discussion
The proposed framework for dynamic image reconstruction has similarities to
approaches that rely on the factorization of the Casorati matrix [49,94]. The key
difference is the signal model and the approach in which the temporal basis functions
are estimated. Moreover, we have shown in Fig 4.2 that unlike other approaches,

b-SToRM is able to automatically estimate the respiratory and cardiac signals from
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the eigen-vectors of the estimated Laplacian matrix. When the Laplacian matrix
is estimated using the exponential function as in SToRM, or using the navigator
signals as in the PSF method, a few eigen-vectors do not capture the physiological
motion. For SToRM, it is also required to threshold the weight matrix to achieve good
reconstruction results. This is equivalent to heuristically forming a regular graph by
fixing the node degree. In this case, the eigen-vectors are dependent on the specific
thresholding function that is used. The proposed Laplacian estimation technique does
not require any manual thresholding and does not constrain the graph to be a regular
one. When reconstructing using a fixed number of basis functions (r = 30), it is
shown that the proposed Laplacian preserves the temporal profiles better than when
an exponential weight matrix is used as in SToRM. Moreover, due to the need to
reconstruct only a few basis images, b-SToRM is significantly faster than SToRM. It
was illustrated in [68] that an exponential weight matrix can also be used to estimate
the respiratory and cardiac signals. However, this was shown for phantom data, and
we have found that it does not hold true in general for many real datasets. Other
conventional methods often require the binning of the k-space data to respiratory
bins before reconstructions, using self gating approaches [25]. The main benefit of b-
SToRM is that it does not require any explicit binning. However, we have shown in Fig
4.4 and Fig 4.8 that our reconstructions can easily be visualized in a binned fashion.
In contrast, as shown in Fig 4.4, the temporal profiles obtained by rearranging the
XD-GRASP reconstructed images often have artefacts due to binning into discrete
phases. Thus, when images are reconstructed using a binned approach, they might
not always be rearranged to get back the original time series.

We demonstrate our algorithm on a number of datasets with different respiratory
and cardiac patterns. In accordance with the results of our retrospective experiments
on the impact of the number of navigator lines, we plan to collect data with only

two navigator lines in the future. This would increase the incoherence of the un-
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dersampling patterns across frames, resulting in better quality reconstructions. Our
experiments on reduced scan time show that we can obtain reliable data from datasets
with high motion with around 22s of data/slice, while it can be pushed down to 12s
for datasets with less motion.

Our method produces a series of ungated images, enabling the user to visualize the
real-time data with both respiratory and cardiac motion. This approach may be useful
in studies on patients with pulmonary complications such as COPD. The data can also
be automatically segmented into respiratory and cardiac phases post reconstruction
for easy visualization, using the eigen-vectors of the estimated Laplacian matrix.

Since the study was an add on to the routine cardiac exam, there was no perfect
control on the specific time point of acquisition following contrast administration.

This explains the differing contrast between the datasets.

4.5 Conclusion

We introduce an algorithm to reconstruct free-breathing and ungated cardiac MR
images using a kernel low-rank regularized optimization problem. The success of the
method on very challenging datasets with high cardiac rate and irregular breathing
patterns suggests a useful clinical application of the method on patients who have
difficulty in following traditional breath-holding instructions. It is demonstrated that
the resulting ungated images can be easily binned into respiratory and cardiac phases
and viewed as a gated dataset. This method shows improved performance and reduced

computational complexity over the SToRM algorithm introduced in Chapter 2.
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CHAPTER 5
RECOVERY OF POINTS IN CLUSTERS USING FUSION
PENALTIES

5.1 Introduction

Clustering is an exploratory data analysis technique that is widely used to dis-
cover natural groupings in large datasets, where no labeled or pre-classified samples
are available apriori. Specifically, it assigns an object to a group if it is similar to other
objects within the group, while being dissimilar to objects in other groups. Example
applications include analysis of gene experssion data, image segmentation, identi-
fication of lexemes in handwritten text, search result grouping and recommender
systems [77]. A wide variety of clustering methods have been introduced over the
years; see [37] for a review of classical methods. However, there is no consensus on
a particular clustering technique that works well for all tasks, and there are pros
and cons to most existing algorithms. The common clustering techniques such as
k-means [52], k-medians [8] and spectral clustering [58] are implemented using the
Lloyd’s algorithm which is non-convex and thus sensitive to initialization. Recently,
linear programming and semi-definite programming based convex relaxations of the
k-means and k-medians algorithms have been introduced [1] to overcome the depen-
dence on initialization. Unlike the Lloyd’s algorithm, these relaxations can provide
a certificate of optimality. However, all of the above mentioned techniques require
apriori knowledge of the desired number of clusters. Hierarchical clustering meth-
ods [92], which produce easily interpretable and visualizable clustering results for a
varying number of clusters, have been introduced to overcome the above challenge. A
drawback of [92] is its sensitivity to initial guess and perturbations in the data. The
more recent convex clustering technique (also known as sum-of-norms clustering) [34]
retains the advantages of hierarchical clustering, while being invariant to initializa-
tion, and producing a unique clustering path. Theoretical guarantees for successful

clustering using the convex-clustering technique are also available [95].
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Most of the above clustering algorithms cannot be directly applied to real-life
datasets, where a large fraction of samples are missing. For example, gene expres-
sion data often contains missing entries due to image corruption, fabrication errors or
contaminants [19], rendering gene cluster analysis difficult. Likewise, large databases
used by recommender systems (e.g Netflix) usually have a huge amount of missing
data, which makes pattern discovery challenging [6]. The presence of missing re-
sponses in surveys [9] and failing imaging sensors in astronomy [90] are reported to
make the analysis in these applications challenging. Several approaches were intro-
duced to extend clustering to missing-data applications. For example, a partially
observed dataset can be converted to a fully observed one using either deletion or
imputation [20]. Deletion involves removal of variables with missing entries, while
imputation tries to estimate the missing values and then performs clustering on the
completed dataset. An extension of the weighted sum-of-norms algorithm (originally
introduced for fully sampled data [34]) has been proposed where the weights are es-
timated from the data points by using some imputation techniques on the missing
entries [13]. Kernel-based methods for clustering have also been extended to deal with
missing entries by replacing Euclidean distances with partial distances [33,76]. A ma-
jorize minimize algorithm was introduced to solve for the cluster-centres and cluster
memberships in [16], which offers proven reduction in cost with iteration. In [36]
and [47] the data points are assumed to lie on a mixture of K distributions, where K
is known. The algorithms then alternate between the maximum likelihood estimation
of the distribution parameters and the missing entries. A challenge with these algo-
rithms is the lack of theoretical guarantees for successful clustering in the presence of
missing entries. In contrast, there has been a lot of work in recent years on matrix
completion for different data models. Algorithms along with theoretical guarantees
have been proposed for low-rank matrix completion [11] and subspace clustering from

data with missing entries [24], [23]. However, these algorithms and their theoretical
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guarantees cannot be trivially extended to the problem of clustering in the presence
of missing entries.

The main focus of this work is to introduce an algorithm for the clustering of data
with missing entries and to theoretically analyze the conditions needed for perfect
clustering in the presence of missing data. The proposed algorithm is inspired by the
sum-of-norms clustering technique [34]; it is formulated as an optimization problem,
where an auxiliary variable assigned to each data point is an estimate of the cen-
tre of the cluster to which that point belongs. A fusion penalty is used to enforce
equality between many of these auxiliary variables. Since we have experimentally
observed that non-convex fusion penalties provide superior clustering performance,
we focus on the analysis of clustering using a ¢, fusion penalty in the presence of
missing entries, for an arbitrary number of clusters. The analysis reveals that per-
fect clustering is guaranteed with high probability, provided the number of measured
entries (probability of sampling) is high enough; the required number of measured en-
tries depends on several parameters including intra-cluster variance and inter-cluster
distance. We observe that the required number of entries is critically dependent on
coherence, which is a measure of the concentration of inter cluster differences in the
feature space. Specifically, if the clustering of the points is determined only by a very
small subset of all the available features, then the clustering becomes quite unstable
if those particular feature values are unknown for some points. Other factors which
influence the clustering technique are the number of features, number of clusters and
total number of points. We also extend the theoretical analysis to the case without
missing entries. The analysis in this setting shows improved bounds when a uniform
random distribution of points in their respective clusters is considered, compared to
the worst case analysis considered in the missing-data setting. We expect that im-
proved bounds can also be derived for the case with missing data when a uniform

random distribution is considered.
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We also propose an algorithm to solve a relaxation of the above ¢, penalty based
clustering problem, using non-convex saturating fusion penalties. The algorithm is
demonstrated on a simulated dataset with different fractions of missing entries and
cluster separations. We observe that the algorithm is stable with changing fractions
of missing entries, and the clustering performance degrades gradually with an increase
in the number of missing entries. We also demonstrate the algorithm on clustering of

the Wine dataset [46] and an Australian Sign Language (ASL) dataset [40].

5.2 Clustering using /, fusion penalty

5.2.1 Background

We consider the clustering of points drawn from one of K distinct clusters C', Cy, . ..

We denote the center of the clusters by ¢y, ca,...,cx € RY. For simplicity, we as-
sume that there are M points in each of the clusters. The individual points in the

k™ cluster are modelled as:

zp(m) =cy+ng(m); m=1, M k=1,....K (5.1)

Here, ni(m) is the noise or the variation of z,(m) from the cluster center cg. The set
of input points {x;},7 = 1,.., KM is obtained as a random permutation of the points
{z;,(m)}. The objective of a clustering algorithm is to estimate the cluster labels,
denoted by C(x;) fori=1,.., KM.

The sum-of-norms (SON) method is a recently proposed convex clustering algo-
rithm [34]. Here, a surrogate variable u; is introduced for each point x;, which is an

estimate of the centre of the cluster to which x; belongs. As an example, let K = 2

and M = 5. Without loss of generality, let us assume that xi,xs,...,x5 belong
to C; and xg,X7,...,X19 belong to C;. Then, we expect to arrive at the solution:
U =Uy=...=u;=c; and ug =u7 = ... = Uuyp = Co. In order to find the optimal

{u?}, the following optimization problem is solved:

7CK~
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KM KM KM
o} = argmin Y e~ w230 > us =, (5:2)
U= i=1 j=1

The fusion penalty (||lu; — u;||,) can be enforced using different ¢, norms, out of
which the ¢;, {5 and {, norms have been used in literature [34]. The use of sparsity
promoting fusion penalties encourages sparse differences u; —u;, which facilitates the
clustering of the points {u;}. For an appropriately chosen A, the u;’s corresponding
to x;’s from the same cluster converge to the same point. The main benefit of this
convex scheme over classical clustering algorithms is the convergence of the algorithm
to the global minimum.

The above optimization problem can be solved efficiently using the Alternating
Direction Method of Multipliers (ADMM) algorithm and the Alternating Minimiza-
tion Algorithm (AMA) [15]. Truncated ¢; and ¢, norms have also been used recently
in the fusion penalty, resulting in non-convex optimization problems [66]. It has been
shown that these penalties provide superior performance to the traditional convex
penalties. Convergence to local minimum using an iterative algorithm has also been
guaranteed in the non-convex setting.

The sum-of-norms algorithm has also been used as a visualization and exploratory
tool to discover patterns in datasets [13]. Clusterpath diagrams are a common way
to visualize the data. This involves plotting the solution path as a function of the
regularization parameter A. For a very small value of A, the solution is given by:
u = x;, i.e. each point forms its individual cluster. For a very large value of A,
the solution is given by: u; = ¢, i.e. every point belongs to the same cluster. For
intermediate values of A\, more interesting behaviour is seen as various {u;} merge
and reveal the cluster structure of the data.

In this work, we extend the algorithm to account for missing entries in the data.
We present theoretical guarantees for clustering with and without missing entries

using an fy fusion penalty. Next, we approximate the ¢, penalty by non-convex
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Feature 2
Feature 2

(b)

Feature 1 Feature 1

Figure 5.1: Central Assumptions: (a) and (b) illustrate different instances where
points belonging to R? are to be separated into 3 different clusters (denoted by the
colours red, green and blue). Assumptions A.1 and A.2 related to cluster separation
and cluster size respectively, are illustrated in both (a) and (b). The importance of
assumption A.3 related to feature concentration can also be appreciated by comparing
(a) and (b). In (a), points in the red and blue clusters cannot be distinguished solely
on the basis of feature 1, while the red and green clusters cannot be distinguished
solely on the basis of feature 2. Thus, it is difficult to correctly cluster these points if
either of the feature values is unknown. In (b), due to low coherence (as assumed in
A.3), this problem does not arise.

saturating penalties, and solve the resulting relaxed optimization problem using an
iterative reweighted least squares (IRLS) strategy [12]. The proposed algorithm is
shown to perform clustering correctly in the presence of large fractions of missing

entries.

5.2.2 Central assumptions
We make the following assumptions (illustrated in Fig 5.1), which are key to the

successful clustering of the points:

A.1: Cluster separation: Points from different clusters are separated by ¢ > 0 in
the /5 sense, i.e:

min ||zi(m) — z(n)|]2 > §; Yk #1 (5.3)

{m7n

We require 6 > 0 for the clusters to be non-overlapping. A high ¢ corresponds
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to well separated clusters.
A.2: Cluster size: The maximum separation of points within any cluster in the

sense is € > 0, i.e:

max ||zx(m) — zg(n)||lew =€ Vb =1,..., K (5.4)

{m,n
Thus, the £ cluster is contained within a cube of size €, with center cy.

A.3: Feature concentration: The coherence of a vector y € R” is defined as [11]:

_ Pl
I3

u(y)

(5.5)

By definition: 1 < p(y) < P. Intuitively, a vector with a high coherence has a
few large values and several small ones. Specifically, if pu(y) = P, then y has
only 1 non-zero value. In contrast, if p(y) = 1, then all the entries of y are
equal. We bound the coherence of the difference between points from different
clusters as:

max w(zr(m) —zi(n)) < po; Vk #1 (5.6)

1o is indicative of the difficulty of the clustering problem in the presence of
missing data. If yyp = P, then two clusters differ only a single feature, suggesting
that it is difficult to assign the correct cluster to a point if this feature is not
sampled. The best case scenario is pg = 1, when all the features are equally
important. In general, cluster recovery from missing data becomes challenging

with increasing .

The quantity k = %ﬁ is a measure of the difficulty of the clustering problem. Small
values of k suggest large inter-cluster separation compared to the cluster size; the

recovery of such well-defined clusters is expected to be easier than the case with large
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k values. Note the ¢, norm is used in the definition of §, while the /., norm is used
to define e. If § = ey/P, then k = 1; this value of & is of special importance since
k < 11is a requirement for successful recovery in our main results.

We study the problem of clustering the points {x;} in the presence of entries
missing uniformly at random. We arrange the points {x;} as columns of a matrix X.
The rows of the matrix are referred to as features. We assume that each entry of X
is observed with probability py. The entries measured in the i* column are denoted
by:

yi=Six;, i=1,..,KM (5.7)

where S; is the sampling matrix, formed by selecting rows of the identity matrix. We
consider solving the following optimization problem to obtain the cluster memberships

from data with missing entries:

KM KM

o} =min 33 o= g

M= = (5.8)
st [1S; (3% — W)l < %z e{l...KM}

We use the above constrained formulation rather than the unconstrained formulation

in (5.2) to avoid the dependence on A. The ¢5 norm is defined as:

0 if [ =0
1xl20 = (5.9)

1 ,otherwise

Similar to the SON scheme (5.2), we expect that all u;’s that correspond to x; in the
same cluster are equal, while u;’s from different clusters are not equal. We consider
the cluster recovery to be successful when there are no mis-classifications. We claim
that the above algorithm can successfully recover the clusters with high probability

when:
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1. The clusters are well separated (i.e, low k = E*éﬁ)).

2. The sampling probability py is sufficiently high.
3. The coherence i is small.

Before moving on to a formal statement and proof of this result, we consider a
simple special case to illustrate the approach. In order to aid the reader in following

the results, all the important symbols used in this work have been summarized in

Table 5.1.

5.2.3 Noiseless clusters with missing entries
We consider the simple case where all the points belonging to the same cluster
are identical. Thus every cluster is "noiseless”, and we have: € = 0 and hence x = 0.

The optimization problem (5.8) now reduces to:

KM KM

i} =min >3 o = g

=1 j=1 (5.10)
S.t Sixi:Siui,iE {1KM}

Next, we state a few results for this special case in order to provide some intuition
about the problem. The results are not stated with mathematical rigour and are not
accompanied by proofs. In the next sub-section, when we consider the general case,
we will provide lemmas and theorems (with proofs in Appendix B), which generalize
the results stated here. Specifically, Lemmas 5.2.1, 5.2.2, 5.2.3 and Theorem 5.2.4
generalize Results 5.2.1, 5.2.2, 5.2.3 and 5.2.4 respectively.

We will first consider the data consistency constraint in (5.10) and determine
possible feasible solutions. We observe that all the points in any specified cluster can

share a centre without violating the data consistency constraint:



Table 5.1: Notations used

TEX

A

{xi}

<N

Po

K
Ho

Yo
do

Bo
"o
710,approx

B
m

Number of clusters

Number of points in each cluster
Number of features for each
point

The i*" cluster

Centre of C;

m* point in C;

Random permutation of
KM  points {zy(m)} for
ke {L,2,...,K},m €
{1,2,..., M}

Sampling matrix for x;

Matrix formed by arranging
{x;} as columns, such that the
it" column is x;

Probability of sampling each en-
try in X

Parameter related to cluster
separation defined in (5.3)
Parameter related to cluster size
defined in (5.4)

Defined as k = %ﬁ

Parameter related to coherence
defined in (5.6)

Defined in (5.16)

Defined in (5.17)

Defined in (5.18)

Defined in (5.19)

Upper bound for 7, for the case
of 2 clusters, defined in (5.21)
Parameter related to cluster
centre separation defined in

(5.27)

Defined as k' = %ﬁ

Defined in (5.28)

Probability of failure of Theo-
rem 5.2.7

36
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Result 5.2.1. Consider any two points x; and Xo from the same cluster. A solution

u exists for the following equations:

with probability 1.

The proof for the above result is trivial in this special case, since all points in the

same cluster are the same. We now consider two points from different clusters.

Result 5.2.2. Consider two points x, and Xy from different clusters. A solution u

exists for the following equations:

Six; =S;u; i=1,2 (5.12)

with low probability, when the sampling probability py is high and coherence g is low.

By definition, S; = Sz, and Sy = Sz,, where Z; and Z, are the index sets of the
features that are sampled (not missing) in x; and x, respectively. We observe that
(5.12) can be satisfied, iff:

Stinz, (X1 —X2) =0 (5.13)

which implies that the features of x; and x5 are the same on the index set Z; N Z,.
If the probability of sampling p, is sufficiently high, then the number of samples at
commonly observed locations:

will be high, with high probability. If the coherence iy defined in assumption A3 is
low, then with high probability the vector x; — x5 does not have ¢ entries that are
equal to 0. In other words, the cluster memberships are not determined by only a

few features. Thus, for a small value of 1y and high py, we can ensure that (5.13)
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occurs with very low probability. We now generalize the above result to obtain the

following:

Result 5.2.3. Assume that {x; :i € Z,|Z| = M} is a set of points chosen randomly
from multiple clusters (not all are from the same cluster). A solution u exists for the

following equations:

with low probability, when the sampling probability py is high and coherence g is low.

The key message of the above result is that large mis-classified clusters are highly
unlikely. We will show that all feasible solutions containing small mis-classified clus-
ters are associated with higher cost than the correct solution. Thus, we can conclude
that the algorithm recovers the ground truth solution with high probability, as sum-

marized by the following result.

Result 5.2.4. The optimization problem (5.10) results in the ground-truth clustering
with a high probability if the sampling probability py is high and the coherence pg is

low.

5.2.4 Noisy clusters with missing entries
We will now consider the general case of noisy clusters with missing entries, and
will determine the conditions required for (5.8) to yield successful recovery of clusters.
The reasoning behind the proof in the general case is similar to that for the special
case discussed in the previous sub-section. Before proceeding to the statement of the

lemmas and theorems, we define the following quantities:

e Upper bound for probability that two points have less than @ commonly

observed locations:

o= (=) (5.16)



e Given that two points from different clusters have more than
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p2P

>~ commonly

observed locations, upper bound for probability that they can yield the same u

without violating the constraints in (5.8):

S =e ¥ (5.17)

Upper bound for probability that two points from different clusters can yield

the same u without violating the constraints in (5.8):
Bo=1—(1—00)(1—) (5.18)

Upper bound for failure probability of (5.8):

m= ) [ﬂé(MQ_ij?)Hij)] (5.19)

{m;}es J

where S is the set of all sets of positive integers {m;} such that: 2 <U({m;}) <
K and 3 ;m; = M. Here, the function U counts the number of non-zero
elements in a set. For example, if K = 2 then S contains all sets of 2 positive
integers {my, mo}, such that my + mg = M. Thus, S = {{I,M — 1}, {2, M —
24, {3,M = 3},...,{M —1,1}} and (5.19) reduces to:

o = M;I [ﬁé(M” @4)2] (5.20)

We note that the expression for 7, is quite involved. Hence, to provide some

intuition, we simplify this expression for the special case where there are only

two clusters. Under the assumption that log 5y < Ml_l + M2_2 log Ml—l’ it can
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be shown that ng is upper-bounded as:

o = Ai:l lﬂé(M_i) <z\24>2]

i=1

21
S MSﬁ(])\/[—l (5 )

‘= 10,approx

The above upper bound is derived in Appendix B.6.

We now state the results for clustering with missing entries in the general noisy case.
The following two lemmas are generalizations of Results 5.2.1 and 5.2.2 to the noisy

case.

Lemma 5.2.1. Consider any two points x1 and Xy from the same cluster. A solution

u exists for the following equations:

IS; (% —W)]oe < S5 i=1,2 (5.22)

E .
2 )
with probability 1.

The proof of this lemma is in Appendix B.1.

Lemma 5.2.2. Consider any two points x, and Xg from different clusters, and assume

that k < 1. A solution u ezxists for the following equations:

1Si (i —u)fle < 55 i=1,2 (5.23)

DO ™

with probability less than By.

The proof of this lemma is in Appendix B.3. We note that [, decreases with
a decrease in k. A small ¢ implies less variability within clusters and a large o

implies well-separated clusters, together resulting in a low value of k. Both these
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characteristics are desirable for clustering and result in a low value of 3y. This lemma
also demonstrates that the coherence assumption is important in ensuring that the
sampled entries are sufficient to distinguish between a pair of points from different
clusters. As a result, 8y decreases with a decrease in the value of pg. As expected,
we also observe that [y decreases with an increase in py.

The above result can be generalized to consider a large number of points from
multiple clusters. If we choose M points such that not all of them belong to the same
cluster, then it can be shown that with high probability, they cannot share the same
u without violating the constraints in (5.8). This idea (a generalization of Result

5.2.3) is expressed in the following lemma:

Lemma 5.2.3. Assume that {x; : i € Z,|Z| = M} is a set of points chosen randomly
from multiple clusters (not all are from the same cluster). If K < 1, a solution u does

not exist for the following equations:

1S; (xi — )| < g; Viel (5.24)

with probability exceeding 1 — ng.

The proof of this lemma is in Appendix B.4. We note here, that for a low value
of By and a high value of M (number of points in each cluster), we will arrive at a
very low value of 79. Using Lemmas 5.2.1, 5.2.2 and 5.2.3, we now move on to our

main result which is a generalization of Result 5.2.4:

Theorem 5.2.4. If k < 1, the solution to the optimization problem (5.8) is identical

to the ground-truth clustering with probability exceeding 1 — ng.

The proof of the above theorem is in Appendix B.5. The reasoning follows from
Lemma 5.2.3. It is shown in the proof that all solutions with cluster sizes smaller

than M are associated with a higher cost than the ground-truth solution.
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5.2.5 Clusters without missing entries
We now study the case where there are no missing entries. In this special case,

optimization problem (5.8) reduces to:

KM KM

{u;} =min > > " [lu; — ;20
ui}

i=1 j=1 (5.25)
st % — Wil < g ie{l...KM}

We have the following theorem guaranteeing successful recovery for clusters without

missing entries:

Theorem 5.2.5. If k < 1, the solution to the optimization problem (5.25) is identical

to the ground-truth clustering.

The proof for the above Theorem is in Appendix B.7. We note that the above
result does not consider any particular distribution of the points in each cluster. In-
stead, if we consider that the points in each cluster are sampled from certain particular
probability distributions such as the uniform random distribution, then a larger & is
sufficient to ensure success with high probability. In the general case where no such
distribution is assumed, we cannot make a probabilistic argument, and a smaller
is required. We now consider a special case, where the noise ng(m) is a zero mean
uniform random variable ~ U(—¢/2,¢/2). Thus, the points within each cluster are
uniformly distributed in a cube of side e. We note that 4 is now a random variable,

and thus instead of using the constant k = < 6P (as in previous lemmas), we define

the following constant:
VP

I = 5.26
W= (5.26)

where ¢ is defined as the minimum separation between the centres of any 2 clusters
in the dataset:

: _ > ‘
min lck —cilla > VE#I (5.27)
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We also define the following quantity:

_ P(-3x"%)?

fr =€ 87 (5.28)

We arrive at the following result for two points in different clusters:

Lemma 5.2.6. Let ' < \/g. If the points in each cluster follow a uniform random
distribution, then for two points x1 and Xy belonging to different clusters, a solution

u exists for the following equations:

% —ulls < = i=1,2 (5.29)

6 .
2 Y
with probability less than (.

The proof for the above lemma is in Appendix B.8. This implies that for v’ < g,
two points from different clusters cannot be misclassified to a single cluster with high
probability. As 1o is expressed in terms of [y in (5.19), we can also express n; in

terms of #;. We get the following guarantee for perfect clustering:

Theorem 5.2.7. If the points in each cluster follow a uniform random distribution
and k' < g , then the solution to the optimization problem (5.25) is identical to the

ground-truth clustering with probability exceeding 1 — n;.

Note that x = «'§. Thus, the above result allows for values x > 1. Our results
show that if we do not consider the distribution of the points, then we arrive at the
bound k < 1 with and without missing entries, as seen from Theorems 5.2.4 and
5.2.5 respectively. A uniform random distribution can also be assumed in the case of
missing entries. Similar to Theorem 5.2.7, we expect an improved bound for the case

with missing entries as well.
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Figure 5.2: Different penalty functions ¢. (a) The ¢y norm (b) The ¢, penalty function
which is non-convex for 0 < p < 1 and convex for p = 1 (¢) The H; penalty function. The
¢, and Hj penalties closely approximate the £p norm for low values of p and o respectively.

5.3 Relaxation of the ¢, penalty
5.3.1 Constrained formulation
We propose to solve a relaxation of the optimization problem (5.8), which is more

computationally feasible. The relaxed problem is given by:

KM KM

i=1 j=1 (5.30)

where ¢ is a function approximating the ¢, norm. Some examples of such functions

are:

e (, norm: ¢(z) = |z|P, for some 0 < p < 1.

22

e H penalty: ¢(z) =1— e 2.2.

These functions approximate the £y penalty more accurately for lower values of p and
o, as illustrated in Fig 5.2. We reformulate the problem using a majorize-minimize

strategy. Specifically, by majorizing the penalty ¢ using a quadratic surrogate func-

tional, we obtain:
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o(r) < w(x)r* +d (5.31)

/

where w(x) = %, and d is a constant. For the two penalties considered here, we

obtain the weights as:

e /,norm: w(x) = (%x(z_p)+oc)_1 . The infinitesimally small & term is introduced

to deal with situations where x = 0. For non-zero x, we get the expression

w(x) ~ EaP2,

NS

2

e Hi penalty: w(z) = size 27,

202

We can now state the majorize-minimize formulation for problem (5.30) as:

KM KM

{u, wi; Zafg{gnjuﬂ,}zzww i — w3
T =1 =1 (5.32)

st [1Si(x — )|l < %z e {l...KM}

where the constant d has been ignored. In order to solve problem (5.32), we alternate
between two sub-problems till convergence. At the n'” iteration, these sub-problems

are given by:
’ n—1 n—1
¢ (" =)

) (5.33)
T2 ),
KM KM
{uy —avgmin 3 oo —
{ui} & = (5.34)

st [[Si(xi — w)lee < %z c{1... KM}

5.3.2  Unconstrained formulation
For larger datasets, it might be computationally intensive to solve the constrained

problem. In this case, we propose to solve the following unconstrained problem:
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(a) Ly norm (b) I penalty (c) Hy penalty
Figure 5.3: Comparison of different penalties. We show here the 2 most significant
principal components of the solutions obtained using the IRLS algorithm. (a) It can
be seen that the /1 penalty is unable to cluster the points even though the clusters are
well-separated. (b) The ¢y penalty is able to cluster the points correctly. However,
the cluster-centres are not correctly estimated. (¢) The H; penalty correctly clusters
the points and also gives a good estimate of the centres.

KM KM KM
{uj} = arg ﬁ?}l}lz 1Si(wi = x)I5 + A > dlllus — wyl2) (5.35)
=1 i=1 j=1

As before, we can state the majorize-minimize formulation for problem (5.35) as:

KM
{uy, wiy} = arg min D lISi(u —xi)l13
i=1

U, W5

KM KM (5.36)

FAD Y willw — w3

i=1 j=1

In order to solve the problem (5.36), we alternate between two sub-problems till
convergence. The 1% sub-problem is the same as (5.33). The 2"¢ sub-problem is

given by:

KM
(n) : 2
u;, '} = argmin S;(u; — x;

(ul"} = argagin 8, — )

KM KM

A TS w0l fluy — w3

i=1 j=1

(5.37)
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5.3.3 Comparison of penalties

We compare the performance of different penalties when used as a surrogate for
the ¢y norm. For this purpose, we use a simulated dataset with points in R®® be-
longing to 3 well-separated clusters, with 200 points in each cluster. For this par-
ticular experiment, we considered Xi,Xs, ..., X9 € Ci, Xo01, X202, - - - , X400 € Co and
X401, X402, - - - s Xgo0 € C3. We do not consider the presence of missing entries for this
experiment. We solve problem (5.35) to cluster the points using the ¢;, ¢, (for p = 0.1)
and H; (for 0 = 0.5) penalties. The results are shown in Fig 5.3. Only for the pur-
pose of visualization, we take a PCA of the data matrix X € R?°*6% and retain the
2 most significant principal components to get a matrix of points € R?*5% These
points are plotted in the figure, with red, blue and green representing points from
different clusters. We similarly obtain the 2 most significant components of the es-
timated centres and plot the resulting points in black. In (b) and (c), we note that
up = up = .= Uy, Uy = Upgy = ... = Wgg and Wiy = Wiy = ... = Uggg:
Thus, the ¢, penalty and the H; penalty are able to correctly cluster the points. This
behaviour is not seen in (a). Thus it is concluded that the convex ¢; penalty is unable
to cluster the points.

The cluster-centres estimated using the £, penalty are inaccurate. The H; penalty
out-performs the other two penalties and accurately estimates the cluster-centres.
We can explain this behaviour intuitively by observing the plots in Fig 5.2. The ¢;
norm penalizes differences between all pairs of points. The £y, semi-norm penalizes
differences between points that are close. Due to the saturating nature of the penalty,
it does not heavily penalize differences between points that are further away. The
same is true for the H; penalty. However, we note that the H; penalty saturates to
1 very quickly, similar to the £y norm. This behaviour is missing for the ¢y, penalty.
For this reason, it is seen that the £y, penalty also penalizes inter-cluster distances

(unlike the H; penalty), and shrinks the distance between the estimated centres of
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Figure 5.4: Study of Theoretical Guarantees. The quantities vy, dg and [y defined in
Section 5.2.4 are studied in (a), (b) and (c) respectively. In (b) and (c), P = 50 and
o = 1.5 are assumed. [, gives the probability that 2 points from different clusters
can share a centre. As expected, this value decreases with increase in py and decrease
in k. Considering K = 2 clusters, a lower bound for the probability of successful
clustering (1 — 1) using the proposed algorithm is shown in (d) for different values
of k. The approximate values (1 — 7o approx) computed using (5.21) are shown in (e).

different clusters.

5.3.4 Initialization strategies
Our experiments emphasize the need for a good initialization of the weights w;;
for convergence to the correct cluster centre estimates. This dependence on the initial
value arises from the non-convexity of the optimization problem. We consider two

different strategies for initializing the weights:

e Partial Distances: Consider a pair of points x;,x, observed by sampling ma-
trices S; = Sz, and Sy = Sz, respectively. Let the set of common indices be

w =7y NZ,. We define the partial distance as ||y,| = ﬁ”xlw — X, ||, where
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Figure 5.5: Experimental results for probability of success. Guarantees are shown
for a simulated dataset with K = 2 clusters. The clustering was performed using
(5.32) with an H; penalty and partial distance based initialization. For (a) and (b)
it is assumed that x = 0.39 and py = 2.3. (a) shows the experimentally obtained
probability of success of clustering for clusters with points from a uniform random
distribution. (b) shows the theoretical lower bound for the probability of success.
(c) shows the experimentally obtained probability of success for a more challenging
dataset with k = 1.15 and py = 13.2. Note that we do not have theoretical guarantees
for this case, since our analysis assumes that £ < 1.
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X;, represents the set of entries of x; restricted to the index set w. Instead of
the actual distances which are not available, the partial distances ||y,|| can be

used for computing the weights.

e Imputation Methods: The weights can be computed from estimates {ugo)},
where:

u” =Sx; + (I-S,)m (5.38)

Here m is a constant vector, specific to the imputation technique. The zero-
filling technique corresponds to m = 0. Better estimation techniques can be
derived where the j** row of m can be set to the mean of all measured values

in the j row of X.

We will observe experimentally that for a good approximation of the initial weights
WO we get the correct clustering. Conversely, the clustering fails for a bad ini-
tial guess. Our experiments demonstrate the superiority of a partial distance based

initialization strategy over a zero-filled initialization.

5.4 Results
We study the proposed theoretical guarantees for Theorem 5.2.4 for different set-
tings. We also test the proposed algorithm on simulated and real datasets. The
simulations are used to study the performance of the algorithm with change in pa-
rameters such as fraction of missing entries, number of points to be clustered etc.
We also study the effect of different initialization techniques on the algorithm per-

formance. We demonstrate the algorithm on the publicly available Wine [46] and

ASL [40] datasets.
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5.4.1 Study of theoretical guarantees

We observe the behaviour of the quantities 7o, do, 8o, 70 and 7o approx (defined in
section 5.2.4) as a function of parameters pg, P, x and M. Fig 5.4 shows a few plots
that illustrate the change in these quantities as the different parameters are varied.
7o is an upper bound for the probability that a pair of points have < ‘%LP entries
observed at common locations. In Fig 5.4 (a), the change in 7 is shown as a function
of pg for different values of P. In subsequent plots, we fix P = 50 and puo = 1.5. dq is
an upper bound for the probability that a pair of points from different clusters can
share a common centre, given that > 1@ entries are observed at common locations.
In Fig 5.4 (b), the change in Jy is shown as a function of p, for different values of
k. In Fig 5.4 (c), the behaviour of 5y = 1 — (1 — v9)(1 — do) is shown, which is the
probability mentioned in Lemma 5.2.2.

We consider the two cluster setting, (i.e. K = 2) for subsequent plots. 7y is
the probability of failure of the clustering algorithm (5.8). In (d) and (e), plots are
shown for (1 —np) and (1 — 79 approx) @s a function of p, for different values of x and
M. Here, 1 approx is an upper bound for 7y computed using (5.21). As expected, the
probability of success of the clustering algorithm increases with increase in py and M

and decrease in k.

5.4.2 Clustering of simulated data

We simulated datasets with K = 2 disjoint clusters in R®® with a varying number
of points per cluster (M = 6,12,25,50,100). The points in each cluster follow a
uniform random distribution. We study the probability of success of the H; penalty
based constrained clustering algorithm (with partial-distance based initialization) as
a function of k, M and py. For a particular set of parameters the experiment was
conducted 20 times to compute the probability of success of the algorithm. Between
these 20 trials, the cluster-centers remain the same, while the points sampled from

these clusters are different and the locations of the missing entries are different. Fig
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5.5 (a) shows the result for datasets with k = 0.39 and po = 2.3. The theoretical
guarantees for successfully clustering the dataset are shown in (b). Note that the
theoretical guarantees do not assume that the points are taken from a uniform random
distribution. Also, the theoretical bounds assume that we are solving the original
problem using a ¢y norm, whereas the experimental results were generated for the
H; penalty. Our theoretical guarantees hold for k < 1. However, we demonstrate
in (c) that even for the more challenging case where £ = 1.15 and py = 13.2, our
clustering algorithm is successful. Note that we do not have theoretical guarantees
for this case. However, by assuming a uniform random distribution on the points,
we expect that we can get better theoretical guarantees (similar to Theorem 5.2.7 for
the case without missing entries).

Clustering results with K = 3 simulated clusters are shown in Fig 5.6. We
simulated Dataset-1 with K = 3 disjoint clusters in R and M = 200 points in
each cluster. In order to generate this dataset, 3 cluster centres in R°® were chosen
from a uniform random distribution. The distances between the 3 pairs of cluster-
centres are 3.5, 2.8 and 3.3 units respectively. For each of these 3 cluster centres,
200 noisy instances were generated by adding zero-mean white Gaussian noise of
variance 0.1. The dataset was sub-sampled with varying fractions of missing en-
tries (po = 1,0.9,0.8,...,0.3,0.2). The locations of the missing entries were chosen
uniformly at random from the full data matrix. We also generate Dataset-2 by halv-
ing the distance between the cluster centres, while keeping the intra-cluster variance
fixed. We test both the constrained (5.30) and unconstrained (5.35) formulations of
our algorithm on these datasets. Both the proposed initialization techniques for the
IRLS algorithm (i.e. zero-filling and partial-distance) are also tested here. Since the
points lie in R, we take a PCA of the points and their estimated centres (similar
to Fig 5.3) and plot the 2 most significant components. The 3 colours distinguish

the points according to their ground-truth clusters. Each point x; is joined to its
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centre estimate u; by a line. As expected, we observe that the clustering algorithms
are more stable with fewer missing entries. We also note that the results are quite
sensitive to the initialization technique. We observe that the partial distance based
initialization technique out-performs the zero-filled initialization. The unconstrained
algorithm with partial distance-based initialization shows superior performance to the
alternative schemes. Thus, we use this scheme for subsequent experiments on real

datasets.

5.4.3 Clustering of wine dataset

We apply the clustering algorithm to the Wine dataset [46]. The data consists
of the results of a chemical analysis of wines from 3 different cultivars. Each data
point has P = 13 features. The 3 clusters have 59, 71 and 48 points respectively,
resulting in a total of 178 data points. We created a dataset without outliers by
retaining only M = 40 points per cluster, resulting in a total of 120 data points. We
under-sampled these datasets using uniform random sampling with different fractions
of missing entries. The results are displayed in Fig 5.7 using the PCA technique as
explained in the previous sub-section. It is seen that the clustering is quite stable

and degrades gradually with increasing fractions of missing entries.

5.4.4 Clustering of ASL dataset

We apply the clustering algorithm to subsets of words from the Australian Sign
Language high quality dataset [40]. The original dataset contained 2565 signs, each
repeated 27 times by a single user over a period of 9 weeks. 28 features are measured
for each sign, with an average length of 57 time frames for each feature. These features
correspond to the relative positions and orientations of the fingers, measured using
gloves and magnetic position trackers. We picked the most important frame for each
frame, resulting in feature vector of length 28 for each word. We next formed two

datasets containing subsets of words. The first dataset contained all instances of the
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Figure 5.6: Clustering results in simulated datasets. The H; penalty is used to cluster
two datasets with varying fractions of missing entries. Both the constrained and
unconstrained formulation results are presented with different initialization techniques
(zero-filled and partial-distance based). We show here the 2 most significant principal
components of the solutions. The original points {x;} are connected to their cluster
centre estimates {u;} by lines. Inter-cluster distances in Dataset 2 are half of those
in Dataset 1, while intra-cluster distances remain the same. Consequently, Dataset
1 performs better at a higher fraction of missing entries. For the unconstrained
clustering formulation with partial-distance based initialization, the cluster centre
estimates are relatively stable with varying fractions of missing entries.
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four words "alive”, "answer”, "boy” and "cold”. The second dataset contained all
instances of the four words "alive”, ”boy”, ”change” and ”love”. For each dataset, the
feature vectors were arranged as columns of the matrix X. Both the datasets were of
size 28 x 108. The datasets were undersampled uniformly at random using different
fractions of missing entries. The results are displayed in Fig 5.8 for both datasets.

It is observed that clustering the first dataset in the presence of missing entries is

relatively easier, since the words more well-separated, as is predicted by theory.

5.5 Discussion

We have proposed a technique to cluster points when some of the feature values
of all the points are unknown. We theoretically studied the performance of an algo-
rithm that minimizes an ¢, fusion penalty subject to certain constraints relating to
consistency with the known features. We concluded that under favourable clustering
conditions, such as well-separated clusters with low intra-cluster variance, the pro-
posed method performs the correct clustering even in the presence of missing entries.
However, since the problem is NP-hard, we propose to use other penalties that ap-
proximate the £y norm. We observe experimentally that the H; penalty is a good
surrogate for the £y norm. This non-convex saturating penalty is shown to perform
better in the clustering task than previously used convex norms and penalties. We
describe an IRLS based strategy to solve the relaxed problem using the surrogate
penalty.

Our theoretical analysis reveals the various factors that determine whether the
points will be clustered correctly in the presence of missing entries. It is obvious
that the performance degrades with the decrease in the fraction of sampled entries
(po). Moreover, it is shown that the difference between points from different clusters
should have low coherence (p). This means that the expected clustering should
not be dependent on only a few features of the points. Intuitively, if the points in

different clusters can be distinguished by only 1 or 2 features, then a point missing
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these particular feature values cannot be clustered correctly. Moreover, we note that
a high number of points per cluster (M), high number of features (P) and a low
number of clusters (K') make the data less sensitive to missing entries. Finally, well-
separated clusters with low intra-cluster variance (resulting in low values of k) are
desirable for correct clustering.

Our experimental results show great promise for the proposed technique. In par-
ticular, for the simulated data, we note that the cluster-centre estimates degrade
gradually with increase in the fraction of missing entries. Depending on the char-
acteristics of the data such as number of points and cluster separation distance, the
clustering algorithm fails at some particular fraction of missing entries. We also show
the importance of a good initialization for the IRLS algorithm, and our proposed
initialization technique using partial distances is shown to work very well.

Our theory assumes well-separated clusters and does not consider the presence of
any outliers. Theoretical and experimental analysis for the clustering performance
in the presence of outliers needs to be investigated. Improving the algorithm perfor-
mance in the presence of outliers is a direction for future work. Moreover, we have
shown improved bounds for the clustering success in the absence of missing entries
when the points within a cluster are assumed to follow a uniform random distribution.
We expect this trend to also hold for the case with missing entries. This case will be

analyzed in future work.

5.6 Conclusion
We propose a clustering technique for data in the presence of missing entries.
We prove theoretically that a constrained ¢, norm minimization problem recovers the
clustering correctly even in the presence of missing entries. An efficient algorithm that
solves a relaxation of the above problem is presented next. It is demonstrated that
the cluster centre estimates obtained using the proposed algorithm degrade gradually

with an increase in the number of missing entries. The algorithm is also used to
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Figure 5.7: Clustering on Wine dataset. The H; penalty is used to cluster the Wine
datasets with varying fractions of missing entries.

cluster the Wine and ASL datasets. The presented theory and results demonstrate
the utility of the proposed algorithm in clustering data when some of the feature

values of the data are unknown.
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the 4 words, as indicated by a smaller separation distance. Dataset-1 is accurately
clustered even for 40% missing entries, while Dataset-2 is accurately clustered for
around 20% missing entries.
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CHAPTER 6
SUMMARY & FUTURE DIRECTIONS

6.1 Summary

In this thesis, we have studied the problem of joint recovery of a group of sig-
nals from noisy or undersampled measurements, under different model assumptions.
Traditionally the sparse and low-rank models had been considered for this problem.
We extended the analysis to other models that have not been studied as extensively,
yet are suitable for many real-world applications. We propose algorithms to solve
the inverse problems, present theoretical guarantees for recovery under some model
assumptions, and also demonstrate the algorithms on some practical problems. Our
proposed algorithms make use of fusion penalties which enforce pairwise similarity
between the different signals under consideration, thus exploiting the redundancies
present in the dataset.

The first model that we consider is that of points lying on a low-dimensional man-
ifold, embedded in high dimensional space. This model is satisfied by many datasets
where each data point can be fully described by a low-dimensional parameter vec-
tor. Inspired by dimensionality reduction algorithms, we propose a signal recovery
algorithm which enforces similarity between signals in local neighbourhoods of the
manifold. We apply the proposed scheme to the problem of dynamic MRI recon-
struction from few Fourier measurements. We propose a novel acquisition scheme
which enables the detection of local neighbourhoods on the manifold. We get very
promising results in free-breathing ungated cardiac and speech imaging applications,
which indicate that the proposed scheme could serve as an alternative to clinical
state-of-the art breath-held ECG-gated scans.

We also consider the problem of recovery of curves from few sampled points. For
this purpose, we model the curves as the zero-level set of a trigonometric polynomial.

We derive theoretical guarantees for the number of points required to uniquely re-
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cover the curve, and note that it is dependent on the bandwidth of the underlying
trigonometric polynomial. We apply the proposed technique to the reconstruction of
DNA filaments from a few clicked points on noisy cryo-electron microscopy images.
We extend the model to higher dimensions to enable the representation of surfaces.
We present computationally efficient algorithms to recover points lying on this sur-
face from their noisy or undersampled measurements. We demonstrate this algorithm
on the recovery of simulated data, and also revisit the cardiac MRI reconstruction
problem. We are able to recover better quality images in a shorter reconstruction
time using this model.

Next, we consider the model of data arranged in clusters, with a few feature
values unknown for each data point. Inspired by existing sum-of-norms clustering
techniques, we propose an optimization problem to estimate the correct cluster centres
even in the presence of missing entries. We present theoretical guarantees for its
success, and note that the probability of success is greater for datasets with well-
separated clusters, where the cluster memberships are not determined by only a few
feature values. We present an efficient algorithm to solve a relaxation of this problem.
We demonstrate the success of the proposed scheme on simulated data as well as real
data such as the Wine and Australian Sign Language datasets.

Our proposed algorithms are general in nature, and we expect that they can be

used in a variety of other applications, where the model assumptions are satisfied.

6.2 Future directions
Our algorithm for reconstruction of points lying on a manifold was inspired by
existing dimensionality reduction algorithms and has been shown to work well on the
problem of image reconstruction. However, we did not derive theoretical guarantees
for the correct signal recovery. It would be interesting to study how the algorithm
performance changes as a function of the properties of the manifold. Our acquisition

scheme for dynamic MRI included special navigator signals which enabled the detec-
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tion of local neighbourhoods on the manifold. While this worked well in practice, it
would be interesting to find bounds for the accuracy of this estimate. Moreover, in ap-
plications other than MRI, different acquisition strategies would have to be explored
in order to use the reconstruction algorithm.

We have considered the problem of recovery of curves from few sampled points.
Since the proposed technique relies on the detection of the null-space vectors of a
high-dimensional mapping of the sampled points, it may be highly sensitive to noise.
Perhaps, an optimization algorithm penalizing the nuclear norm of the feature matrix
would be more robust to noise for the curve recovery problem. Theoretical guarantees
for this problem need to be studied in greater detail. Moreover, our current theoret-
ical results using null-space methods have been derived only the 2D case, and their
extension to higher dimensions is another direction that can be pursued. From our
application to the recovery of DNA filaments, we have observed that a large number
of points need to be clicked for good recovery. A potential direction to look at is
to reduce this number by studying the effect of the location of the samples on the
recovery guarantee.

We have presented an iterative algorithm for solving the clustering problem,
which converges to a critical point of the original unconstrained optimization problem
with saturating non-convex penalties. The connection between different initialization
strategies and the critical point which is reached by the iterative algorithm could be
studied in more detail. Moreover, the effect of moving from a constrained formulation
to an unconstrained one, as well as the effect of the regularization parameter in the
latter case could be studied theoretically.

We have shown promising results for the cardiac MRI reconstruction problem.
The studies here were conducted in the 2D setting, i.e. slices were acquired one after
the other. An alternative is to perform the imaging in the 3D setting. This enables

the measurement of many clinically useful parameters. While the reconstruction
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scheme can be extended to this setting fairly easily, more work needs to be done to
design efficient acquisition schemes. Specifically, we are currently acquiring a few
navigator signals every frame, which reduces the scan efficiency. While this did not
cause problems in the 2D case, it might be difficult to achieve an acceptable temporal
resolution in the 3D case. More efficient trajectories such as spirals might be better

suited for this purpose.
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APPENDIX A
PROOFS FOR CHAPTER 3

A.1 Proof of proposition 3.2.1

Proof. The polynomial ¢(r) is represented in terms of its irreducible factors as:

() = Pa(r)ia(r) ... ¢y (r) (A1)

where the bandwidth of ;(r) is K x Kj. Let n(r) be another polynomial with
bandwidth K, x K, satisfying n(x;) =0, fori =1,..., N.

We consider the 2 polynomials ¢;(r) and 7(r). According to the required sampling
condition, there are N; > (K, + Ky)(K{ + K3) points satisfying 1;(r) = n(r) = 0.
Thus, following Bezout’s Theorem, ;(r) must be a factor of n(r).

Following this line of reasoning for all factors {¢?}, it can be concluded that (r)
is a factor of n(r). However, since both 1 (r) and 7(r) have the same bandwidth, the
only possibility is that n(r) is a scalar multiple of ¢)(r). Thus, the curve ¢(r) = 0 can
be uniquely recovered. The total number of points to be sampled is N = Z}]:1 N; >
(K1 + Ky) ijl(K J + KJ). Using convolution properties, it can be concluded that
N > (Ky+ Ko) (K1 + Koy +2(J - 1)). O

A.2 Proof of proposition 3.2.2
Proof. Following the steps of the proof for Proposition 1, we can conclude that v(r)
is a factor of ¢/(r). Since A C T, it follows that ¢/(r) = ¢(r) n(r), where n(r) is some

arbitrary function such that ¢’(r) is bandlimited to I O
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A.3 Proof of proposition 3.2.3
Proof. Let ¢ be the minimal filter of band-width |A|, associated with the polynomial

¥ (r). We define the following filters supported in I" for all 1 € " : A.

ck—1, ifk—1eA.
k] = (A.2)

0, otherwise.

c; are the Fourier co-efficients of exp(j2717r)y(r), and are all null-space vectors of
the feature matrix ®p(X). The number of such filters is |I" : A|. Hence, we get the
rank bound: rank (¢ (X)) < |T'| — | : Al

If the sampling conditions of Proposition 2 are satisfied, then all the polynomi-
als corresponding to null-space vectors of ®p are of the form: ¢/'(r) = ¥(r) n(r).

Alternatively, in the Fourier domain, the filters are of the form:
k] = > dici[K] (A.3)

where d; are the Fourier co-efficients of the arbitrary polynomial n(r). Thus, all the
null-space filters can be represented in terms of the basis set {c;}. This leads to the

relation: rank (&p(X)) = || — | : Al O
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APPENDIX B
PROOFS FOR CHAPTER 5

B.1 Proof of lemma 5.2.1
Proof. Since x; and x5 are in the same cluster, ||x; — X3|| < €. For all the points

in this particular cluster, let the p'* feature be bounded as: f?. < x(p) < fP,..

min

Then we can construct a vector u, such that u(p) = 3(f?,, + f%,.). Now, since
b — fP. <, the following condition will be satisfied for this particular choice of
u:
€ .
Ixi —ullee < 3 1= 1,2 (B.1)

From this, it follows trivially that the following will also hold:

I1Si (i — W)l < S i=1,2 (B.2)

B.2 Lemma B.2.1
Lemma B.2.1. Consider any pair of points x1,Xs € R observed by sampling ma-
trices S1 = Sz, and Sy = Sz,, respectively. We assume the set of common indices

(w:=T1N1y) to be of size ¢ = |Iy N Iy|. Then, for some 0 <t < &, the following

result holds true regarding the partial distance ||y,|l2 = ||Sz,nz, (X1 — X2) ||2-
2 q 2 —2he
P(lIlyoli < (5 —t) Ivl3) < =3 (B.3)

Proof. We use some ideas for bounding partial distances from Lemma 3 of [24]. We
rewrite the partial distance ||y, ||3 as the sum of ¢ variables drawn uniformly at random
from {y?,vy3,...,y%}. By replacing a particular variable in the summation by another

one, the value of the sum changes by at most ||y||2,. Applying McDiarmid’s Inequality,
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we get:
7L _ 22
P(E(lysl?) =yl > c) e Z=mPls = e avik (B4)
From our assumptions, we have E(||y.[3) = &|/y||3. We also have % > L hy

5.6). We now substitute ¢ = t||y||?, where 0 < t < £. Using the results above, we
2 P g

simplify expression (B.4) as:

2 q 9 _ 22y
P (||Yw||2 < <F — t) ||y||2> < e alvik

g2 (B.5)
<e qu%

B.3 Proof of lemma 5.2.2
Proof. We will use proof by contradiction. Specifically, we consider two points x; and

X5 belonging to different clusters and assume that there exists a point u that satisfies:

IS i —wlle € Sji=1,2 (B.6)

€
2

We now show that the above assumption is violated with high probability. Following
the notation of Lemma B.2.1, we denote the difference between the vectors by y =

X; — X, and the partial distances by:

Iyollz = 8zinz, (%1 —=x2) [|2 (B.7)

Using (B.6) and applying triangle inequality, we obtain ||y, |« < €, which translates
to [|ywl2 < €/q, where ¢ = |Z; N I, is the number of commonly observed locations.

We need to show that with high probability, the partial distances satisfy:

lyullz > €q (B.8)
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which will contradict (B.6). We first focus on finding a lower bound for ¢. Using the
Chernoff bound and setting E(q) = p2 P, we have:

2P
P(QZPOT>>1—%

(B.9)
2
where vy = (%)’y Thus, we can assume that g > p%TP with high probability.
Using Lemma B.2.1, we have the following result for the partial distances:
2 q 2 222
P(llyoli < (55 —t) Ivl3) < o3 (B.10)

Since x; and x5 are in different clusters, we have ||y||2 > J. We will now determine

the value of ¢ for which the above upper bound will equal the RHS of (B.8):

4q
(5 —1) Iyl = % (B.11)
or equivalently:
€2q

t=—= —
13

>

SIS

62(]
— ﬁ

q 2
Ip(l—fﬁ)

=

(B.12)

Since t > 0, we require k < 1, where kK = #. Using the above, we get the following
2
bound if we assume that g > ’%:

=

2\2 p 212
> (1 =r")" 2> 51 =K

t2 2
. 103 (B.13)

e
N

We now obtain the following probability bound for any ¢ > 2 gQP

2 2 e
P([ly.]*>€q) >1—e =0

2 p(1-x2)2
Sl @ (B.14)

=1-14
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Combining (B.9) and (B.14), the probability for (B.6) to hold is < 1—(1—)(1—4dy) =
Bo-

B.4 Proof of lemma 5.2.3
Proof. We construct a graph where each point x; is represented by a node. Lemma
5.2.1 implies that a pair of points belonging to the same cluster can yield the same
u in a feasible solution with probability 1. Hence, we will assume that there exists
an edge between two nodes from the same cluster with probability 1. Lemma 5.2.2
indicates that a pair of points belonging to different clusters can yield the same
u in a feasible solution with a low probability of §,. We will assume that there
exists an edge between two nodes from different clusters with probability £,. We
will now evaluate the probability that there exists a fully-connected sub-graph of size
M, where all the nodes have not been taken from the same cluster. We will follow a
methodology similar to [53], which gives an expression for the probability distribution
of the maximal clique (i.e. largest fully connected sub-graph) size in a random graph.
Unlike the proof in [53], in our graph every edge is not present with equal probability.

We define the following random variables:

e t = Size of the largest fully connected sub-graph containing nodes from more

than 1 cluster

e 1 := Number of M membered complete sub-graphs containing nodes from more

than 1 cluster

Our graph can have an M membered clique iff n is non-zero. Thus, we have:

P(t>M)=P(n+#0) (B.15)

Since the distribution of n is restricted only to the non-negative integers, it can be
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seen that:

P(n#0) < E(n) (B.16)

Combining the above 2 results, we get:

P(t> M) < E(n) (B.17)
Let us consider the formation of a particular clique of size M using my, ma, ..., mg
nodes from clusters C1, Cs, . .., Ck respectively such that Z]K:l m; = M, and at least

2 of the variables {m;} are non-zero. The number of ways to choose such a collection
of nodes is: [, (%) In order to form a solution {m;}, we need 3(M? — 3. m3)
inter-cluster edges to be present. We recall that each of these edges is present with
probability £y. Thus, the probability that such a collection of nodes forms a clique is

L(M2=S . m?2
B2 (M=2575) i gives the following result:

B = 3 s =) < (B.19

{ﬂ’Lj}GS

where S is the set of all sets of positive integers {m;} such that: 2 <U({m;}) < K
and ) ;m; = M. Here, the function ¢ counts the number of non-zero elements in a

set. Thus, we have:

P(t> M) <no (B.19)

This proves that with probability > 1 — 1, a set of points of cardinality > M not all

belonging to the same cluster cannot all have equal cluster-centre estimates.

B.5 Proof of theorem 5.2.4

Proof. Lemma 5.2.1 indicates that fully connected original clusters with size M are

likely with probability 1, while Lemma 5.2.3 shows that the size of misclassified large
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clusters cannot exceed M — 1 with very high probability. These results enable us
to re-express the optimization problem (5.8) as a simpler maximization problem.
We will then show that with high probability, any feasible solution other than the
ground-truth solution results in a cost higher than the ground-truth solution.

Let a candidate solution have k groups of sizes My, Mo, ..., M} respectively. The
centre estimates for all points within a group are equal. These are different from
the centre estimates of other groups. Without loss of generality, we will assume that
at most K of these groups each have points belonging to only a single ground-truth
cluster, i.e. they are "pure”. The rest of the clusters in the candidate solution are
"mixed” clusters. If we have a candidate solution with greater than K pure clusters,
then they can always be merged to form K pure clusters; the merged solution will
always result in a lower cost.

The objective function in (5.8) can thus be rewritten as:

KM KM k
DS M —wjllae =Y My(KM — M)
i=1 j=1 i=1

. (B-20)
=K*M* =) M
i=1

Since we assume that the first K clusters are pure, therefore they have a size 0 <
M; < M,i=1,...,K. The remaining clusters are mixed and have size < M — 1
with probability > 1 — . Hence, we have the constraints 0 < M; < (M — 1), i =
K+1,...,k. We also have a constraint on the total number of points, i.e. Zle M; =

KM. Thus, the problem (5.8) can be rewritten as the constrained optimization
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problem:

k
M; k*} = max M?

st. 0< M, <M,i=1,....K

(B.21)
0<M<M-1,i=K+1,....k
k
ZMZ-:KM
=1

Note that we cannot have k£ < K, with probability > 1 — 7y, since that involves a
solution with cluster size > M. We can evaluate the best solution {M;} for each
possible value of k in the range K < k < M K. Then we can compare these solutions
to get the solution with the highest cost. We note that the feasible region is a
polyhedron and the objective function is convex. Thus, for each value of k, we only
need to check the cost at the vertices of the polyhedron formed by the constraints,
since the cost at all other points in the feasible region will be lower. The vertex points
are formed by picking k — 1 out of the k box constraints and setting M; to be equal to
one of the 2 possible extremal values. We note that all the vertex points have either
K or K + 1 non-zero values. As a simple example, if we choose M = 10 and K = 4,
then the vertex points of the polyhedron (corresponding to different solutions {M;})

are given by all possible permutations of the following:

e (10,10,10,10,0,0...0) : 4 clusters

(10,10,10,0,1,9,0...0): 5 clusters

(10,10,0,0,2,9,9,0...0): 5 clusters

(10,0,0,0,3,9,9,9,0...0): 5 clusters

(0,0,0,0,4,9,9,9,9,0...0): 5 clusters
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In the general case the vertices are given by permutations of the following:
o (M,M,...,M,0,0...0): K clusters
o (M,M,...;0,0,1,M —1,0...0): K+ 1 clusters

o (M,M,...;0,0,2,M —1,M —1...0): K+ 1 clusters

(0,0,...0, K,M —1,M —1...M —1,0): K+ 1 clusters

Now, it is easily checked that the 15 candidate solution in the list (which is also
the ground-truth solution) has the maximum cost. Mixed clusters with size > M — 1
cannot be formed with probability > 1 — 1. Thus, with the same probability, the
solution to the optimization problem (5.8) is identical to the ground-truth clustering.

This concludes the proof of the theorem.

B.6 Upper bound for 7, in the 2-cluster case

Proof. We introduce the following notation:
1. F(i) =i(M — 1) log By, for i € [1, M — 1].

2. G(i) =2[logI'(M +1) —logI'(i +1) —logI'( M —i+1)], for i € [1, M — 1] where

I' is the Gamma function.

and have

We note that both the functions F' and G are symmetric about i = %,

unique minimum and maximum respectively for ¢ = % We will show that the

maximum for the function F' + G is achieved at the points « = 1, M — 1. We note

that:

G'(i) = =2[W(i+1) — U(M — i+ 1)] (B.22)
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where W is the digamma function, defined as the log derivative of the I' function. We

now use the expansion:

1
U(i+1) =logi+ % (B.23)
Substituting, we get:
' M —2
G'(i) = —2 |log — B.24
Q 8N =i 2 =) (B-24)
We also have:
F'(i) = (M — 2i) log By (B.25)
Adding, we get:
1
F'(i)+ G'(1) = (M — 24)(1 o
() + G'(9) = (M = 2)(log o — -37—)
; (B.26)
—21
& — z'))

Now, in order to ensure that F’(i) + G'(i) < 0, we have to arrive at conditions such

that:

1 2 l

log B < 1
o8 < STy Y= e =

(B.27)

Since the RHS is monotonically increasing in the interval i € [1,4 — 1] the above

condition reduces to:

1 2 1

log By < 1
LR v T v Ry

(B.28)

Under the above condition, for all i € [1, %] :

F'(i)+G'(i) <0 (B.29)
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Thus, the function F' + G reaches its maxima at the extremal points given by i =

1, M — 1. For positive integer values of i, i.e. i € {1,2,..., M — 1}:
M\?
. . i(M—i
Fli)+G) =toeig () (B.30)

Thus, the function BS(M_O (Af )2 also reaches its maxima at i = 1, M — 1. This maxi-

mum value is given by: 3)/~'M?. This gives the following upper bound for 7:

M-1
m < Y15 M
=1
_ 2 M-1
= M (M —1)p; (B.31)
< MPgy'
= 10,approx

B.7 Proof of theorem 5.2.5
Proof. We consider any two points x; and x5 that are in different clusters. Let us

assume that there exists some u satisfying the data consistency constraint:

I%; — ulfoo < €/2, i=1,2. (B.32)

Using the triangle inequality, we have ||x; —Xs||oc < € and consequently, ||x; —Xz|2 <
ev/P. However, if we have a large inter-cluster separation § > ey/P, then this is not
possible.

Thus, if § > eV/P, then points in different clusters cannot be misclassified to a
single cluster. Among all feasible solutions, clearly the solution to problem (5.25)
with the minimum cost is the one where all points in the same cluster merge to the

same u. Thus, kK < 1 ensures that we will have the correct clustering. O
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B.8 Proof of lemma 5.2.6
Proof. The idea is similar to that in Theorem 5.2.5. We will show that with high
probability two points x; and x, that are in different clusters satisfy ||x; —xz|]2 > eV P
with high probability, which implies that (5.29) is violated.
Let points in C; and Cy follow uniform random distributions in R¥ with centres

c; and ¢y respectively. The expected distance between x; € C; and x5 € Cy is given

by:

P
E(lxi—xal3) = 5 Y

P, (B.33)

where ¢! and x? are the p™ features of ¢; and x; respectively, and ¢;2 = ||c; — ¢s|a.

Let ¢; = |c} — b, for : = 1,2,..., P. Using Mcdiarmid’s inequality:

P (|x1 — %23 < E([|x1 — x2||3) — ¢)

2t2

< e ThalCiro(ei—o?? (B.34)

o2
2.2
—e 8e“ctqy

Let t = E(||x; — x2||3) — Pe%. Then we have:

G o

P (||x1 — Xl < ex/ﬁ> <e %h (B.35)

We note that the RHS above is a decreasing function of ¢15. Thus, we consider some

¢ < ¢q9, such that ¢ is the minimum distance between any 2 cluster centres in the



dataset. We then have the following bound:

(c
P (lho —xoll2 < V/P) <o s

To ensure t > 0, we require: ¢ > %e, or equivalently, &’ = &L < \/E.
c 5

We now get the probability bound:

_ P(-3x"?)?

P (I~ %ol < eVP) <o

Thus, (5.29) is violated with probability exceeding 1 — f3;.

=P
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(B.36)

(B.37)
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