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Free-breathing & ungated cardiac MRI using
iterative SToRM (i-SToRM)
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Abstract—We introduce a local manifold regularization ap-
proach to recover dynamic MRI data from highly undersampled
measurements. The proposed scheme relies on the manifold
structure of local image patches at the same spatial location
in a free-breathing cardiac MRI dataset; this approach is a
generalization of the SToRM (SmooThness Regularization on
Manifolds) scheme that exploits the global manifold structure
of images in the dataset. Since the manifold structure of the
patches varies depending on the spatial location and is often
considerably simpler than the global one, this approach sig-
nificantly reduces the data demand, facilitating the recovery
from shorter scans. Since the navigator-based estimation of
manifold structure pursued in SToRM is not feasible in this
setting, a reformulation of SToRM is introduced. Specifically,
the regularization term of the cost function involves the sum of
robust distances between images sub-patches in the dataset. The
optimization algorithm alternates between updating the images
and estimating the manifold structure of the image patches. The
utility of the proposed scheme is demonstrated in the context
of in-vivo prospective free-breathing cardiac CINE MRI imaging
with multichannel acquisitions as well as simulated phantoms.
The new framework facilitates a reduction in scan time, as
compared to the SToRM strategy.

I. INTRODUCTION

THE slow nature of MRI acquisitions poses several chal-
lenges in dynamic imaging applications such as cardiac

MRI, due to the need for high spatial and temporal resolution.
The standard practice in cardiovascular MRI is to collect k-t
space data in a breath-held and segmented mode. Specifically,
respiration is suspended during data acquisition and the k-
space data from multiple cardiac cycles are merged together to
form the images. This approach often makes it challenging to
acquire data from several patient groups (e.g. claustrophobic,
pediatric subjects and obese patients), who have difficulty
in holding their breath. In addition, the achievable spatial
resolution is often severely limited by the typical breath-
hold durations. Another challenge is the long duration of the
exam, which makes cardiac MRI expensive and reduces patient
comfort.

Respiratory gating methods were introduced to eliminate the
need for breath-holding. These methods rely on respiratory
bellows, self-gating, or navigator signals [1], [2] to select
the k-space data from a specific respiratory phase. The main
challenge associated with these methods is the low acquisition
efficiency. While low-rank methods [3]–[6] provide good
reconstructions in breath-held mode, the direct application
of these methods to the setting with extensive cardiac and
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respiratory motion is challenging. Motion-compensated re-
construction schemes were introduced to improve acquisition
efficiency [7]–[11]. These approaches rely on joint compressed
sensing and motion compensation to recover the images from
multiple phases simultaneously, while estimating the mo-
tion between phases using deformable registration. The main
downside of these schemes is the considerable computational
complexity needed to recover the data from multiple cardiac
and respiratory phases. Recently, several researchers have
proposed motion-resolved recovery schemes, which estimate
the cardiac and respiratory phases from golden angle radial
acquisitions. These methods estimate the phase information
by filtering the series of central k-space samples acquired
at each shot [12], [13]. The binned four dimensional data
(two spatial dimensions, a respiratory dimension, and a cardiac
phase dimension) is then recovered using spatiotemporal total
variation regularization. While the good performance of these
methods have been demonstrated in several subjects, their
utility in subjects with irregular respiration and cardiac motion
(e.g arrythmia) is not clear. The use of navigators at every
alternate acquisition considerably simplifies the estimation of
the phases as shown in [5], [13]. However, this approach comes
at the expense of 50% overhead in acquiring the navigator
signal.

In this work, we will build upon our recent SToRM frame-
work [14] and related manifold-based approaches [15], which
rely on an implicit binning strategy using navigators. SToRM
assumes the images in a free-breathing and ungated dataset
to be points on a smooth and low-dimensional manifold. The
Laplacian matrix that specifies the structure of the manifold, or
equivalently the similarity between image pairs in the dataset,
is estimated from navigator signals. The main advantage of
this implicit motion-resolved scheme over explicit binning
strategies is the recovery of the natural dynamics in a real-
time acquisition mode. While this approach offers good recon-
structions, SToRM’s dependency on radial navigators lowers
the scanning acquisition efficiency. Specifically, 2-4 radial
lines per frame are usually needed for good recovery and
approximately 20-40% of the scan time is devoted to the
acquisition of those navigators. This approach also results in
reduced incoherence between sampling patterns of different
frames, and makes it difficult for the future extension of this
scheme to 3-D applications. Another challenge is that SToRM
requires a relatively long acquisition duration (≈ 1 minute
per slice) to ensure that the complex image manifold is well-
sampled. Specifically, since SToRM relies on the similarity
between images in the dataset, a large number of time series
are needed to ensure that all the phases are well represented.
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The focus of this work is to overcome the drawbacks
associated with SToRM while maintaining the good quality
of the recon, by exploiting the manifold structure of localized
image patches in the dataset. Note that the individual regions
of the images experience very different motion patterns. For
example, the manifold structure of patches within the heart,
which experience both cardiac and respiratory motion, are
significantly different from those in the lung regions that
experience only respiratory motion, or static regions. Sep-
arately exploiting the manifold structure of these localized
regions is far more effective; since the manifolds are relatively
simpler, fewer images (and hence shorter acquisitions) are
sufficient to ensure good sampling. We thus expect the local
manifold regularization to be far more effective than the global
approach pursued in SToRM. The direct extension of SToRM
to this setting is difficult since the navigators only provide
global manifold structure and not the local one. We hence
introduce a generalization of the SToRM framework, which
eliminates the need for navigators. Specifically, the image
recovery is formulated as a regularized optimization problem,
where the regularization term involves the sum of robust
distances between images in the dynamic dataset. Inspired by
our past work [16]–[18], we use saturating distance functions
that are insensitive to large image differences. By contrast, we
compare each patch with all the patches at the same spatial
location, facilitating implicit motion-resolved reconstruction.
We use a majorize minimize algorithm to solve the above
non-convex optimization problem. This algorithm alternates
between the following two steps (i) the estimation of a graph
Laplacian matrix from the current image sub-patches estimate,
and (ii) the estimation of the image sub-patches using the
graph Laplacian matrix. Since each step of the proposed
algorithm is similar to SToRM, we term the new approach as
iterative SToRM (i-SToRM). We use homotopy continuation
strategies to encourage the convergence of the algorithm to
the global minimum of the cost function. The SToRM scheme
can be interpreted as the first iteration of an algorithm to
minimize the above criterion, where the manifold Laplacian
matrix is obtained without the use of navigators. In addition
to eliminating the dependence on navigators, this approach
facilitates the extension of the global SToRM framework to
exploit the local manifold structure of image patches.

The main difference of the proposed scheme with our recent
patch-based PRICE formulation [17] is the choice of the
patch neighborhood used for comparison. PRICE achieves
implicit motion compensation by exploiting the similarity
of rectangular sub-patches in a frame with other patches in
its spatiotemporal neighborhood. By contrast, the proposed
formulation achieves implicit motion-resolved reconstruction
by harnessing the non-local similarities of patches with other
patches in the dataset. While this approach may be combined
with PRICE to additionally achieve motion compensation,
the direct application of our PRICE scheme to large datasets
in the current application is computationally challenging due
to the large number of patch pairs that are involved in the
comparison. In contrast, iSToRM considers larger patches and
reduces the number of patch pairs involved in the comparison,
thus keeping the computational complexity manageable.

We determine the utility of the proposed scheme in the
context of recovering numerical phantoms as well as in-vivo
prospective cardiac CINE MRI datasets with multichannel
acquisitions . The prospective datasets are challenging cases
since they are acquired in the ungated mode, accelerated
by a high undersampling factor and a considerable cardio-
respiratory motion is present due to the free-breathing scan.

II. METHODS
A. Acquisition scheme

The multicoil undersampled acquisition of the dynamic MRI
dataset f(x, y, t) : Z3 → C can be modeled as:

bi(k, t) =

∫

r

f(r, t) si(r)e
j(kT r) dr + n(r, t) (1)

Here, r = (x, y) and k = (kx, ky) denote the spatial variable
and k-space location, respectively. b(k, t) represents the k-
space measurements from all the coils, while f(r, t) is the
dynamic dataset, and si(r) denotes the ith coil sensitivity
pattern. We assume n to be complex zero mean Gaussian
distributed white noise of a specified standard deviation σ.
The above relations can be compactly expressed in the vector
form as:

B = A(F) + N, (2)

where A is the multi-channel undersampling forward model.
Here F is the Casorati matrix of the dynamic dataset f(r, t).

B. SToRM reconstruction
The SToRM recovery of the dynamic MRI dataset F from

its undersampled Fourier measurements B is posed as [14]:

F∗ = argmin
F
‖A(F)−B‖22+λ

N∑

i=1

N∑

j=1

wi,j ‖fi− fj‖2 (3)

where fi is the ith frame in the dynamic dataset, and hence
is the ith column of the Casorati matrix F and N is the total
number of frames in the time series. A navigated acquisition
strategy was used to estimate the matrix W with entries
wi,j , which captures the manifold structure. The measurement
operator at the ith frame is chosen as:

bi =

[
Φ
Bi

]

︸ ︷︷ ︸
Ai

fi (4)

Here, Ai is multichannel sampling operator for the ith frame.
It is the concatenation of the navigator sampling operator Φ,
which is fixed across all frames, and Bi which varies from
frame to frame. The structure of the manifold specified by the
weights wi,j , are estimated from navigators as below:

wi,j = exp−‖Φxi −Φxj‖2
σ2

(5)

It was shown that (3) can also be expressed as:

F∗ = argmin
F
‖A(F)−B‖22 + λ trace

(
FLFH

)
, (6)

where:
L = D−W (7)
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and D is a diagonal matrix with entries di,i =
∑
j wi,j . L is

often termed as the graph Laplacian operator, which can be
viewed as the discrete approximation of the Laplace Beltrami
operator on the manifold. The trace of a square matrix is
defined as the sum of the elements on the main diagonal, and
FH denotes the conjugate transpose of F.

C. Calibration-free i-SToRM

We formulate the reconstruction of the images from their
highly undersampled measurements as the following uncon-
strained optimization problem:

F∗ = argmin
F
‖A(F)−B‖22 + λ

N∑

i=1

N∑

j=1

ϕ (‖fi − fj‖)
︸ ︷︷ ︸

C

(8)

The regularization penalty C involves the sum of unweighted
robust distances between images in the dataset. This is in
contrast to (3) that uses weighted quadratic distances between
frames, which requires the knowledge of the manifold or
equivalently the weights wi,j . We choose the regularization
prior ϕ as a saturating distance metric that penalizes small
distances heavily, while it saturates with large distances. In
this work, we use the H1 metric [16], specified by:

ϕ(t) = 1− exp
(
−t2/2σ2

)
(9)

The Taylor series expansion of ϕ(t) shows that ϕ(t) ≈
t2

σ2 + O(t4), which implies that ϕ can be safely assumed
to be a quadratic/Euclidean distance metric for small values
of t. Note that the geodesic distances (distances on the
manifold) between neighboring points on the manifold can
be safely approximated by their Euclidean distances. By
contrast, Euclidean distances between points that are distant
on the manifold are not good approximations for the geodesic
distance. The use of the saturating prior eliminates such terms
from the cost function. In particular, pairs of frames that have
a large inter-frame Euclidean distance do not contribute to
the gradient of the cost function, even though they amount
to constant terms in the regularization prior. The proposed
scheme exploits the non-local redundancy between frames that
may be well separated in time. In particular, (8) facilitates the
implicit sharing of data between similar frames. This implicit
approach can be seen as an alternative to explicitly binning the
dynamic data from different respiratory and cardiac phases,
followed by the recovery of the bins [12]. Since the regu-
larization term is non-convex, we use homotopy continuation
strategies to encourage the convergence of the algorithm to
the global minimum. While this approach is not guaranteed to
converge to a global minimum, it is widely used in non-convex
compressive sensing and usually results in good solutions [19].

D. Relationship to SToRM

Inspired by [16], we use a majorize minimize algorithm
to solve (8). This majorization strategy has been introduced
in [20] and has been widely used in convex and non-convex

image recovery with iterative reweighted algorithms. The non-
convex prior (second term in (8)) can be majorized as the sum
of quadratic distances between images in the dynamic dataset:

ϕ (‖fi − fj‖) ≤ wi,j ‖fi − fj‖2 (10)

where the new inter-frame weights are specified by wi,j =
ψ (‖fi − fj‖). Here,

ψ(t) =

{
exp

(
− t2

2σ2

)
if t2 < T

0 else.
(11)

Note that the function ψ(0) = 1, while it decays with increas-
ing value of t. The use of the majorization in (10) ensures that
similar images are averaged together, while dissimilar images
are excluded from the averaging process. This majorization
provides a two-step approach, which alternates between the
estimation of the weights from the current images using (11)
and solving for the images using (8). Thus, this approach can
be viewed as an iterative version of SToRM, where the weights
are estimated from the current image iterate rather than the k-
space navigators as in (5).

While more efficient optimization strategies such as alter-
nating direction method of multipliers do exist, the use of
these methods along with non-convex priors may suffer from
local minima issues. By contrast, the monotonic convergence
offered by the majorize minimize framework, along with
efficient continuation strategies, can be combined to encourage
the convergence of the algorithm to the global minimum of (8).

E. i-STORM with patches

The formulation in (8) facilitates the exploitation of the
manifold structure of images in the dataset without explicit
navigators. We note that different spatial regions in the dataset
will experience different types of motion. For example, the
cardiac regions are expected to experience cardiac and respi-
ratory motion, while the lung regions far away from the heart
are expected to be independent of cardiac motion. To exploit
the spatial variation in manifold structure, we generalize (8)
to account for the manifold structure of image sub-patches.
Specifically, we formulate the recovery as:

F∗ = argmin
F
‖A(F)−B‖22 +

λ
∑

rk

Nf∑

i=1

Nf∑

j=1

ϕ (‖Prk(fi − fj)‖)
︸ ︷︷ ︸

Crk

(12)

Here, Pr(f) is a patch extraction operator, which extracts a
square shaped 2-D image patch centered at the spatial location
r from the dynamic dataset f :

Pr(f) = f(r + p),p ∈ K (13)

Here, K denotes the square shape neighborhood of size of
dimension (N + 1) × (N + 1), centered at r. The set of
spatial locations rk, or equivalently the patches, are chosen
to span the entire image. For example, the set can be chosen
as a set of overlapping or non-overlapping patches. Note
that the penalty term C(rk) is essentially the same as the
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F⇤ = arg min
F

kA(F) � Bk2
2+

�
X

rk

NfX

i=1

NfX

j=1

' (kPrk
(fi � fj)k)

| {z }
Crk

F⇤ = arg min
F

kA(F) � Bk2
2+

�

NfX

i=1

NfX

j=1

wi,jkfi � fjk2

Fig. 1: Illustration of the proposed i-SToRM scheme (b), in comparison with the SToRM scheme in (a). The regularization term in SToRM
involves the sum of weighted `2 distances between images in the dataset, where the weights are estimated from navigators. By contrast,
the regularization scheme in i-SToRM is the sum of unweighted robust distances between image sub-patches in the dataset. Specifically,
the patches of size N × N indicated by the green neighborhood are compared with each other using the distance metric, which saturates
with large distances. The center of the patches, specified by rk are chosen to span the entire image with a specified stride; the patches
are overlapping in space to reduce blocky artifacts in the image and suppress noise. The main difference between these formulations is
the distance metric. We use an alternating minimization to solve for the i-SToRM scheme, which alternates between the estimation of the
manifold Laplacian and the images; this approach eliminates the need for the use of navigators and allows the extension of the SToRM
scheme to exploit the manifold structure of local patches. When the size of the patches is the same as the size of the images, the first
iteration of the i-SToRM scheme is equivalent to the SToRM setting.

penalty term C in (8), restricted the smaller set of images
Pr(fi); i = 1, .., N . See Figure 1, where the comparisons are
restricted to a cube, centered at the spatial location rk. The
motion parameters within different spatial regions/cubes are
expected to be very different in cardiac MRI. This restriction
results in a considerably simpler manifold in regions with
no motion or regions with only respiratory motion, which
is essentially most of the field of view (FOV). Thus, the
generalization is expected to be a more adaptive version of
SToRM. Note that (8) is a special case of (12), when the size
of the patch is the same size of each image, and only one rk
is considered.

We observe that the SToRM approach of calibration-based
estimation of the manifold structure is not feasible in the patch-
based setting. Specifically, k-space navigators only provide
global information about the whole FOV, which can only be
used to estimate the image manifold structure. The localized
manifold structure estimation is facilitated by the reformula-
tion of (8).

F. Two step iterative algorithm using MM

We use the majorize minimize (MM) framework to solve for
(12). The non-convex patch-based prior (second term in (12))
can be majorized as the sum of quadratic distances between
image sub-patches in the dynamic dataset:

ϕ (‖Prk(fi − fj)‖) ≤ wi,j,rk ‖Prk(fi − fj)‖2 (14)

where the new inter-frame weights can be self-estimated from
the undersampled dataset, as opposed to the navigators used
in SToRM.

Using the majorization in (12), we obtain an alternating
minimization strategy, which alternates between updating the

images and the weights/Laplacian operators.

Images update: Once the weights are available, the images
can be estimated as:

F∗ = argmin
F
‖A(F)−B‖22+λ

∑

rk

trace
(
Fk Lk FHk

)
(15)

where Fk is the Casorati matrix:

Fk =
[
Prk(f1), . . . ,Prk(fNf

)
]

(16)

of the patch time series Prk(fi), i = 1, .., Nf . We can think
of Fk = Qk(F), where Qk is an operator that extracts the
cube of data centered at the spatial location rk and constructs
a Casorati matrix out of it. The matrices Lk = Dk −Wk are
the Laplacians of the patch time series Fk. We observe that
(15) is the extension of (6) to the patch setting.

The Euler-Lagrange equation for the above quadratic equa-
tion is given by:

A∗A (F) + 2 λ
∑

rk

Q∗k


Qk(F)︸ ︷︷ ︸

Fk

Lk


 = A∗ B (17)

Here, A∗ denotes the adjoint of the operator A. The second
term on the l.h.s involves the extraction of the Casorati matrix
F, multiplication by Lk, followed by putting the entries of
the Casorati matrix back at the appropriate location. The
optimization problem (17) can be efficiently solved using
conjugate gradients.

Weights update: The Laplacian matrices, or equivalently the
weights, are estimated from the current image series F as:

(Wk)i,j = ψ (‖Prk(fi − fj)‖) (18)

where ψ is specified by (11). Note that the inter-patch distance
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metric in (9) was chosen to heavily penalize small differences
between the patches, while the metric saturates for large sub-
patch differences. In STORM, the weight matrix was sparsified
to retain only a fixed number (e.g. three in [14]) of nearest
neighbors for each frame, irrespective of the magnitude of
the inter-frame differences. By contrast, we rely on (11) to
compute the weights; the weights are set to zero, when the
inter-frame differences fall above a specified threshold. Note
that this approach provides a variable number of neighbors
for each frame, depending on the magnitude of the inter-patch
differences; and that is consistent with the saturating function
ϕ that we assumed in this work.

Algorithm II.1: I-STORM(A,B)

Input : B = k-space measurements
Finit = B;
while i < # Outer Iterations

do





Update F by solving (17) using CG;
Update weight matrices Wk using (18);
Derive the Laplacians Lk from Wk using (7);

return (F)

G. Datasets and sampling pattern

We validate the proposed algorithm using a numerical phan-
tom, which mimics the motion resulting from time-varying
heart rates and respiratory motion [21]. The data was generated
by warping a ground truth breath-held dataset using realistic
synthetic respiratory motion fields and stretching of the cardiac
cycle. This free breathing dataset has a reasonable amount of
inter-frame motion due to respiratory dynamics. The dataset
has 200 phase encodings, 256 samples per readout and 256
temporal frames.

We also validate the proposed algorithm using experiments
on two in-vivo free-breathing and ungated cardiac CINE
datasets with radial undersampling settings. They were ac-
quired using protocols approved by the Institutional Review
Board (IRB) at the University of Iowa. The prospectively
undersampled MR imaging was acquired using radial FLASH
sequence on a Siemens Skyra 3T scanner with 24 coil elements
total (body and spine coil arrays). The datasets were acquired
from congenital heart patients, who were instructed to breathe
freely in all of the studies. The images were acquired in
short axis and 4-chamber view to test the sensitivity of the
algorithm to geometry. The short axis data was acquired using
the calibration-based scheme in [14] as well as a golden
angle acquisition scheme. By using the equiangular spacing
within each frame, we ensure that the entire k-space is covered
uniformly.

The sequence parameters were: TR/TE 4.68/2.1 ms, FOV
300mm, base resolution 256, slice thickness = 5 mm, phase
encodes × frequency encodes: 512 × 512. A temporal res-
olution of 46.8 ms was achieved by sampling 10 lines of k-
space per frame. 1000 radial lines of k-space were acquired per
slice which resulted in an acquisition time of around 46.8 s.
The acquisition using 10 rays corresponds to an acceleration
factor of ≈ 25.6 fold when compared to Nyquist. The scan

parameters were kept the same across all views for the entire
prospective datasets.

H. Metrics used for quantitative comparison

The retrospective reconstructions were quantitatively com-
pared to the reference data using the following metrics. We
evaluated these metrics on the whole time series on both global
FOV and a square region of interest containing the heart.
• Signal to Error Ratio (SER):

SER = 20 log10

( ||Γorig||2
||Γorig − Γrec||2

)
,

where ||·||2 donates the `2 norm, and Γorig , Γrec denote
the original and the reconstructed images respectively.

• Normalized High Frequency Error (HFEN) [22]: It mea-
sures the quality of fine features, edges, and spatial
blurring in the images and defined as:

HFEN = 20 log10

( ||LoG(Γorig)||2
||LoG(Γorig)− LoG(Γrec)||2

)
,

where LoG is a Laplacian of Gaussian filter that captures
edges. We use the same filter specifications as [22]: kernel
size of 15 × 15 pixels, with a standard deviation of 1.5.

• The Structural SIMilarity index (SSIM) is a perceptual
metric introduced in [23]. We used the toolbox introduced
by [23], with default contrast values [0.01 0.03], Gaussian
kernel size of 11 × 11 pixels with a standard deviation
of 1.5 pixels.

• Global phase coherence (GPC) index [24] provides a
measure of image sharpness by estimating the volume of
all possible phase functions associated with the measured
modulus, which produces images that are not less likely
than the original image. The likelihood is measured
with the total variation implicit prior, and is numerically
evaluated using a Monte-Carlo simulation. We used the
toolbox introduced by Blanchet et al [24] to evaluate the
index.

I. Implementation

The algorithms were implemented using a single node of
a high-performance Argon Cluster at the University of Iowa,
equipped with Intel Xeon CPU with 28 Cores at 2.40GHz
with 128 GB of memory running on Red Hat Linux MATLAB
R2016b. The prospective datasets were acquired using 10,000
radial spokes, which corresponded to an acquisition time of
around 50 seconds per slice.

We binned the data to 10 spokes/frame, which translates to
1000 frames. Our earlier SToRM scheme required 1000 frames
to obtain good reconstructions. By contrast, we only rely on
the first 300 time frames in this work for reconstruction. The
proposed scheme considers joint recovery of the dataset with
a large number of frames and several receiver coils from their
non-Cartesian Fourier samples. The direct implementation of
this scheme using NUFFT and keeping the entire channels
requires large memory demand and high computational com-
plexity. We rely on few simplifications to realize a fast and
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memory efficient algorithm, parts of which can be sped up
using GPU acceleration.
Pre-interpolation to a Cartesian grid: The radially acquired
datasets were first pre-interpolated into a Cartesian grid, which
allows us to implement the conjugate gradients algorithm
using fast Fourier transform (FFT) rather than non-uniform
fast Fourier transform (NUFFT). Specifically, the forward
model corresponds to FFT of the sensitivity weighted images,
multiplied by density weighted sampling masks. We, and
our collaborators, have compared the accuracy of this pre-
interpolation strategy in our previous studies (e.g. kt-SLR,
[3]). To further confirm this finding, we have performed a
comparison of the SToRM reconstructions with NUFFT and
using the pre-interpolation strategy on a smaller dataset. To
further confirm this finding, we have performed a comparison
of the SToRM reconstructions with NUFFT and using the pre-
interpolation strategy on a smaller dataset. The experiment,
shown in the last slide of the supplementary material, shows
that the differences between the NUFFT-based evaluation
and the above pre-interpolation strategy are minor for radial
trajectories. We note that the pre-interpolation is equivalent
to A∗B. It is shown that (A∗A) has a Toeplitz structure
that can be implemented as a multiplication in the Fourier
domain by a 2N x 2N matrix. Thus, accounting for the
density and interpolation weights into the sampling masks
(using N x N FFT) is equivalent to performing a circulant
approximation of the above operation. We believe that the
circulant approximation is accurate for radial trajectories, but
not valid in general. In the interest of realizing a fast algorithm,
we utilize the pre-interpolation strategy for the rest of the
experiments.

Coil compression: The datasets were acquired with 24 coils,
out of which many that had low sensitivities in the region/slice
of interest, resulting in noisy measurements. We used an
automatic algorithm to pre-select the best 10 coil images;
we observed that removing the un-reliable coils resulted in
improved reconstructions. This algorithm binned the k-space
data from several images to recover the low-resolution coil
images. We then used the PCA coil combination using SVD
such that the approximation error is < 5%. In most cases, we
note that 5-6 coils were sufficient to bring the approximation
error to < 5%. The coil sensitivity maps were estimated
from these coil combined virtual channels using the method
designed by Walsh et al [25] and assumed to be constant over
time. Our experiments (not included in the paper) show that
this coil combination has minimal impact on image quality.
The main motivation for the combination was to reduce the
footprint of the algorithm to fit it on our GPU device, which
significantly reduced the computational complexity.

J. Selection of parameters

We use the GPC metric to optimize the regularization
parameters of all the algorithms, thus eliminating subjective
biases in the choice of the parameters. In i-SToRM exper-
iments, the optimal parameters determined for one dataset
work well for other datasets acquired in the same setting.
The filter size parameter σ was initialized by 10−4 and was

decreased by a factor of 10−1 in each outer iteration. This
continuation strategy helped provide fast convergence and
minimize the oversmoothing resulted from averaging multiple
neighbors. Our results show that 3-4 iterations are sufficient to
get the best recovery. Adding more iterations did not further
improve the weight matrix, and hence the reconstruction. We
set the patch sizes in the proposed scheme to 12 × 12 with
a step size of 4 to ensure the patches are overlapped for
better recovery. Smaller neighborhood and step sizes did not
significantly improve the performance, while they resulted in
slower reconstructions. Our experiments show that the above
choice provided the best tradeoff between the computational
complexity and the quality of reconstructions. The algorithm is
terminated when the relative change in the cost function falls
below small value ε; we have set ε to 10−6 in our scheme.
The thresholding parameter, T was set to be about a half of
the image maximum intensity value and divided by a small
fraction in each outer iteration. The thresholding parameter T
in (11) and regularization factor λ in both (8,12) were set to
10−2 and 10−6 respectively. We have kept the default value
of PSF subspace dimension to 32.

III. RESULTS
We compare our results with prior SToRM and low-rank

based partially separable functions (PSF) method [26] and
temporal total variation & wavelet regularization scheme using
Berkeley Advanced Reconstruction Toolbox (BART) [27].

Figure 2 shows the experiments on the simulated CINE
dataset. We compare the navigator-free schemes i-SToRM with
patches and TV + Wavelet against navigator-based methods
SToRM and PSF. The simulated dynamic dataset is retro-
spectively undersampled using radial sampling pattern with 12
spokes, 4 navigator lines and 8 golden angle spokes per frame.
The tables at the bottom of the figure show a quantitative
comparison of the entire methods using SER, HFEN, SSIM
and GPC metrics computed for the entire times series on both
global FOV as well as a square region of interest containing
the heart as shown in (f1).

In Figure 3, we compare the patch-based i-SToRM against
both i-SToRM without patches and TV + Wavelet regulariza-
tion. The navigator spokes were not used for estimating the
manifold structure in both i-SToRM versions. We also compare
the results against SToRM and PSF, both of which rely on
navigators to estimate the manifold structure and subspace,
respectively. All of the above methods rely on data from 300
frames (≈ 14 seconds of acquisition) and is compared with the
SToRM reconstructions from 1000 frames whose acquisition
time is ≈ 50 seconds. We report the GPC indices for the entire
field of view (top value) and for a small region of interest
containing the heart (bottom value) in the last column. We
observe that the proposed i-SToRM scheme (first row) pro-
vides less noisy and sharp reconstructions and is comparable
in image quality to the SToRM reconstructions from 1000
frames (bottom row). We show similar comparisons on another
dataset in Figure 4 on both calibrated-based and calibrated-
free acquisitions. The above prospective experiments show that
the proposed patched-based i-SToRM can facilitate a factor of
three reductions in scan-time with minor loss in image quality.
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IV. DISCUSSION AND CONCLUSION

We introduced a novel regularization approach to exploit
the manifold structure of local image patches to recover
dynamic MRI data from highly undersampled measurements.
The proposed scheme could be seen as a generalized ver-
sion of SToRM scheme, which exploits the global manifold
structure of images in the dataset. The manifold structure of
the patches are simpler and vary depending on the spatial
location, hence this approach reduces the data demand and
facilitates the recovery from shorter scans. Since the direct
extension of SToRM to a patch setting is not possible, we
relied on a regularization term that involves the sum of robust
distances between images sub-patches in the dataset. We used
a minimization scheme that alternates between the estimation
of the manifold Laplacian and the recovery of the patches;
this approach generalizes SToRM and eliminates the need
for navigators to estimate the Laplacian. The new framework
facilitates the reduction in the scan time by a factor of three,
compared to the SToRM strategy.

The experiments on simulated datasets in Figure 2 shows
that that i-SToRM provides reconstructions with lower spatial
and temporal blurring, compared to other algorithms. While
the quality of SToRM reconstruction is quite comparable to
the proposed scheme, PSF and TV + Wavelet reconstructions
exhibit motion artifacts and temporal blurring respectively. The
residual images show that the errors associated with i-SToRM
and SToRM are more homogeneously distributed in the en-
tire image, thus providing reduced edge blurring and better
preservation of fine features, including papillary muscles. By
contrast, the errors with TV + Wavelet and PSF are more
concentrated in the edge regions and around the myocardial
wall, indicating edge blurring. The quantitative comparisons
of the algorithms on this setting are shown in the bottom
tables where we quantified the reconstruction by the signal-to-
error ratio (SER), High Frequency Error (HFEN), Structural
SIMilarity index (SSIM) and Global Phase Coherence (GPC)
metrics computed for the whole time series on the entire FOV
as well as a square region of interest containing the heart
as shown in (f1). The quantitative metrics show about 1-
4 dB SER improvement using i-SToRM compared to other
reconstructions. The improvement behavior is consistent using
HFEN, SSIM and GPC quantitative metrics.

In Figure 3, we observe that the i-SToRM with patches is
almost comparable in performance to SToRM, which shows
that the Laplacian can be estimated without the use of ex-
plicit navigators. This approach also facilitates the extension
of SToRM to the patch setting. The main difference of i-
SToRM scheme with SToRM is the iterative approach for
the estimation of the manifold Laplacian, which eliminates
the need for navigators. Also, we observe that i-SToRMR2.C6.
without patches results in lower quality, indicating the need
for local manifold modeling, especially when the Laplacian
is estimated from the images themselves. We thus introduced
patch-based i-SToRM, which provides a significant reduction
in alias artifacts compared to the i-SToRM version without
patches, thanks to exploiting the local manifold structure,
compared to i-SToRM without patches. We also observe that

the performance of both PSF and TV + Wavelet schemes
is worse than the SToRM schemes, especially in terms of
the temporal profile and the noise amplification. This can
be explained by the improved modeling of data by the non-
linear manifold model, as opposed to the subspace model
used in PSF or combination of sparse TV and Wavelet. As
expected the SToRM with 300 frames result in increased noise,
compared to the SToRM reconstructions shown in the bottom
row, where the reconstruction relied on 1000 frames (≈ 50
seconds of acquisition). By contrast, the patch-based i-SToRM
shown in the second row is comparable in performance to
the SToRM reconstructions with 1000 frames shown in the
bottom row. Since SToRM and i-SToRM without patches
rely on the similarity between images in the dataset, a large
number of images are needed to ensure that all the phases
are well represented. Hence, these methods require relatively
long acquisition duration to ensure that the image manifold is
well-sampled. By contrast, local patch manifolds are relatively
simpler; fewer images (and hence shorter acquisitions) are
sufficient to ensure good sampling of the corresponding patch
manifolds. This translates to improved performance over TV
+ Wavelet and PSF. We considered the entire dataset recovery
using SToRM prior in the bottom row for the sake of com-
parison.

The results in Figure 4 show the ability of the proposed
i-SToRM scheme in recovering quality images comparable to
SToRM without relying on navigator signals. Comparing the
time profiles of the i-SToRM scheme between the navigated
and non-navigated setting, we observe that the time profiles
are smoother in the calibration-free dataset. This can be
explained by the improved incoherence of sampling offered by
the golden angle sequence. Note that the navigated sequence
resulted in a 40% loss in efficiency due to the need for
navigators. We can also see both TV + Wavelet and PSF
exhibit considerable temporal motion artifacts or blurring.
While i-SToRM is compared against SToRM and PSF using
the calibration-based dataset, the calibrated-free dataset is
recovered using only the proposed scheme as well as TV
+ Wavelet since both SToRM & PSF cannot estimate the
manifold structure without navigators.

Our results demonstrate that using the local manifold struc-
ture of the image patches is superior to global manifold recov-
ery. This approach is related to PRICE prior introduced in [17].
The main difference is the neighborhood to which each patch
is compared. Specifically, PRICE compares each patch with its
immediate neighbors, facilitating implicit motion-compensated
reconstruction. Since this comparison has to be repeated for all
the patches in the 3-D dataset, the computational complexity
of the extension of PRICE scheme to this setting is chal-
lenging; it had been previously demonstrated on breath-held
CINE and myocardial perfusion MRI applications, where the
undersampling factor was considerably lower, when recovery
from fewer image frames was sufficient. The number of inter-
patch comparisons in the proposed scheme is lower by an order
of magnitude. Specifically, we only compare each patch with
patches in all the frames at the same location, which keeps the
computational complexity manageable. The proposed implicit
motion-resolved reconstruction can be viewed as an alternative
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to binning strategies, which exploits the repetitive respiratory
and cardiac motion. The benefit of the proposed scheme is
that it does not require sophisticated approaches to estimate
the motion phases, and is applicable to non-periodic motion
applications such as speech and imaging of the digestive tract,
where phase information is difficult to obtain; see [14] for
examples of an application of SToRM framework to speech
imaging.

The utility of the proposed scheme is demonstrated in the
context of simulated human phantoms as well as prospective
free-breathing and ungated cardiac CINE MRI imaging with
multichannel acquisitions. Future efforts will be directed to-
wards an extension of the proposed scheme to a 3D multi-slice
multi-channel acquisition.
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Fig. 2: Recovery of the simulated CINE dataset using patch-based i-SToRM (second row), TV + Wavelet (third row) calibration-based SToRM
(fourth row) and calibration-based PSF scheme (last row). The simulated dynamic dataset in the top row is retrospectively undersampled
using radial sampling pattern with 12 spokes, 4 navigator lines and 8 golden angle spokes per frame. Two frames of each reconstruction,
corresponding to diastolic and systolic cardiac phases are shown. The images are cropped versions of the full frame shown in (a4), while
(a3) is the initial guess. The error images are scaled by a factor of 5 for better visualization. The time profiles in the last column correspond
to a line passing through the left ventricle and right ventricle shown in (a4). We observe that i-SToRM provides lower spatial and temporal
blurring, compared to other algorithms. While SToRM reconstruction that uses navigators is comparable to the proposed scheme, PSF and
TV + Wavelet reconstructions exhibit motion artifacts and temporal blurring respectively. The residual images show that the errors associated
with i-SToRM and SToRM are more homogeneously distributed, indicating reduced edge blurring and better preservation of fine features,
including papillary muscles. By contrast, the errors with TV + Wavelet and PSF are more concentrated in the edge regions and around the
myocardial wall, indicating edge blurring. The table at the bottom of the figure show a quantitative comparison of the entire methods using
SER, HFEN, SSIM and GPC metrics computed for the entire time series on both the whole field of view (left table) as well as around the
region of interest (right table) shown in the blue box of sub-figure (f1).
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Fig. 3: Evaluation on a free breathing & ungated CINE dataset, acquired in the axial 4-chamber view. The dataset was acquired using the
navigated acquisition scheme used in [14], which consists of 4 navigator lines and 6 golden angle spokes per frame. The sampling trajectory
for one of the sampling patterns is shown in sub-figure (a1) with colored lines indicating the navigators that are the same for all frames. The
time profiles in the fourth column are drawn for all of the recovered frames, along with the line passing through the cardiac region shown
in (b1). The time instance of the specific frames are depicted in the time profiles with the color of their bounding boxes. Three frames of
each reconstructed dataset are shown for demonstration. The images are zoomed versions around the square box shown in (a3) while (a2) is
the initial guess. Subfigures (b1-b3), (c1-c3) and (d1-d3) show the recovery using navigator-free schemes: patch-based i-SToRM, i-SToRM
without patches and TV + Wavelet respectively; while (e1-e3) and (f1-f2) show the recovery using navigator-based schemes SToRM and
PSF. The top five rows are recovered using only a subset of 300 frames, while the bottom row shows the data recovered from 1000 frames.
SToRM and PSF schemes, shown in the 5th - 7th rows, relied on navigators to estimate the global manifold Laplacian. The comparisons
of the reconstructions from 300 frames show that the i-SToRM scheme can provide comparable image quality to the SToRM scheme, even
though it did not rely on the navigators. This iterative approach enabled us to exploit the local manifold structure of the patches (i-SToRM
with patches), which significantly improved the performance over the global approach. The improved performance of SToRM and i-SToRM
over PSF and TV + Wavelet methods, seen by a reduced blurring of image features and improved temporal profiles, can be attributed to the
improved signal modeling offered by the non-linear manifold model compared to a subspace approach or sparsity regularization. Note that
the image quality of the i-SToRM with patches obtained from 300 frames is comparable to that obtained from SToRM with 1000 frames. In
the last column, we report the GPC indices for both the entire FOV, the top value, as well as around a small region of interest containing the
heart shown in the bottom. The quantitative metric shows that the reconstruction of the proposed method using 300 frames are comparable
to that 1000 dataset recovered using SToRM.
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Fig. 4: Comparison of the algorithms on a free-breathing and ungated dataset in the short axis view. The dataset was collected with two
acquisition schemes: a navigated acquisition scheme, as well as a golden angle sequence. The sampling trajectories for navigated and golden-
angle schemes for one of the frames are shown in (a1) and (a2), respectively, where the colored lines indicating the fixed navigators that are
the same for all frames. 300 frames of the time series (3000 spokes, which correspond to 14 seconds of acquisition) were considered for
recovery. Note that there is no one-to-one correspondence between the calibrated and calibration-free acquisitions since they were acquired
at two different time points, possibly with different respiratory patterns. (a3) is the initial guess, while (a4) is the corresponding frame
recovered using patch-based i-SToRM. The zoomed versions of three frames, out of 300 frames, from different phases in the dataset are
shown in the first three columns. The time profiles in the fourth column are drawn for all of the frames, along the line passing through the
left ventricle and right ventricle as shown in (b1). i-SToRM is compared against SToRM and PSF using the calibration-based dataset, while
the calibrated-free dataset is recovered using only the proposed scheme as well as TV + Wavelet; both SToRM & PSF cannot estimate the
manifold structure without navigators. The results show the ability of the proposed i-SToRM scheme in recovering quality images comparable
to SToRM without relying on navigator signals. Both TV + Wavelet and PSF exhibit considerable motion artifacts and temporal blurring.
The last column shows the GPC indices for both the entire FOV, the top value, as well as around a small region of interest containing the
myocardium shown in the bottom. The quantitative metric shows an improvement of the proposed method compared to other reconstructions.


