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ABSTRACT
The transformationof themanufacturing industryover the last twodecadeshasbeen largely inspired
by data. Digitisation has made its mark in different areas of manufacturing, from digital materials
and processes to data science in decision-making. The digital manufacturing is evolving towards
universal manufacturing that is highlighted in this paper. Different manufacturing initiatives are
benchmarkedand their relationship touniversalmanufacturing is demonstrated. The representation
of enterprises in the universal manufacturing cloud is discussed. Product- and process-based spec-
ifications of digital enterprises are defined. Using these specifications, the enterprise configuration
algorithm proposed in the paper is applied for the selection of component models. Two different
representations, a node–node and an input–output matrix, of the digital component models are
considered. The extended topological sorting algorithm is applied to construct an integrated digital
model.

ARTICLE HISTORY
Received 17 April 2021
Accepted 20 June 2021

KEYWORDS
Digital manufacturing;
universal manufacturing;
Industry 4.0; manufacturing
cloud; design structure
matrix; smart manufacturing

1. Introduction

The development of industry has been rather steady over
the recent decades. The course taken and disruptions
that have occurred along the way were relatively minor
and were managed to accomplish the best outcome. The
recent pandemic has made the manufacturing industry
aware that it is not immune to human and nature caused
disasters, as well as other potential disruptions that could
be attributed to technology, sustainability, or sources that
are not known at this time (see Figure 1).

The COVID-19 pandemic has occurred amidst an
ongoing industrial transformation involving data. Appli-
cations with historical data available or generated from
designed experiments have benefited from data science.
It is known that the manufacturing industry is not
amenable to running experimentswhich has implications
on data collection. It would be highly unlikely for any
company to open a factory floor to conduct experiments
producing data. Rather the opposite applies, where the
goal is to manufacture a product meeting all specifica-
tions in the first run in a data poor scenario. There is
no doubt that the manufacturing environment is becom-
ing more uncertain and managing the decision space of
progress is challenging. The digitisation path the indus-
try has subscribed to might serve it well in a long run.
In addition to the data acquisition from manufacturing
hardware, the industry is encouraged to experiment in

CONTACT Andrew Kusiak andrew-kusiak@uiowa.edu https://research.engineering.uiowa.edu/kusiak/ Department of Industrial and Systems
Engineering, The University of Iowa, 4627 Seamans Center, Iowa City, IA, USA

the digital space. The predictive component of data sci-
ence will enrich the manufacturing decision space. The
digitisation of the industry will naturally call for enlarge-
ment of the decision space beyond a single enterprise.
The latter is addressed by the concept of universal man-
ufacturing proposed in Kusiak (2021).

2. The path to universal manufacturing

The relationship between products and manufacturing
has evolved over years. In the early years, a manufac-
turing facility (system) would be dedicated to one prod-
uct, thus forming one-to-one relationship illustrated in
Figure 2(a). In time, the relationship between prod-
ucts and manufacturing has become many-to-one as
shown in Figure 2(b), where a manufacturing system
(centralised or more frequently distributed) accommo-
dates many different products or variants of a product.
In universal manufacturing, this relationship becomes
many-to-many as illustrated with the bipartite graph
in Figure 2(c) (Kusiak 2021). In practice, this graph
is not likely to be fully connected due to the con-
straints imposed by products and manufacturing. How-
ever, from the efficiency perspective, it is desirable that
the product–manufacturing graph is densely connected.
The manufacturing facilities in the many-to-many rela-
tionship are likely to be highly distributed.
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Figure 1. Manufacturing industry and potential disruptions.

Figure 2. Evolution of the product–manufacturing relationship.

2.1. Universal manufacturing

The scope of implementation of the many-to-many con-
figuration between products and manufacturing systems
depends on the degree of openness of the manufacturing
space. An open manufacturing system (Kusiak 2020b)
is one that is prepared to engage in the production of
products designed and owned by other corporations, in
an extreme case by competitors. Though open manu-
facturing implies that the company owing the product
maintains some degree of production control, the rules
of business engagement are rather loose and not well
formalised. Universal manufacturing proposed in Kusiak
(2021) involves much higher degree of standardisation
and formal representation of enterprises as well as pro-
duction control, including quality.

Figure 3 illustrates the relationship between universal,
open, and integrated manufacturing in the manufactur-
ing universe. The integrated and openmanufacturing are
defined in Kusiak (2017, 2020a).

The integrated manufacturing is one of the two
extrema involving a high degree of novelty (e.g. a new
material, product, and a process), and does not conform
the open manufacturing requirements. Open manufac-
turing is the opposite extreme of integrated manufac-
turing with universal manufacturing being a subset of
it. It is likely that in future years open and universal
manufacturing will expand.

Figure 3. Emerging manufacturing concepts.

Table 1. Attributes of manufacturing.

Manufacturing

Attribute Digital Smart Open Universal

Flexible o
Agile o
Reconfigurable o o o
Resource sharing o o o
Data driven o o o o
Model-based o o o o
AI-based o o o
Cloud-based o o
Service-based o o
Globally optimised o

Four types of manufacturing, digital, smart, open, and
universal are characterised based on the list of attributes
provided in Table 1.

The entries in Table 1 mark the key attributes that
apply to the corresponding manufacturing type. For
example, digital manufacturing is primarily driven by
data, however, some digital manufacturing initiatives
may also address other attributes, e.g. the cloud. Table 1
demonstrates that universalmanufacturing embodies the
largest number of attributes.

The manufacturing attributes listed in Table 1 are
briefly defined in Table 2 and supported by a reference.

3. Digital models of manufacturing systems

The literature on system modelling, including manufac-
turing, is extensive. Some of the papers published over
the last decade are reviewed. The general principles of
modelling products and processes were introduced in
Cameron and Gani (2011). The book by Long (2014)
offered numerous insights into process modelling. The
author considered the business process model and nota-
tion (BPMN, bpmn.org) methodology as the most useful
for process modelling. In the review paper, Aldin and
de Cesare (2011) focused on the reusability of business
process models. Eshuis and Van Gorp (2016) offered
a data-centric approach to process modelling, leading
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Table 2. Definitions of manufacturing attributes.

Manufacturing attribute Definition References

Flexible Adapt to changes in the
type and quantity of
the product being
manufactured

Wei, Song, and
Wang (2017)

Agile Quick response to changes
in customer needs and
markets under quality
and cost considerations

Iacocca Institute
(1991)

Reconfigurable Interchangeable manu-
facturing resources, e.g.
machines and material
handling units

Kusiak and Lee
(1995)

Resource sharing Manufacturing resources,
e.g. machine tools,
software, used by more
than one enterprise

Rožman, Diaci, and
Corn (2021)

Data driven Data usually collected by
sensors ismadeavailable
for development of
different applications

Kuo and Kusiak
(2019)

AI-based Use of smart devices, e.g.
robots and machine
learning algorithms

Cheng et al. (1998)

Model-based Use of data for the
development of
models and digital
replicas for control and
decision-making

Liu et al. (2021)

Cloud-based Models of different nature
posted in the universal
manufacturing cloud

Wei, Zhou, and
Liang (2020)

Service-based Systems, e.g. manufac-
turing, in the form of
x-as-a-service

Kusiak (2019)

Globally optimised Large-scale optimisation in
different criteria across
different systems

Morariu et al.
(2020),
Valckenaers
(2020)

to the generation of a complete model. Details of the
approach, including the Guard-Stage-Milestone schema,
were outlined in the paper. A graph-based approach for
the development of reference models from the domain-
specific models was presented in Rehse, Fettke, and Loos
(2017). The approach proposed in the paper was tested in
different cases studies. The latest developments in process
modelling were compiled in the book by Nurcan et al.
(2020), containing papers presented at two conferences,
the 21st International Conference on Business Process
Modeling, Development and Support and the 25th Inter-
national Conference on ExploringModelingMethods for
SystemsAnalysis andDevelopment. Erasmus et al. (2020)
attempted to close the gap between modelling logistics
and manufacturing processes by defining reusable pro-
cess models, called fragments. They applied the frag-
ments to model different manufacturing processes. The
fragments and the processes were represented with busi-
ness process model and notation (BPMN). Stacey, Eck-
ert, and Hillerbrand (2020) argued that a design process
model could be governed by rules. The following 12 con-
ceptualisations of design process models were outlined

in the paper: frames, pathways, positions, proclama-
tions, projections, predictions, propositions, prophecies,
requests, demands, proposals, and promises.

The basic tenant of universal manufacturing is to
have manufacturing enterprises formally represented in
the cloud. While details of such representation await
research, the examples presented in Figure 4 illustrate
the challenges that could be faced by representation
of manufacturing systems. The example in Figure 4(a)
illustrates the least detailed model of a manufacturing
system that includes machine tool numbers, potentially
machine types, and additional information. The model
in Figure 4(b) is enriched with a machine layout. The
process model in Figure 4(c) does not follow a formal
notation, while the model in Figure 4(d) conforms the
BPMN methodology. In addition to serial and parallel
tasks it includes a logic gate (i.e. x = exclusive OR) and
two loops L1 and L2. Note that the BPMN methodol-
ogy was approved as the ISO (International Organiza-
tion for Standardization) standard, ISO/IEC 19510, in
2013.

Using a standard modelling approach offers several
advantages such as ease of communication among dif-
ferent models, simplified model retrieval, and enabling
development, deployment, and sharing model analysis
tools. The existing process modelling methodologies and
tools have additional features of interest to the man-
ufacturing cloud such as hierarchical representation of
processes, simple notation, and ease of annotation.

Searching digital models can be accomplished from a
product or amanufacturing perspective. The formermay
largely apply to new products, while the latter could be
driven by the need to rapidly expand production capac-
ity. The implementation of the manufacturing perspec-
tive involves matching of different models which appears
to be less complex than the product to manufacturing
translation.

In this paper, hierarchical and distributed metrics are
advocated in search of digital process models that apply
to the product and manufacturing perspectives.

Any process modelling methodology can be hierar-
chical, and so are the products and processes. A typ-
ical product includes assemblies that may break down
into subassemblies, and those in turn into components
that may include features. Though most process mod-
elling methodologies are intended for processes, they
can be also used to represent products. In the product
representation, tasks of process models are replaced with
functions. A manufacturing facility includes processes
performing operations (tasks) resulting in components
and products. Examples of operations (tasks) in manu-
facturing include milling, 3D printing, assembly, inspec-
tion, and material handling.
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Figure 4. Different degree of detail representations of manufacturing systems.

The example presented next illustrates the basic con-
cepts discussed in this paper.

3.1. Illustrating example

Consider a simple product, the squeezable bottle pro-
duced out of polyethylene by Grainger (grainger.com),
shown in Figure 5. This product includes three different
components: a bottle, a cap, and a tube.

The bottle in Figure 5 is manufactured in the system
represented in Figure 6 using the BPMN methodology.
The model in Figure 6 involves three injection mould-
ing processes (tube, cap, and bottle) and the assembly
process.

Manufacturing systems such as the one presented in
Figure 6 are designed to meet certain production capac-
ities. Any increase in production demand is handled
by capacity expansion. The capacity expansion model
is well suited for growing the system over a long-term
horizon. Procurement of new equipment, installation,
and workforce expansion and training take time. The
capacity expansion mode is not suited to handle rapid
spikes in the demand. The spikes in the demand that
are frequent, short lasting, and involve process capabil-
ities that are not currently available require a different
approach. Assume that the production capacity for the
bottle in Figure 5 has increased by 300%. This additional

Figure 5. A bottle consisting of three parts (grainger.com).

Figure 6. Digital processmodel ofmanufacturing thebottle from
Figure 5.
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Figure 7. The digital model identified in the cloud.

capacity could be easily identified in the universal man-
ufacturing environment by assembling the model in
Figure 7, where B = Bottle IM, C = Cap IM, T = Tube
IM, and A = Assembly. This model involves processes
distributed over six different locations, locations 1–6.

Universal manufacturing enables efficient search and
synthesis of manufacturing capabilities cross its network.

To implement the concept of universal manufacturing
the following is needed:

(a) A widely accepted standardmodelling methodology
(b) Manufacturing cloud solutions and the presence of

enterprises in the cloud
(c) Enterprise specifications.

Of the three items above, the enterprise specifications
are emphasised in this paper. The BPMN methodology
is used to represent models. Future research and appli-
cations will determine the most viable and acceptable
methodology. The development of cloud solutions will
meet the demand of enterprises ready to be represented
in the cloud.

4. Enterprise specifications

It is assumed that enterprise specifications are captured
by the standard interface envisioned in Figure 8.

The specifications for a manufacturing system
addressed to the universal manufacturing cloud may
originate from a product (see Figure 9(a)) or a pro-
cess (see Figure 9(b)) perspective. The former primarily
applies to new product designs where the dedicatedman-
ufacturing systems might be not available. The tree in
Figure 9(a) shows the requirements of Product 1 (P1) for
the three manufacturing systems MS1, MS2, and MS3 of
Figure 8.

Product P1 in Figure 9(a) contains three assemblies,
A1, A2, and A3 that are built from six different compo-
nents, C1–C6. These components are manufactured in
three manufacturing systems, MS1, MS2, and MS3.

The process-based specifications apply to scenarios
where the existing production facilities are well estab-
lished and a rapid demand for large manufacturing
capacity emerges. The tree in Figure 9(b) provides
requirements for the three manufacturing systems, MS1,
MS2, and MS3 of Figure 8. All machines shown in
Figure 8 are also included in the tree of Figure 9(b).
The manufacturing specifications may call for different
services, e.g. Service 1–3, in Figure 9(b). Service 2

Figure 8. Standard interface of universal manufacturing.



354 A. KUSIAK

Figure 9. Manufacturing specifications: (a) product-based and (b) process-based.

specifies requirements for manufacturing capability and
capacity, MS1–MS3, which are realised by machine tools
M1–M8.

Enterprise specifications serve as a basis for configur-
ing an enterprise. Amethodology for forming enterprises
is discussed in the next section.

5. Enterprise configuration

The data surrounding concepts illustrated in Figures 8
and 9 are captured in two matrices discussed next (see
matrix (1) and (2)). The data in matrix (1) show the
relationship between machines (Mk) and manufacturing
systems (MSl) making the space of universal manufac-
turing. Such a matrix could be extracted from the digital
models present in the universal manufacturing cloud.

(1)
With the growing number of enterprises in the uni-

versal manufacturing space, matrix (1) will expand in
size and content. Other than the machine tools, all man-
ufacturing resources, including tools, fixtures, material
handling, and software solutions, are of interest.

Matrix (2) contains similarity data between the
machines M1–M10 listed matrix (1). As machines origi-
nate in different manufacturing systems that may belong
to different corporations, it is not likely that a consistent
labelling of them can be accomplished, especially ahead
of analysis. Even two identical machine tools could carry
different labels. Any two identicalmachines have the sim-
ilarity value equal to 1 in matrix (2), e.g. Machine 4 (row
M4) andMachine 3 (columnM3) are identical as opposed
toMachine 5 (rowM5) andMachine 4 (columnM4) with
the similarity value of 0.4 which is low.

(2)

The similaritymetric can be applied to resources other
than machines, e.g. fixtures and software. In addition,
different attributes could be considered in the definition
of the similarity metric, e.g. capability, functionality, and
precision.

Once implemented in the universal manufacturing
cloud, themachine tool-manufacturing system incidence
matrix and the machine tool-machine tool similarity
matrix will be large due to a number of companies and
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resources involved. An efficient, simple, intuitive, and
visualisation-friendly algorithm for configuring enter-
prises is needed. The enterprise synthesis algorithm pre-
sented next meets this challenge.

5.1. The enterprise configuration algorithm

Step 1: Incorporate the manufacturing specifications
of the original system as vector MSl = [M1,
. . . , Ml, . . . , Mm] of machines in the machine
tool-manufacturing system incidence matrix.
Select a threshold value τ ∈ [0.6, 1] of the
machine tool-machine tool similarity used in
Step 3.

Step 2: Incorporate machines [M1, . . . ,
Mk, . . . , Mm] into the machine tool-machine
tool similarity matrix and compute the missing
similarity values.

Step 3: Identify all machines Mi, Mj of the machine
tool-machine tool similarity matrix with the
similarity value sij ≥ τ and merge Mj with
machine Mi.

Step 4: For every pair of machines identified in Step
3, merge row Mj with row Mi in the machine
tool-manufacturing system incidence matrix.
The resultant matrix is the reduced the
machine tool-manufacturing system incidence
matrix.

Step 5: Draw a horizontal line through the rows corre-
sponding to the machine in [M1, . . . , Ml, . . . ,
Mm].

Step 6: Draw a vertical line through the single crossed
entries of everyMSk of the reduced themachine
tool-manufacturing system incidence matrix
that includes as many machines in [M1, . . . ,
Mk, . . . , Mm] as needed.

Step 7: Form a universal enterprise from the systems
(columns) containing double crossed elements.
If an enterprise is formed, go to Step 8, other-
wise go to Step 1.

Step 8: Stop.

The enterprise configuration algorithm is illustrated with
the data in matrix (1) and (2). It is assumed that (i) each
machine in either of the two figures has capacity 1 and (ii)
manufacturing system MS2 (column 2 in (1)) has been
selected for expansion; and (iii) manufacturing systems
to accommodate a 200% increase in capacity over the
existing facility are sought.

Step 1: The manufacturing system MS2 (column MS2
in (1)) is the system selected for expansion. The
threshold value τ = 1 is selected.

Step 2: Since machines M1, M2, M3, and M5 already
exist in the similarity matrix [sij], there is no
need to compute new similarity values.

Step 3: The machines included in following four pairs
are identical (sij = 1), (M1,M7), (M3,M4), (M3,
M6), (M5, M8).

Step 4: The rows of the machine tool-manufacturing
system incidence matrix, [mkl], are merged.
Based on the data in similarity matrix (2),
matrix (1) is reduced by merging rows corre-
sponding to the identical machines. For exam-
ple, the similarity index s4,3 between machines
M4 (row M4 in (1)) and machine M3 (column
M4 in (1)) is 1 and therefore all entries of row
M4 of matrix (1) are moved to row M3, thus
leading to the matrix (3). Note that row M4 has
been removed.

(3)
Due to the similarity s6,3 = 1 between machines M6

(row M6 in (1)) and machine M3 (column M3 in (1)), all
entries of rowM6 inmatrix (3) aremoved to rowM3, thus
leading to matrix (4).

(4)
Finally, rowM7 is merged with rowM1 and rowM8 is

merged with M5 resulting in the reduced matrix (5).

(5)
Step 5: Four horizontal lines are drawn as shown in

matrix in (6).

(6)
Step 6: Three vertical lines are drawn in matrix (7).

Thus, manufacturing systemsMS1 andMS3 are
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selected as both include all machines included
in MS2.

(7)
Step 7: The enterprise formed by the enterprise config-

uration algorithm includes systems MS1, MS2,
and MS3.

Step 8: The algorithm terminates.

The proposed enterprise configuration algorithm offers
one of many approaches to construct manufacturing sys-
tems in the universal manufacturing cloud. As more
details of digital models will emerge, the scale and
complexity of the configuration problem will increase
with new variables and constraints to be considered
(Kusiak 2019). For example, algorithms utilising partial
updates to the machine tool-manufacturing system inci-
dencematrix and themachine tool-machine tool similar-
ity matrix may be designed. Data science and evolution-
ary system ideas could expend the modelling horizon.

6. The necessary conditions for universal
manufacturing

The transition to universal manufacturing requires that
certain conditions are met. The core list of the necessary
conditions is listed next.

Condition 1. Critical mass of industries supporting the
concept of universal manufacturing is needed.

Justification: Universal manufacturing involves a
paradigm shift in the way businesses have operated in the
past.

Condition 2. Standard process modelling methodolo-
gies and languages

Justification: Though many process modelling
methodologies exist, it is important that the industry
agrees on the core process modelling methodologies and
languages to be used in support of universal manufac-
turing. For example, the BPMN methodology is an ISO
standard (ISO/IEC 19510; see ISO 2013) and therefore it
remains a candidate methodology.

Condition 3. Metrics and algorithms for similarity of
process models.

Conditions 1 and 2 above belong to the implemen-
tation category and therefore they are not discussed in
this paper. Condition 3 is elaborated on in the subsequent
sections as it is fundamental to universal manufacturing.

Table 3. Similarity metrics for models of different degree of com-
pleteness.

Model
completeness Model example Metric type Reference

Unconnected tasks Figure 4(a) Vector Carbó–Dorca (2021)
Partially connected
tasks

Figure 4(b) Vector or
network

Rodriguez et al.
(2015)

Streamlined
process models

Figure 4(c) Network or
graph

Sabarish, Karthi, and
Gireeshkumar
(2020)

Process models
with loops

Figure 4(d) Process model Dijkman et al. (2011)

A brief discussion of the similarity metrics is presented
next.

As illustrated in Figure 4, digital models could be
incomplete, yet they might be posted in the univer-
sal manufacturing cloud. To compute similarity of such
models, different types of similaritymetrics are used. The
types of metrics and sample references applicable to the
various models are provided in Table 3.

One of the most known vector similarity metrics,
the Minkowski metric, was discussed in the context of
theoretical considerations of high-dimensional spaces in
Carbó–Dorca (2021). Rodriguez et al. (2015) introduced
a similarity metric for networks of patents. Edge and
vertex-based metrics for similarity of graph-based mod-
els representing moving objects were discussed by Sabar-
ish, Karthi, and Gireeshkumar (2020). Dijkman et al.
(2011) offered three metrics of process similarity. The
labels and attributes of a process model were considered
is the first similarity metric. The labels and the process
model topology were incorporated in the second metric.
The thirdmetric considered labels and causal relations of
the process model.

Retrieving digital models stored in the cloud is key
to universal manufacturing. In this section, the research
published in similarity of process models and related
constructs such as networks and graphs is presented.

Digital models of universal manufacturing will take
different forms, including process models enriched with
additional information imposed by application specific
model requirements. The additional information could
include resources such as machine tools, their process
characteristics and time-based availability, control soft-
ware, and edge solution. Digital twin which is widely
discussed in the literature is an instance of digital model.

7. Synthesis of digital models

The universal manufacturing cloud will be populated
with many digital models that would need to be syn-
thesised to meet specifications of the enterprise being
formed. Model synthesis is related to the concept of the
design structure matrix. An extensive background and
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Figure 10. Three component digital models.

applications of the design structure matrix are discussed
in the review paper by Browning (2016). Algorithms are
needed to facilitate synthesis of such models. The model
synthesis is illustratedwith the extended topological sort-
ing algorithm, based on the matrix implementation of
this algorithm presented in Kusiak (1999). Here, two
different matrices representing graphs corresponding to
the digital models are considered, a node–node matrix
and an input–output matrix. Both matrices will include
integer rather than the binary entries in the incidence
matrices usually considered in the literature.

7.1. The node–node digital model representation

The node–node incidence matrix is illustrated with three
models shown in Figure 10. The nodes in the model of
Figure 10 represent machine tools, M1–M5. The arrows
in Figure 10 represent interactions between the machine
tools (modes) and they are labelled 1, . . . , 6. The term
‘interaction’ may have different meanings ranging from a
process precedence to the physical layout.

Since the models in Figure 10 include five nodes
(machine tools), a 5× 5 interaction matrix in (8) repre-
sent these models. In this representation, the interactions
1, . . . , 6 are not considered.

(8)

Each entry ai,j, i = 1, . . . , 5; j = 1, . . . , 5, of matrix
(8) denotes the number of interactions between the cor-
responding machine tools (nodes) Mj and Mi. The entry
value a3,5 = 2 indicates that there are two interactions
between machine tools (nodes) 5 and 3. An entry value
1 indicates one interaction, while the empty entries point
to zero interactions.

Organising the data in matrix (8) organises the mod-
els that it represents, and thus enables their synthesis.
The implementation of the extended topological sort-
ing algorithmpresented next illustrates transformation of
‘as-is’ matrix into a lower-diagonal form that streamlines
the component processes.

The following two definitions are introduced for use
in the algorithm.

Node: Depending on the nature of the model it may
denote a task, activity, machine tool, input, output, or an
object.

Origin node: A node that does not have any inputs.
Destination node: A node that does not have any

outputs.
The extended topological sorting algorithm searches

for either the origin or the destination node. If the origin
is identified it is placed at the beginning of the solu-
tion sequence, while the destination node is placed at the
end of the solution sequence. This extension makes the
algorithm more efficient, and it enhances its visibility.

The extended topological sorting algorithm

Step 1: Set iteration number r = 1. The solution set
S = {Empty}.

Step 2: Draw a horizontal line through empty row k of
incidence matrix [ai,j] or draw a vertical line
through empty column l of incidence matrix
[ai,j].

Step 3: Draw a vertical line through column k of the
incidence matrix (same column number k as
the row number in Step 2) of the incidence
matrix or draw a horizontal line through col-
umn l (same row number l as the column num-
ber in Step 2).

Step 4: If horizontal line k drawn first, include label k
corresponding the cross-out row k and column
k of the matrix at the beginning of the solu-
tion set S. Delete row k and column k from the
matrix. If horizontal line l is drawn first, include
label l corresponding to the cross-out column l
and row l of the matrix at the end of the solu-
tion set S. Delete column l and row l from the
matrix.

Step 5: If each row and column of the incidence matrix
has been labelled, stop; otherwise set r = r+ 1
and go to Step 2.

The extended topological sorting algorithm is illustrated
with the data in matrix (8) representing the three digital
models of Figure 10.

Iteration r = 1. A horizontal line is drawn through
the empty row M4, and a vertical line is drawn through
column M4 as shown in (9). M4 is the origin.

(9)
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Figure 11. The integrated digital model.

The solution set is updated, S = {M4}. Row M4 and
column M4 are crossed out in matrix (9).

Iteration r = 2. A vertical line is drawn through the
empty columnM1, and a horizontal line is drawn through
rowM1 of the reducedmatrix (9) resulting inmatrix (10).
M1 is the destination.

(10)

The solution set is updated, S = {M4, M1}. The col-
umn M1 and row M1 are crossed out in matrix (10).

Iteration r = 3 leads to matrix (11) with the solution
set S = M4, M5, M1.

(11)

Iteration r = 4 results in matrix (12) with the solution
set S = M4, M5, M3, M1.

(12)

The final iteration produces the solution set S = {M4,
M5, M3, M2, M1} is illustrated in matrix (13) with the ‘∗’
entries placed on the diagonal to enhance visibility of the
lower triangular matrix.

(13)

The only difference between the original matrix (8)
and the solution matrix (13) is in the sequence of rows
and columns.

This solution in matrix (8) allows to synthesise the
threemodels in Figure 10 in the integratedmodels shown
in Figure 11.

The models contained in the universal manufacturing
cloud may be of different degree of completeness. The
labelled inputs and outputs 1, . . . , 6 of the models in
Figure 10 were not considered in the algorithm leading
to the model in Figure 11. They are incorporated in the
representation discussed in the next section.

7.2. The input–output digital model representation

The representation inmatrix (14) lists interaction (inputs
and outputs) rather than tasks considered in matrix (8).
For example, the entry (6, 5) in matrix (6) indicates that
the relationship between input 5 and output 6 of the
models in Figure 10 has occurred twice.

(14)

The extended topological sorting algorithm is illus-
trated with the data in matrix (15).

Iteration r = 1. A horizontal line is drawn through the
empty row 1, and a vertical line is drawn through column
1 of (15). Row (output) 1 is the origin.

(15)

The solution set is updated, S = {1}. The row 1 and
column 1 are deleted from matrix (15).

Iteration r = 2. A vertical line is drawn through the
empty column 2, and a horizontal line is drawn through
row 2 of the reduced matrix (15) resulting in matrix (16).
Node (input) 2 is the destination.

(16)

The solution set is updated, S = {1, 2}. Column 2 and
row 2 are deleted from matrix (16).

Iteration r = 3 leads to matrix (17) with the solution
set S = {1, 5, 2}.

(17)

Iteration r = 4 leads to matrix (18) with the solution
set S = {1, 5, 6, 2}.

(18)
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Figure 12. An integrated model.

Iteration r = 5 leads to matrix (19) and the final solu-
tion set S = {1, 5, 6, 4, 3, 2}.

(19)

The lower triangular matrix (20) derived from matrix
(14) represents the final solution S = {1, 5, 6, 4, 3, 2}.

(20)

The solution inmatrix (20) is synthesised in the digital
model presented in Figure 12.

The integrated model in Figure 12 is one of many
models representing the solution in matrix (20). It
includes elements that were present in matrix (20). They
include the process start node a and end the node z aswell
as the exclusive OR (x) logical connectors, all following
the BPMN methodology. While the start and end nodes
could be naturally incorporated in any model, the logical
connectors require additional information that could be
stored elsewhere. In the absence of such information, no
connectors would be specified.

Themodels in Figures 11 and 12 differ in the topology
as they were constructed using different data. Matrix (14)
contains more information than matrix (7) and therefore
the former has recognised the existence of three machine
tools M3 captured in the model in Figure 12.

7.3. How to handle cycles in digital models?

The extended topological sorting algorithm synthesises
the component models that once integrated do not form
cycles. The latter may occur inmost applications for vari-
ous reasons, e.g. the phenomenon represented by a digital
model may contain it or they may result from errors. The
triangularisation algorithm presented in Kusiak, Larson,
and Wang (1994) can be applied to discover cycles in
models using thematrix representation of this paper. Any
cycle located calls for action. It is natural to expect that

some cycles will form due to data errors. Identifying such
errors is an added benefit of using algorithms for model
synthesis.

8. Conclusion

The industry is evolving to best respond to potential
interruptions, which in the recent decades have been rel-
ativelyminor. This evolution is likely to take a new course
due to the increasing pressure around resiliency and sus-
tainability. The fact that industry has embraced digiti-
sation makes it more amenable to absorbing changes as
software offers an adaptation advantage over the man-
ufacturing hardware. It is obvious that manufacturing
delivers only when the hardware and software coexist.
The concepts and solutions offered in this paper focused
on using the data platform of manufacturing to make
it more efficient and resilient in the face of disruptions
that are known or could be unknown. Increased pres-
ence of manufacturing enterprises, from small to large,
in a cloud was suggested. The universal manufactur-
ing concept advocated in the paper requires greater for-
malisation and standardisation of digital models repre-
sented in the cloud. A framework for forming enter-
prises based on product and process specifications was
offered. The proposed framework includes matrix repre-
sentations designed to meet the cloud reality and algo-
rithms illustrating its operations. The ideas presented in
the paper may open door to further research endeavours
aimed at increased resiliency of manufacturing enter-
prises and democratisation of manufacturing by broad-
ening participation of small and previously unseen enter-
prises in the universal manufacturing cloud.
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