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Fast Low Rank Column-Wise Compressive Sensing
for Accelerated Dynamic MRI
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Abstract—This work develops a novel set of algorithms, alternat-
ing Gradient Descent (GD) and minimization for MRI (altGDmin-
MRI1 and altGDmin-MRI2), for accelerated dynamic MRI by as-
suming an approximate low-rank (LR) model on the matrix formed
by the vectorized images of the sequence. The LR model itself is
well-known in the MRI literature; our contribution is the novel
GD-based algorithms which are much faster, memory-efficient, and
‘general’ compared with existing work; and careful use of a 3-level
hierarchical LR model. By ‘general,’ we mean that, with a single
choice of parameters, our method provides accurate reconstruc-
tions for multiple accelerated dynamic MRI applications, multiple
sampling rates and sampling schemes. We show that our methods
outperform many of the popular existing approaches while also
being faster than all of them, on average. This claim is based on
comparisons on 8 different retrospectively undersampled multi-coil
dynamic MRI applications, sampled using either 1D Cartesian
or 2D pseudo-radial undersampling, at multiple sampling rates.
Evaluations on some prospectively undersampled datasets are
also provided. Our second contribution is a mini-batch subspace
tracking extension that can process new measurements and return
reconstructions within a short delay after they arrive. The recovery
algorithm itself is also faster than its batch counterpart.

Index Terms—Compressed sensing, low-rank, MRI.

I. INTRODUCTION

DYNAMIC Magnetic Resonance Imaging (MRI) is a pow-
erful imaging modality to non-invasively capture time

evolving phenomena in the human body, such as the beating
heart, motion of vocal tract during speaking, or dynamics of
contrast uptake in brain. A long standing challenge in MRI
is its slow imaging speed which restricts its full potential in
the achievable spatial or temporal resolution. From a signal
processing standpoint, in MRI, one measures the 2D discrete
Fourier transform (FT) of a slice of the organ being imaged, one
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FT coefficient (or one line of coefficients) at a time. This makes
the imaging slow. Accelerated/undersampled/compressive MRI
is one of the key practical applications where Compressive
Sensing (CS) ideas have been extensively used for speeding up
the scan. This includes both work that uses traditional (sparse)
CS [2], [3] for single image MRI, as well as later work that relies
on the low-rank (LR) assumption, e.g., [4], [5], [6], [7].

A. Our Contributions

This work develops a fast, memory-efficient, and ‘general’
algorithm, called altGDmin-MRI, for accelerated dynamic MRI
by assuming an approximate LR model on the matrix formed
by the vectorized images of the sequence. In analogy with
traditional (sparse) CS, we refer to the problem of reconstruction
with this modeling assumption as approximate LR column-wise
CS (LRcCS). We should mention here that LRcCS based models
have been extensively used in past work in MRI [4], [5], [6], [7],
[8], [9]. Our contribution is a novel set of algorithms that assume
a 3-level hierarchical LR model; and extensive experiments to
demonstrate that these are both fast and “general” (with a single
set of parameters, these provide good enough reconstructions for
many different MRI applications, sampling schemes and rates).
Our methods are modifications of a fast GD-based algorithm
that was developed and theoretically analyzed in our recent
work [10].

Our second contribution is mini-batch and online “subspace
tracking” extensions of altGDmin-MRI that can process new
measurements and return reconstructions after a much shorter
data acquisition delay than the full batch solution. The online
extension needs to be initialized with a mini-batch of mea-
surements, but, after that, it returns the reconstruction as soon
as a new frame of measurements arrives. The reconstruction
algorithms are also faster and more memory-efficient than their
batch counterpart, but with a gradual degradation in quality as
batch size is reduced.

Reconstruction algorithm speed is an important concern in ap-
plications needing low latency such as real-time interactive MRI,
interventional MRI, or biofeedback imaging. Moreover, imme-
diate reconstructions can also allow for on the fly identification
of certain artifacts, which can be immediately corrected (e.g.,
adjusting center frequency to minimize off-resonance artifacts,
re-scanning if subject experiences sudden motion such as cough,
etc). Finally, even in offline settings, if a reconstruction can be
obtained without making the patient wait too long, it would
considerably improve clinical workflow and overall throughput.
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TABLE I
WE REPORT ERROR (RECONSTRUCTION TIME IN SECONDS). HERE ERROR IS

THE MONTE CARLO AVERAGE OF ‖X −X∗‖2F /‖X∗‖2F OVER 50
REALIZATIONS. COMPARISONS ON A 30 X 30 X 90 IMAGE PIECE OF THE

PINCAT SEQUENCE (n = 900, q = 50) USING m = n/10 RANDOM

GAUSSIAN (GAUSSIAN) OR RANDOM FOURIER (FOUR.) MEASUREMENTS.

Fast reconstructions therefore help reduce the overhead cost
associated with re-scheduling patient scans.

B. Existing Work

Provable LRcCS Solutions With Only Simulation Experi-
ments. There are three existing provable solutions to the LRcCS
problem. The first is an Alternating Minimization (AltMin)
solution that is designed to solve a generalization of LRcCS [11],
[12], and hence also solves LRcCS. The second studies a convex
relaxation called mixed norm minimization (MixedNorm) [13].
The third is the altGDmin solution [10] that we modify in
the current work. The convex solution is extremely slow, both
theoretically and experimentally; and it has a worse sample
complexity in regimes of practical interest; see Table I and
see [10]. The AltMin solution is faster than the convex one, but
still significantly slower than AltGDmin [10]. All the proven
theoretical guarantees are for random Gaussian measurements
(each entry of each Ak is an independent identically distributed
standard Gaussian) but, as in case of (sparse) CS [2], [14],
[15], we expect the qualitative implications to remain true also
for MRI which involves use of undersampled Fourier measure-
ments.

MRI Literature: LR and Sparsity Based Approaches. Since
the work on CS in the early 2000s there has been extensive
work on exploiting sparsity of the image or of the sequence in
different dictionaries and bases in order to enable accelerated
MRI, e.g., see [2], [16] and follow-up work. For settings where
joint reconstruction of a set of similar images is needed, LR is
a more flexible model since it does not require knowledge of
the sparsifying basis or dictionary. MR images change slowly
over time and hence are well-modeled as being approximately
LR. Prior LR model based solutions from the MRI literature
include [5], [6], [7], [8], [9], [17] can be classified into two
broad categories: (a) methods which enforce the LR constraint
explicitly, e.g., via explicit estimation of the temporal subspace
from low spatial, but high temporal resolution, training data [4],
[8], [9] and follow-up works in which improved self navigated
Partially Separable Function (PSF) models were proposed [18],
[19], and (b) methods that enforce the LR constraint in an
implicit manner, e.g., via the nuclear or Schatten-p norm regular-
ization with p < 1 as in k-t-SLR [5] and follow-up work [6], [7].
Some of these, such as k-t-SLR [5] and PSF-sparse [9], assume
both sparsity and LR models on the sequence.

A related line of work models the matrix formed by the
MRI sequence as being LR plus sparse (L+S). These methods
decompose the dynamic time series as a sum of a LR component

modeling smoothly varying time series (e.g. object background,
and/or smooth contrast changes as in perfusion MRI), and a
sparse component which models the other changes in the image;
see [20] (L+S-Otazo), [21] (L+S-Lin), and follow-up works,
e.g. [22], [23]. Furthermore, motion often breaks down the as-
sumption of low rank in dynamic MRI. There has been extensive
work on motion estimation and compensation before imposing
the structural assumptions [16], [24], [25], [26].

An important challenge with k-t-SLR, L+S-Otazo, L+S-Lin,
and most of the above works, is the need for carefully tun-
ing the parameters (regularization parameters and other hyper-
parameters associated with the iterative optimization algo-
rithm) for different dynamic MRI applications. Most published
work provides results and code/parameters that work well for
only the chosen application (e.g., different set of parameters
are provided for cardiac perfusion, and cardiac cine MRI in
the open source codes of k-t SLR and L+S-Otazo). A sec-
ond limitation of the iterative optimization algorithms devel-
oped in the above works is that they are slow and memory-
inefficient (process the entire matrix X at each iteration). Both
these limitations are exaggerated for the motion compensa-
tion methods: these have even more parameters and are even
slower.

MRI Literature: Deep Learning (DL) Methods. There has
been much recent work on the use of various DL techniques
in the MRI literature. The most common ones are supervised
DL reconstruction schemes, e.g., [27], [28], [29], [30], [31],
[32], [33], [34], [35]. These need a large numbers of fully
sampled training data points. While such data can be acquired
in static imaging applications (e.g., by extending scan times
from cooperative volunteers, or compliant patients), it is not
straightforward to acquire sufficient number of fully sampled
image sequences for dynamic imaging applications, and defi-
nitely not for high time resolution applications, which warrant
the need for highly under-sampled acquisitions in the first place.
For this reason, a majority of supervised DL models have been
used to perform reconstruction frame by frame in dynamic
MRI [27], [28], [29], [30], [31], [32], [33]. This approach does
not fully exploit redundancies along the temporal dimension
and hence often provides worse reconstructions than sparsity
or LR based methods. Moreover, DL model learning/training
can be very computationally, and hence energy-wise, expensive
since each parameter requires retraining the network. Finally,
the parameters are learned for one specific MRI application,
and the same network does not give good results for another
application. Good quality training sequences can be acquired
in situations where the motion may be freezed, e.g., in breath
held segmented cardiac cine MRI by breathholding, and ECG
gating [32], [33], [34], [35]. These remove the first limitation
above, but not the other two. Also, their memory requirement is
the biggest limitation.

In recent literature, unsupervised DL based approaches have
been proposed and evaluated, these can exploit spatio-temporal
redundancies without the need for fully sampled training
datasets [36], [37]. However, since these approaches do not
use a pre-trained network, but instead train the network on the
test/query data, they are orders of magnitude slower compared
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with both query processing time of supervised DL methods or
ours or any of the LR or sparsity based methods.

Other Related Work on Online or Mini-Batch Algorithms.
Other somewhat related work from the compressive sensing
MRI literature that also develops online or minibatch algorithms
includes [38], [39], and follow-up methods.

C. Paper Organization

We provide the notation and the 3-level approximate-LRcCS
problem formulation in Section II. The algorithms are devel-
oped in Section III. Mini-batch and online subspace tracking
approaches are described in Section IV. Detailed experimental
evaluations and comparisons are provided in Section V. Our
experimental conclusions and various other issues are discussed
in Section VI. We conclude in Section VII.

II. NOTATION AND PROBLEM FORMULATION

A. Notation and Problem Setting

We use [q] := {1, 2, . . . , q}. Everywhere, ‖.‖F denotes the
Frobenius norm, ‖.‖ without a subscript denotes the (in-
duced) l2 norm, � denotes (conjugate) transpose, and M † :=
(M�M)−1M�. For a vectorw, |w| computes the magnitude of
each on entry of w. For a scalar γ, 1(w ≤ γ) returns a vector of
1s and 0s of the same size asw with 1s wherew(k) ≤ γ and zero
everywhere else. Here w(k) is the k-th entry of w. We use ◦ to
denote the Hadamard product (.* operation in MATLAB). Thus
z := w ◦ 1(|w| ≤ γ) zeroes out entries of w with magnitude
larger than γ. For two n× r matrices U1,U2 with orthonormal
columns, we use SD(U1,U2) := ‖(I −U1U1

�)U2‖F as the
Subspace Distance (SD) between the subspaces spanned by their
columns.

Let n be the number of pixels in each (unknown) image
of the sequence and let q be the total number of images in
the sequence. We denote the vectorized (unknown) image at
frame k by z∗k; this is an n-length vector. We denote the matrix
formed by all the q images in the sequence by Z∗. Thus Z∗ :=
[z∗1, z

∗
2, . . . ,z

∗
k, . . . ,z

∗
q] is ann× q matrix. The acquired under-

sampled MRI data/measurements (after some pre-processing)
are linear functions of each image. For simplicity of explaining
the algorithms (and for comparing the with older theoretical
work in this area), we model this linear transformation using
a matrix Ak of size mk × n. Thus, our goal is to recover the
image sequence matrix Z∗ from

yk := Akz
∗
k, k ∈ [q] (1)

when mk � n, by making structural assumptions on the matrix
Z∗. For single-coil dynamic MRI,

Ak = HkF

where F is an n× n matrix that models computing the 2D
discrete Fourier Transform (DFT) of the vectorized image as a
matrix-vector product. The matrixHk is a matrix of sizemk × n
with entries being either one or zero. It contains exactly one
1 in each row (corresponding to the observed DFT frequency
location converted to 1D coordinates). The mask matrix Hk

is decided by the sampling trajectory (specified in Section V).
In case of multi-coil dynamic MRI with mc coils, there are
mc receive channels with each measuring a subset of Fourier
coefficients of a differently weighted version of the cross-section
to be imaged.

In matrix-vector notation, this can be modeled as follows. Let
yk,j denote the measurements at the j-th coil. Then,

yk =

⎡
⎢⎢⎢⎢⎣

yk,1

yk,2

...

yk,mc

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

HkFD1

HkFD2

...

HkFDmc

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Ak

z∗k

where Dj = diag(dj , j = 1, 2, . . . , n) are n× n diagonal ma-
trices with diagonal entries (entries of the vector dj) being
the coil sensitivities of the j-th coil. We should point out that
Djx = dj ◦ x, thus Djx is equivalent to weighting the l-th
pixel xl by (dj)l. Each yk,j is of length mk, thus yk is of length
mk ·mc.

Let m = maxk(mk). We define the m× n matrix Y =
[(y1)long, (y2)long, . . . , (yq)long]with (yk)long being the vector
yk followed by (m−mk) zeros. Similarly let (Ak)long be an
m× n matrix with (m−mk) rows of zeros at the end. Then,
the above model can also be expressed as

Y=A(X∗):=[(A1)long(x
∗
1), (A2)long(x

∗
2), . . . ,(Aq)long(x

∗
q)]

(2)

Similarly A�(Y ) returns the n× q matrix X = A�(Y ) :=
[(A1)

�
long(y1)long, (A2)

�
long(y2)long, . . . , (Aq)

�
long(yq)long].

The above matrix vector model remains valid when the ob-
served samples are available on Cartesian grid; either they are
acquired on a Cartesian grid or are mapped onto a Cartesian
grid. In actual algorithm implementation, all of the above is
implemented efficiently using the 2D fast Fourier transform
(fft2) function along with appropriate undersampling or use of
Hadamard product. When directly using true radial samples, the
main ideas above and in our algorithms given below are still
exactly the same, except that fft2 gets replaced by non-uniform
FT (NUFT). We use the method of [40] for a fast NUFT.

Writing the model as above makes the ideas easier to follow
for readers who are not MRI experts.

B. Hierarchical LR Model on Image Sequence Matrix, Z*

Most MRI sequences have a certain baseline component that is
roughly constant across the entire sequence. Denote this baseline
component or “mean” image by z̄∗. It can be verified experi-
mentally that this mean image has significantly larger energy
compared to the residual image obtained after subtracting it out.
Secondly, even after mean subtraction, MR image sequences
are only approximately LR, i.e., the residual image obtained
after subtracting the mean and the LR components is still not
zero, but has a small magnitude compared to the LR component.
It is therefore easier to estimate it once the projections of the
estimates of the first two components have been subtracted
out. Similarly the LR component is easier to estimate once the
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projections of the mean estimate have been subtracted out. Thus
the following 3-level model is the most appropriate for dynamic
MRI: the k-th vectorized MR image, z∗k, satisfies

z∗k = z̄∗ + x∗k + e∗k, for all k ∈ [q],

with the assumption that ‖e∗k‖ � ‖x∗k‖ � ‖z̄∗‖, and the x∗k’s
form a rank r matrix X∗ := [x∗1, . . . ,x

∗
k, . . . ,x

∗
q] with r �

min(n, q). Here e∗k is the unstructured residual signal compo-
nent, which we refer to as the modeling error. We will consider
two models on e∗k. The first does not assume any structure on
e∗ks except assuming that their magnitude is small. The second
assumes thate∗ks are small magnitude, and sparse in the temporal
Fourier domain (rows of the matrix E∗ are Fourier sparse).

The first model can be interpreted as a 3-level LR model: the
first level is a special case of the LR model with rank 1: the “mean
image” matrix, z̄∗1� (where1 is a vector of q 1’s) has rank = 1;
the second level is matrix X∗ which has rank = r; and the
third level is the rank = min(n, q) matrix E∗. Our assumption
implies ‖z̄∗1�‖F 	 ‖X∗‖F 	 ‖E∗‖F .

III. ALTGDMIN-MRI ALGORITHMS

A. AltGDmin-MRI Overall Idea

We develop a 3-level hierarchical algorithm that first recovers
z̄∗, then the x∗ks, and then e∗ks. Under the modeling assumption
that ‖z̄∗‖ 	 ‖x∗k‖ 	 ‖e∗k‖, the recovery of z̄∗ becomes the
following least squares (LS) problem:

min
˜̄z

q∑
k=1

‖yk −Ak˜̄z‖2.

Denote its solution by z̄. Next, we estimate the rank-r matrix
X∗ (and the rank r itself) from the measurement residuals,

ỹk := yk −Akz̄, k ∈ [q]

by using an automated version of altGDmin for LRcCS [10]
applied to ỹks. This is described below in Section III-B. Denote
its output by X . The last step, which we refer to as Modeling
Error Correction (MEC), involves estimating the modeling error
e∗k from the new measurement residuals

˜̃yk := yk −Akz̄ −Akxk, k ∈ [q]

Depending on which of the two models is assumed on e∗k, the
steps to estimate it are different. We describe them in Section II-
I-C. Denote the output of either step by E.

The final output is Z := [z1, z2, . . . ,zq] with zk = z̄ +
xk + ek. We summarize these steps in Algorithm 1.

B. Automated AltGDmin

Recall that ỹk’s are the measurement residuals after subtract-
ing the projections of the estimated mean. Our next goal is to
estimate a rank r matrix X that minimizes

f̃(X) :=

q∑
k=1

‖ỹk −Akxk‖2

Motivation for a Novel GD-Based Algorithm. We would like
a GD based solution since those are known to be much faster

Algorithm 1: altGDmin-MRI. CGLS is the Code From [41].

1) Solve minz̄
∑q

k=1 ‖yk −Akz̄‖2 using CGLS with
tolerance 10−3 and maximum number of iterations 10.
Denote the solution by z̄.

2) a) For each k ∈ q, compute ỹk := yk −Akz̄.
b) Run Algorithm 2 (auto-altGDmin) with ỹk,Ak as its
inputs. Its output is X .

3) a) For each k ∈ q, compute ˜̃yk := yk −Akz̄ −Akxk.
b) Run step 1 (altGDmin-MRI1) OR step 2
(altGDmin-MRI2) of Algorithm 3 The output of either
is the matrix E.

Output Z := [z1, z2, . . . ,zq] with zk = z̄ + xk + ek.

Algorithm 2: auto-altGDmin: altGDmin With Automated
Parameter Setting. Let M † := (M�M)−1M�.

1: Input: ỹk,Ak, k ∈ [q].
2: Initialization:
3: Compute γ = 36

∑
ki |ỹki|2/mq,

ỹk,tnc = ỹk ◦ 1{|ỹk| ≤ √γ}, m̄ =
∑q

k=1 mk/q, and
compute

X0 :=

[
1√
m1m̄

(A�1 ỹ1,tnc), . . .,
1√
mkm̄

(A�k ỹk,tnc), . . .,

1√
mqm̄

(A�q ỹq,tnc)

]

4: Let σj = σj(X0). Set r̂ as the smallest integer for which

r∑
j=1

σ2
j ≥ (b/100) ·

min(n,q,mcmink mk)/10∑
j=1

σ2
j , b = 85.

5: Set U0 ← top r̂ left singular vectors of X0

6: GDmin iterations: Set Tmax = 70
7: for t = 1 to Tmaxdo
8: Let U ← U t−1.
9: Update B: For all k ∈ [q], bk ← (AkU)†ỹk.

10: Update X: For all k ∈ [q], xk ← Ubk
11: Gradient compute:

∇Uf(U ,B)←
q∑

k=1

A�k (AkUbk − ỹk)b
�
k

12: If t = 1, set η = 0.14/‖∇Uf(U ,B)‖.
13: GD step for U : U+ ← U − η∇Uf(U ,B)

14: Projection for U : U+ QR
= U+R+. Set U t ← U+.

15: EXIT loop if SD(U ,U+)/
√
r̂ < εexit = 0.01

16: end for
17: Output: X := [x1,x2, . . . ,xq].

than both AltMin and convex relaxation methods [10], [42].
As explained in detail in [10], neither of the two commonly
used GD approaches from LR recovery literature, and LR ma-
trix completion (LRMC) in particular, – projected GD on X
(projGD-X) [42] or alternating GD with a norm balancing term
(altGDnormbal) [43], [44] – provably works for the LRcCS
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measurement model. The reason is that, in both cases, the
estimates of the columns x∗k are too coupled. Moreover, even
for LRMC for which these approaches do work, projGD-X
is memory-intensive: it requires memory of order nq; while
altGDnormbal is slow: it needs a GD step size that is 1/r or
smaller [43], [44], making it r-times slower than GD with a
constant step size. The following modification, that we dub
altGDmin, is as fast per-iteration as projGD-X , as memory-
efficient as altGDnormbal, and yet its estimate are only mildly
coupled (they are uncoupled given an estimate of the column
span of X∗). Because of this, AltGDmin is amenable to analysis
that helps show that, in the random Gaussian measurement
setting, the algorithm converges fast – the required number
of iterations to achieve ε accuracy grows as log(1/ε) – while
needing a small number of samples [10].

AltGDmin Algorithm. Rewrite the unknown matrixX asX =
UB, where U is n× r and B is r × q, and consider

f(U ,B) := f̃(UB) =

q∑
k=1

‖ỹk −AkUbk‖2.

AlGDmin involves iterating over the following two steps after
starting with a carefully designed initialization for U .

1) For each new estimate ofU , we solve forB by minimizing
over it while keeping U fixed at its current value. Because
our measurements are column-wise decoupled (ỹk does
not depend on any other image except the k-th one),
the minimization step gets decoupled for the different
columns of B, i.e.,

min
B

f(U ,B) =

q∑
k=1

min
bk

‖ỹk −AkUbk‖2.

This problem is now a very quick column-wise least
squares (LS) problem with bk being an r-length vector
and AkU being an mk × r matrix. Thus, the complexity
is only mkr

2 · q (for solving q individual LS problems)
plus the cost of computing AkU for all k ∈ [q]. The total
complexity for this step is thus similar to that of one GD
step for U .

2) We use projected GD for updating U : one GD step w.r.t.
U followed by projecting onto the space of orthonormal
matrices (by using QR decomposition).

Finally, since f(U ,B) is not convex in the unknowns
{U ,B}, the above algorithm needs a careful initialization of
one of them. Using the standard approach from LR recovery
literature, we can initializeU by computing the top r left singular
vectors of the matrix

X0 =

[
1

m
A�1 ỹ1, . . . ,

1

m
A�k ỹk, . . . ,

1

m
A�q ỹq

]

When the measurement matrices Ak are random Gaussian,
a truncation/thresholding step, that zeros out entries of ỹk

with magnitude much larger than the root mean squared value√∑
ki ỹ

2
ki/mq, is required on each ỹk before computing the

above matrix. This step helps to filter out the very large mea-
surements (those whose ỹ2

ki is much larger than the expected
value) and helps ensure that the new matrix has entries which

are sub-Gaussian1. In the MRI setting, since the matricesAk are
subsampled Fourier, if the measurements are indeed noise-free
as assumed in (1) and the matrix satisfies the incoherence as-
sumption given earlier, then the above is not needed. The reason
is, in this case, ‖aki‖2 = 1 2 and so, ỹ2

ki ≤ maxk ‖z∗k − z̄‖2 for
all i, k. However, in practice, there have be either measurement
or image outliers: in some acquisitions, there may be occasional
large noise or, certain images z∗k may be outliers, e.g., this would
happen if the subject took a deep breath during acquisition. The
truncation step helps filter out such measurements. If there are no
outliers or large noise, then it does nothing and hence it does not
worsen performance either. Another minor change is needed:
since mk �= m1 (time varying number of measurements), in
order to prove a guarantee similar to our result from [10],
one needs to replace the 1/m factor by 1/

√
mkm̄ where m̄ =∑q

k=1 mk/q. We specify X0 with these modifications in line 5
of Algorithm 2.

AltGDmin Parameter Setting. The parameters for AltGDmin
are the rank r, the GD step size η, and the maximum number
of iterations T along with a stopping criterion to exit the loop
sooner if the estimates do not change much.

For approximately LR matrices, there is no one correct choice
of r. We use the following constraints to find a good approach.
We need our choice of rank, r̂, to be sufficiently small compared
to min(n, q) for the algorithm to take advantage of the LR
assumption. Moreover, for the LS step for updating bk’s to work
well (for its error to be small), we also need it to be small com-
pared withmcmink mk. Based on just these constraints, one can
set r̂ = min(n, q,mcmink mk)/10. Or, one can compute the
“b% energy threshold” of the first min(n, q,mcmink mk)/10
singular values, i.e., compute r̂ as the smallest value of r for
which

r̂∑
j=1

σj(X0)
2 ≥ (b/100) ·

min(n,q,mcmink mk)/10∑
j=1

σj(X0)
2.

for a b ≤ 100. Here σj(X0) is its j-th singular value. We use
this latter approach with b = 85. We have experimented with
other values as well in the 80-95% range, and the algorithm is
not very sensitive to this choice.

We set the GD step size η = 0.14/‖∇Uf(U0,B0)‖ where
U0,B0 are the initial estimates. Assuming that the gra-
dient norm decreases over iterations, this implies that η ·
‖∇Uf(U t,Bt)‖ ≤ 0.14 < 1 always. Since ‖U t‖ = 1 (due to
the QR decomposition step), this ensures that a GD step is
never too big. To decide T (maximum number of iterations), we
stop the GD loop when SD(U t−1,U t) < εexit

√
r while setting

Tmax = 70 so that no more than 70 iterations are run. We set
εexit = 0.01.

We summarize the complete algorithm, with the above pa-
rameter settings, in Algorithm 2.

As suggested in [10], one can also set η as η =
c/(m‖U0B0‖2) with a c < 1. This is a conservative approach

1In our proofs, this allows us to use the sub-Gaussian Hoeffding inequality [45]
to get our desired bound the initialization error.

2or some constant that is the same for all i, k and depends on how the Fourier
matrix is normalized
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that is needed for proving guarantees which are only sufficient
conditions and will lead to slower convergence.

AltGDmin Guarantee. Theorem 2.1 of [10] proved the fol-
lowing for AltGDmin with parameters as specified there.

Theorem 3.1: Suppose that Z∗ = X∗, i.e., it is a matrix
with rank r, and ỹk = yk. Suppose also that each Ak is
m× n and i.i.d. random Gaussian. Assume that maxk ‖x∗k‖2 ≤
μ2‖X∗‖2/q for a constant μ (incoherence parameter) that is
only a little larger than one. Let xk denote the AltGDmin esti-
mates after T = Cκ2 log(1/ε) iterations. If mq ≥ Cκ4μ2(n+
q)r2 log(1/ε), if the algorithm parameters are set as described
in [10, Theorem 2.1], then, with probability at least 1− n−10,
||x∗k − xk|| ≤ ε||x∗k|| for all k = 1, 2, . . . , q.

In the above result κ is the ratio of the first to the r-th
singular value of X∗. Treating κ, μ as numerical constants, this
is equivalent to requiring that maxk ‖x∗k‖2 ≤ C‖X∗‖2F /q for a
constantC. In practice, this means that, the different (vectorized)
images x∗k in the sequence have similar enough energy so that
the maximum energy of any one of them is not much larger than
its average, ‖X∗‖2F /q. This fact is very valid for MRI datasets.

C. Model Error Correction (MEC): Two Models and
Algorithms

MEC Using Model 1 (No Structure on E∗): AltGDmin-MRI1.
Recall that this model assumes no structure on e∗k except that it
has small magnitude. We thus recover each ek individually by
solving

min
e
‖˜̃yk −Ake‖2

for each k, while imposing the assumption that ‖e‖2 is small. An
indirect way to enforce this, while also getting a fast algorithm,
is to start with a zero initialization and run only a few iterations
of GD to solve the above minimization problem.

Parameter Setting for MEC-1. We use the Stanford Conjugate
Gradient LS (CGLS) code [41] for solving the above minimiza-
tion. We used this code with tolerance of 10−36 and maximum
number of iterations 3.

This is summarized in Algorithm 3.
MEC Using Model 2 (Temporal Fourier Sparse E∗):

AltGDmin-MRI-2. Our second model assumes Fourier sparsity
of the modeling error along the time axis. To be precise, we are
assuming that

S∗ := Frow(E
∗)

is a row sparse matrix (matrix whose rows are sparse vectors).
Here, the operator Frow computes the 1D DFT of each row of
its argument. We thus have the following model on the images’
matrix Z∗:

Z∗ = (z̄∗1�) +X∗ +E∗, E∗ := F−1row(S
∗)

with ‖E∗‖F � ‖X∗‖F � √q‖z̄∗‖ and S∗ being row sparse.
To estimate E∗ under this model, we use the Iterative Soft

Thresholding Algorithm (ISTA) for sparse recovery [46] which
was also used in [20]. For recovering an unknown sparse s from
y := As, this starts with a zero initialization, s = 0, and runs
the iterations: s← SThrω(s+A�(y −As)). Here SThrω(s)

is the Soft-Thresholding operator; it zeroes out entries of s that
are smaller than ω while shrinking the larger magnitude entries
towards zero by ω, i.e. [SThrω(s)]i = sign(si)(|si| − ω) if
|si| > ω and [SThrω(s)]i = 0 otherwise.

For our model, this translates to the following iteration. Com-

pute the residual ˜̃Y := Y −A(z̄1�)−A(X). Update E by
running the following iteration starting with E = 0:

E ← F−1row(SThrω(Frow(E +A�( ˜̃Y −A(E)))))

This is summarized in Algorithm 3.
The temporal Fourier sparsity model has been used for im-

posing the L+S assumption for dynamic MRI in [20], [21],
and follow-up works. We should clarify that, in this work, we
are not imposing the L+S model, instead we are assuming a
3-level hierarchical model, with sparsity being used to model the
residual in the third level. The assumption ‖E∗‖F � ‖X∗‖F
makes our model different from the regular L+S model which
assumes Z∗ = X∗ +E∗ with no assumption on one of them
being smaller in magnitude than the other. From our experiments
in Section V, in an average sense, our algorithm, altGDmin-
MRI2 that uses our model, gives better reconstructions (both in
terms of error and visually). However, this may be either because
the assumed models are different or because the reconstruction
algorithms are very different too: we use a GD-based algorithm,
while [20], [21], use different algorithms to solve the convex
relaxation of the L+S model. This issue will be explored in more
detail in future work where we plan to also develop and evaluate
a GD-based algorithm under the L+S assumption.

Parameter Setting for MEC-2. We used soft thresholding with
threshold as given in Algorithm 3.

D. Implementation

We write things as above only for ease of explanation. In
our implementation, we never use matrix-vector multiplication
for computing Akx or A�ky, since that is much more memory
intensive and much slower than using Fast FT (FFT). Also,
we use various MATLAB features and linear algebra tricks to
remove “for” loops wherever possible. Code is provided at the
link given in Section V.

IV. ALTGDMIN BASED SUBSPACE TRACKING

The algorithms discussed so far are batch methods, i.e., they
require waiting for all the measurements to be taken. This means
that they cannot be used in applications that require near real-
time reconstructions (explained in Section I-A).

A. Mini-Batch Subspace Tracking

Consider the pseudo-real-time setting in which the algorithm
processes each new mini-batch of the data (here a set of α
consecutive yks) as soon as it arrives. Thus, instead of waiting
for all q measurements yk to be obtained, it only waits for a
new set of α < q measurements before processing them. For
algorithms that use the LR assumption on the data, such an
algorithm can be referred to as a Subspace Tracking solution
since it is implicitly assuming that consecutive mini-batches of
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Algorithm 3: altGDmin-MRI1 or altGDmin-MRI2.
• Unstructured MEC (altGDmin-MRI1)

Run the following
– For each k ∈ [q], run 3 iterations of CGLS to solve
mine ‖˜̃yk −Ake‖2. Denote the output by ek.

or
• Sparse MEC (altGDmin-MRI2)

Run the following ISTA algorithm
– E0 = 0, τ = 0. Repeat the following steps

* M τ ← Frow(Eτ +A�( ˜̃Y −A(Eτ )))
* If τ = 0, set ω = 0.001 · ‖M0‖max where ‖.‖max

is the maximum magnitude entry of the matrix.
* τ ← τ + 1
* Eτ ← F−1row(SThrω(M τ ))

Until τ = 10 or ‖Mτ−Mτ−1‖F
‖Mτ−1‖F < 0.0025

Output E.

Algorithm 4: altGDminMRI-ST1 and altGDminMRI-ST2:
Mini-batch Subspace Tracking with MEC model 1 (ST1) or
model 2 (ST2).

1) Let j = 1. Run Algorithm 1 on first mini-batch of α1

yks. Thus q ≡ α1 and we let Tmax,1 = 70.
Denote its final subspace estimate by U (1).

2) For each j > 1 do
a) Run Algorithm 1 with the following two changes: (i)
replace the Initialization step of altGDmin (Algorithm
2) by U0 ← U (j−1); and (ii) set Tmax,j = 5.

Denote its final subspace estimate by U (j).
End For

data lie close to the same or slightly different r-dimensional
subspaces. One can utilize this “slow subspace change” as-
sumption in the following fashion. For the first mini-batch, use
the altgdmin-MRI algorithm with q replaced by α. For later
mini-batches, use altgdmin-MRI with two changes. (1) Use the
final estimatedU from the previous mini-batch, denotedU (j−1),
as the initialization for the current one. This means that we
replace lines 2-6 of Algorithm 2 by U0 ← U (j−1). (2) Second,
reduce the maximum number of iterations for the j-th minibatch,
denoted Tmax,j , to a much lower value for j > 1 than for j = 1.

The complete algorithm is summarized in Algorithm 4. We
use Tmax,1 = 70 and Tmax,j = 5 for j ≥ 2. Depending on the
MEC step being used, we refer to the resulting algorithms as
altGDminMRI-ST1 and altGDminMRI-ST2.

B. Online Subspace Tracking

In certain other applications, after an initial short delay, a
true real-time (fully online) algorithm is needed. This means
that, each time a new yk is obtained, it should return a new
estimate xk. To obtain such an algorithm we eliminate the
mean computation step and the U update steps in online mode.
Both these are computed only for the first mini-batch and used
at all later times. Suppose the first mini-batch consists of α1

Algorithm 5: altGDminMRI-onlineST: Online Subspace
Tracking.

1) For the first mini-batch of α frames, run Algorithm 1.
Denote the computed mean image by z̄(1) and the final
subspace estimate by U (1).

2) For k > α+ 1 do:
a) Compute ỹk = yk −Akz̄

(1)

b) Let U = U (1).
c) Compute bk ← (AkU)†ỹk.
d) Compute ˜̃yk = ỹk −AkUbk
e) Compute ek by running 3 iterations of CGLS to solve
mine ‖˜̃yk −Ake‖2. Denote the output by ek.

f) Output xk = z̄(1) +Ubk + ek
End For

frames. For all times k > α1, we use the estimated mean z̄
and the estimated U from the first mini-batch. For k > α1,
for each new yk, we only update bk and ek and only using
MEC model 1 (unstructured e∗k). We summarize this algorithm,
altGDminMRI-onlineST, in Algorithm 5.

V. EXPERIMENTS

The code for all our experiments is posted at https://github.
com/Silpa1/comparison_of_algorithms. We show results on
both retrospective and prospective datasets. The retrospective
undersampling is either 2D golden-angle based pseudo-radial3

or 1D Cartesian undersampling using the sampling scheme
of [20]. Radial sampling provides a way to non-uniformly un-
dersample the 2D Fourier plane in such a way that more samples
are acquired in the center of the 2D Fourier plan (low frequency
regions in both dimensions). Directly using radially sampled
data requires use of the computationally expensive non-uniform
FT (NUFT) which makes the algorithm very slow. Previous
research has shown negligible loss in image quality if the polar
coordinates of radially undersampled data are regridded onto the
Cartesian grid, followed by use of fast FT (FFT) algorithms in the
reconstruction algorithms [48], [49], [50]. In fact, for CS-based
methods, there is sometimes an improvement in reconstruction
quality as well when using this type of regridded data (pseudo-
radial data) and we observe this in some of our experiments
too.

All experiments were conducted in MATLAB on the same PC.
AltGDmin-MRI1 and AltGDmin-MRI2 were compared with
(1) the three provable techniques – mixed norm min (Mixed-
Norm) [13], AltMin (changed for the current linear setting) [12]
and basic AltGDmin [10]; with 4 state-of-the-art methods
from the LR-based MRI literature – k-t-SLR (uses an L&S
model) [5], L+S-Otazo [20], L+S-Lin [21], and PSF-sparse [4],
[9]. For all comparisons, we used author provided code:
mixed norm min (MixedNorm): https://www.dropbox.com/sh/
lywtzc0y9awpvgz/AABbjuiuLWPy_8y7C3GQKo8pa?dl=0,

3The angular increment between successive radial spokes is determined by
the golden angle (111.25 degrees) [47]. The starting point is changed over time
so that the sampling masks are different for different images in the sequence.
The golden angle ensures maximum incoherent kspace coverage over time.
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AltMin: https://github.com/praneethmurthy/, k-t-SLR: code
was emailed by the author to us, L+S-Lin: https://github.
com/JeffFessler/reproduce-l-s-dynamic-mri, L+S-Otazo:
https://cai2r.net/resources/ls-reconstruction-matlab-code/,
PSF-sparse: http://mri.beckman.illinois.edu/software.html.

In all our experiments, one set of parameters was used. For
our two methods, parameters were set as given earlier in the
stepwise algorithms. For L+S-Lin, we evaluated it with using
author-provided parameters for cardiac data and for PINCAT.
Overall the cardiac parameters gave reduced errors and hence
we used these in all experiments. For L+S-Otazo and ktSLR also,
author-provided cardiac parameters were used, since these gave
the best results. In the codes of kt-SLR, L+S-Otazo and L+S-
Lin, the input k-space data is needed in a different format (the
sequence of frequency locations is different, due to different uses
of the “fftshift” in MATLAB). To deal with this, we converted all
algorithms and ours so that all took input k-space data in the same
format as L+S-Lin. L+S-Lin code has parameter settings that
require the input k-space data to be normalized in a certain way.
To generate the best performance for it, we did this normalization
where needed.

A. Comparison With Provably Correct Algorithms

We compared altGDmin-basic and altGDmin-mean
(altGDmin-MRI1 without the last MEC step) with Mixed-
Norm [13] and the AltMin algorithm of [11], [12], modified for
the linear LRcCS problem (replace the PR step for updating
bk’s by a simple LS step). Since these algorithms were designed
and evaluated only for random Gaussian measurements, their
code cannot be easily modified to handle large-sized image
sequences (requires use of the fft operator to replace actual
matrix-vector multiplications) or complicated MRI sampling
patterns. Hence, for this experiment, we use a 30 x 30 piece of
the PINCAT image sequence with 50 frames (n = 900, q = 50
and simulate (i) random Gaussian Ak’s and (ii) random Fourier
Ak’s (the sampling mask is obtained by selecting m 2D-DFT
frequencies uniformly at random from all n possible ones). We
report the results in Table I for m = n/10. As can be seen,
altGDmin and altGDmin-mean are more than 90-times faster
than both altMin and MixedNorm. Also, altGDmin-mean has
the lowest error. In the Gaussian setting, both altGDmin and
altGDmin-mean have similar and small errors. In the Fourier
setting, since we are selecting random frequencies, if enough
lower frequencies are not selected, the error is large. When
the mean image is estimated and subtracted, the energy in the
lower spatial frequencies is a lot lower. This is why use of mean
subtraction (altGDmin-mean) significantly reduces the error in
this case.

B. Comparisons on Retrospectively Undersampled Datasets

The error value that we report in this and later sections
is normalized scale-invariant mean squared error (N-S-MSE)
computed as follows Error = (

∑q
k=1 dist2(x∗k, x̂k))/‖X∗‖2F

where dist2(x∗, x̂) = ‖x∗ − x̂ x̂�x∗
‖x‖2 ‖2 is the scale invariant dis-

tance between two vectorized images with “scale” being a

Fig. 1. Retrospective, Cartesian, CardPerf and CardCine: Comparisons of
reconstruction algorithms on CardPerf-R8 and CardCine-R6 datasets. In row
1 and row 3, we show one original frame (14th frame) and its reconstructions. In
row 2 and row 4, we show the corresponding time profile images. The chosen cut
line is shown in Fig. 3. Error (recon time) of each algorithm is reported below
the algorithm name. Observe that kt-SLR has considerable noise enhancement
in both the datasets. AltGDmin-MRI2 (proposed) provides qualitatively similar
results to L+S-Lin and L+S-Otazo.

complex number. The reconstructed images can be complex-
valued. We also report the time taken to reconstruct the entire
sequence. The reporting format is Error (Reconstruction Time
in seconds).

We used a total of 20 datasets: 2 datasets from [21] which were
retrospectively undersampled using Cartesian variable density
random undersampling at reduction factors (R); R=8, R=6
respectively – cardiac perfusion R8 (CardPerf-R8) and cardiac
cine R6 (CardCine-R6); and 6 other applications that were retro-
spectively pseudo-radially undersampled with 4, 8 and 16 radial
lines – brain-T2-T1-rho (Brain), free breathing ungated cardiac
perfusion (UnCardPerf), a long but low-resolution speech se-
quence (Speech), two cardiac cine datasets from the OCMR
database (CardOCMR16, CardOCMR19) [51], and PINCAT.
PINCAT data was single-coil, while all others were multi-
coil. Image sequence sizes: CardPerf (n = 16384, q = 40),
CardCine (n = 65536, q = 24), Brain (n = 16384, q = 24),
Speech (n = 4624, q = 2048), UnCardPerf (n = 31104, q =
200), CardOCMR16 (n = 28800, q = 15), CardOCMR19 (n =
27648, q = 25), PINCAT (n = 16384, q = 50).

Error and time comparisons are reported in Table II. In its
last row, we display Average Error (Average Reconstruction
Time) with the average taken over the 20 previous rows. Vi-
sual comparisons are shown in Figs. 1–3. Observe that our
approaches have the best errors and are also the fastest. Both
visually, and error-wise, AltGDmin-MRI2 has either the best or
a close second-best reconstruction quality in all cases, while also
being very fast. It is not always the fastest, but it is the fastest for
long sequences and fast-enough for all. AltGDmin-MRI1 also
has low errors (only slightly higher than MRI2), and is faster
than MRI2. On the other hand, no other approach is consistently
good across all 20 datasets. Lastly, for the most undersampled
(4 radial lines) case, our methods have much lower errors than

Authorized licensed use limited to: The University of Iowa. Downloaded on May 22,2023 at 09:21:19 UTC from IEEE Xplore.  Restrictions apply. 

https://github.com/praneethmurthy/
https://github.com/JeffFessler/reproduce-l-s-dynamic-mri
https://github.com/JeffFessler/reproduce-l-s-dynamic-mri
https://cai2r.net/resources/ls-reconstruction-matlab-code/
http://mri.beckman.illinois.edu/software.html


BABU et al.: FAST LOW RANK COLUMN-WISE COMPRESSIVE SENSING FOR ACCELERATED DYNAMIC MRI 417

Fig. 2. Retrospective, Pseudo-radial (4 radial lines), Speech: In row 1, we show one original frame and its reconstructions. In row 2, we show the time profile
image. This is a cut through the tongue and velum depicting the motion of these articulators. Only 100 out of 2048 image frames are shown for the sake of
brevity. The chosen cut line is shown in Fig. 3. Error (recon. time) of each algorithm is reported below the algorithm name. Observe that k-t-SLR, L+S-Lin, and
L+S-Otazo reconstructions have motion blurring and/or alias artifacts. In contrast, altGDmin-MRI2 reconstructions even with smaller batch sizes produce superior
reconstructions. Last column shows a subspace tracking result.

Fig. 3. Retrospective, Pseudo-radial, All datasets: This figure is organized differently than the previous ones. Row 1 shows one original (fully sampled) image
for all datasets, row 2 shows reconstruction using only AltGDmin-MRI2. Row 3 and row 4 are the original and reconstructed time profile images. Observe that it
gives good results in all applications without any parameter tuning. Comparing Fig(a) and Fig(b), we observe that with 16 radial lines the blurring effect in the
recons reduced.
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TABLE II
TABLE FORMAT IS ERROR (RECON TIME IN SECONDS). THE LAST ROW SHOWS AVERAGE-ERROR (AVERAGE-RECONSTRUCTION TIME IN SECONDS) OVER

ALL 20 ROWS OF RESULTS. FOR PSF-SPARSE, WE GENERATED DATA USING THE K-T SAMPLING SCHEME FROM THEIR PAPER [9] WHILE ENSURING SAME TOTAL

NUMBER OF SAMPLES AS THE REST OF THE COMPARED METHODS.

Fig. 4. We plot the Error after each iteration t (y-axis) and the time taken until iteration t (x-axis) for the UnCardPerf and Speech datasets for alGDminMRI
(without the MEC steps), L+S-Lin, and L+S-Otazo. Observe that altGDmin-MRI converges fastest.

all the others. We also compare with the PSF-sparse algorithm
of [9] for one dataset, UnCardPerf. This is an improved version
of the original kt-PCA method of [4]. This approach does not
work for any given sampling scheme. Hence, for it, we used the
author provided “k-t sampling” code (Cartesian undersampling
with certain k-space locations sampled at each time, and the
rest of the locations being highly undersampled). We changed
its sampling rate parameter to make its undersampling factor,∑

k mk/(nq), similar to ours. From Table II, clearly, the error
of PSF-sparse is much higher (38- and 12- times higher) in the
4 and 8 radial lines cases.

In this table, we have also added results for one mini-batch size
for altGDminMRI-ST2. As can be seen, in the speech sequence
case, the recovery error is in fact smaller. In the cardiac case,

there is marginal increase in recovery error. In both cases, the
time taken is lesser than that of altGDmin-MRI2. More detailed
evaluation is described below in Section V-E.

C. Error Versus Iteration Time Plot

In Fig. 4, we plot the error after each iteration t (y-axis) and the
time taken until iteration t (x-axis) for altGDmin-MRI without
the MEC step (just altGDmin+mean), L+S-Lin and L+S-Otazo
for the UnCardPerf and Speech datasets with 4 radial lines. Such
a plot is more informative than error versus iteration since it
allows one to both see the error decay with iterations and to
also see the time taken for each iteration by each method. The
first marker in the altGDmin-MRI plot is time taken after the

Authorized licensed use limited to: The University of Iowa. Downloaded on May 22,2023 at 09:21:19 UTC from IEEE Xplore.  Restrictions apply. 



BABU et al.: FAST LOW RANK COLUMN-WISE COMPRESSIVE SENSING FOR ACCELERATED DYNAMIC MRI 419

Fig. 5. Demonstrating the utility of each step of our algorithms. In row 1, we
show one original frame (1470th frame) and the estimates of each step: the mean
estimate z̄, the LR estimatexk obtained using altGDmin, and the modeling error
estimates ek under our two models (unstructured and sparse in temporal Fourier
domain). In row 2, we show the corresponding time profile images. In row 3,
we show how each component improves image quality by showing z̄, z̄ + xk ,
and z̄ + xk + ek . In row 4, we show the corresponding time profile images.
Observe that altGDmin contributes to the details of each image. The last MEC
steps improves finer details. .

mean computation, the second marker also adds the time taken
after the initialization step, the third also adds the time taken by
first altGDmin iteration, and so on. All three algorithms have
their own exit loop and maximum number of iterations and
hence each plot ends at a different time. For both the datasets,
observe that altGDmin converges much faster than the other
two compared methods. kt-SLR is not compared because it is
much slower. From both figures, we can also observe that use of
our initialization step is very useful, it helps reduce the error
significantly. With just the mean and initialization steps, the
normalized error gets reduced to 0.2 and 0.27 respectively.

D. Effect of Each Step of altGDmin-MRI

In Fig. 5, for one dataset, we show the output of each step of
our two algorithms. As can be seen each of the 3 steps improves
the reconstruction quality.

E. Subspace Tracking Algorithms Evaluation

We evaluate these algorithms on the Speech and the UnCar-
dPerf sequence pseudo-radially undersampled using 16, 8, and
4 radial lines. We use these two sequences since these have a
larger value of q. This is needed to ensure that the mini-batch
sizes are not too small or at least the first mini-batch size is
large enough. We provide the results in Table III. We evaluate
mini-batch ST (Algorithm 4), with Tmax,1 = 70 and Tmax,j = 5
for j > 1 for decreasing values ofα. Observe that for mini-batch
sizes up to α ≥ 64, there is no appreciable increase in error. But
the improvement in reconstruction time is very significant. It

TABLE III
SUBSPACE TRACKING RESULTS: COMPARING ALTGDMINMRI-ST1,

ALTGDMINMRI-ST2, AND ONLINEST ALGORITHMS FOR THE SPEECH AND THE

UNCARDPERF SEQUENCES RETROSPECTIVELY UNDERSAMPLED USING 16, 8, 4
RADIAL LINES AND DIFFERENT CHOICES OF MINI-BATCH SIZE α.

is much faster than any of the other algorithms compared in
Table II. We also compare with full online ST (Algorithm 5). In
this case, there is a significant increase in error as the value of
initial mini-batch α decreases. But the speed is even better. We
show visuals for different values of α in Fig. 6. As can be seen,
the quality is as good as that of the full batch one. The reason
is this approach is modeling a slowly changing subspace rather
than a fixed one, and this can be a better assumption for speech
sequences.

F. Experiments on 3 Prospectively Under-Sampled Radial
Data

We compare altGDmin-MRI2 with L+S-Lin (the overall best
algorithm in terms of performance and speed amongst all com-
pared methods) and with the baseline reconstruction obtained
using direct inverse Fourier Transform (FT), this uses zeros
where data is not observed. Results are show in Figs. 7, 8(a),
and 8(b). Our first dataset is a radially undersampled dynamic
contrast enhanced (DCE) abdomen taken from [20], [21]. The
k-space data dimensions in the dataset were: 384 read out points,
21 radial spokes (with golden angle based angular increments)
per frame, 28 time frames, and 7 virtual coils after PCA based
coil compression. Here 21 spokes per frame means the total
21 ∗ 28 = 588 spokes were arranged into 28 time frames with
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Fig. 6. Subspace Tracking results: Retrospective, Pseudo-radial, Speech(4 radial lines) and UnCardPerf (16 radial lines) reconstructed using altGDminMRI-ST2.
In row 1, we show one original frame and its reconstructions. In row 2, we show the time profile image. As expected, smaller batch sizes produce faster reconstructions.
With larger batch sizes, the temporal sharpness (or motion fidelity) improve but only subtly.

Fig. 7. Prospective, Radial, Abdomen: We compare our approach with direct
iNUFFT (baseline) and with L+S-Lin. When running L+S-Lin with the cardiac
perfusion parameters (the ones used in all earlier experiments), the algorithm
completely fails, see column 2. Thus, we also implemented it using author-
provided parameters for this dataset; we refer to this as L+S-Lin1 which is shown
in column 3. This gives a good recovery similar to that of altGDmin-MRI2.

the first 21 spokes forming the first time frame, the next 21
forming the next time frame and so on.

For this dataset, we modified our code to use the non-uniform
Fast FT (NUFFT) code from [40] to replace FFT. From Fig. 7,
notice that, in the altGDmin-MRI2 (atGDmin2) reconstruction,
we can observe the contrast uptake dynamics through the liver.
The other blood vessels are well resolved too. L+S-Lin (with the
parameters used in all previous experiments) failed completely.
It returns a black image. So we used the author provided param-
eters to see if that works, we label it L+S-Lin1. This provides
qualitatively similar results to ours.

Our next dataset is a Cartesian undersampled breath held
cardiac cine from the OCMR database with k-space dataset

dimensions 384 read out points, 14 phase encode lines per
time frame, 137 time frames and 18 coils. From Fig. 8(a),
observe that L+S-Lin reconstruction has motion blurring and/or
alias artifacts. In contrast, altGDmin-MRI2 result is good com-
paratively. Our last dataset is another Cartesian undersampled
cardiac dataset from the OCMR database with k-space data
dimensions 384 read out points, 16 phase encode lines per time
frame, 65 time frames and 34 coils. In Fig. 8(b), we compare
the reconstructions. Both L+S-Lin and altGDmin-MRI2 recon-
structions are good.

VI. DISCUSSION

We first explain why our algorithms are “general,” memory-
efficient, and fast. Next, we provide a summary of our experi-
mental conclusions, a discussion of the most related works, and
of our subspace tracking methods (ST). We end with describing
the limitations of our work and ways to improve it.

AltGDmin-MRI Methods are “General”. This is because
these have only a few parameters and are not very sensitive
to their choices. Moreover, our goal was to develop a single
algorithm, with one fixed set of parameters, that provides a
good enough performance across a wide range of applications,
sampling schemes, and sampling rates, while also being very
fast; and not necessarily the best one for each case. Hence we do
not do any application-specific tuning. The reason our methods
have only a few parameters is two-fold. First, the LR model
does not require any parameter except the assumed rank (or
parameters for the algorithm to estimate the rank). This is unlike
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Fig. 8. Prospective, Cartesian, Cardiac (OCMR): In both figures, in row 1, we show one image for direct inverse FFT (IFFT) of undersampled kspace data
(column 1), reconstructions using L+S-Lin (column 2) and our method, altGDmin-MRI2 (column 3). In row 2, we show the time profile images for the three
reconstructions in the same order. Observe that for both OCMR cardiac datasets, altGDmin-MRI2 reconstructions are qualitatively better compared to L+S-Lin.

sparsity or structured sparsity models, which require either
picking the most appropriate sparsifying basis or dictionary or
learning one, and in either case there are many parameters that
need to be carefully set to pick the best basis/dictionary. Second,
AltGDmin is a simple GD based algorithm. Besides rank, its
only other parameters are the GD step size η and the maximum
number of iterations Tmax, along with a loop exit threshold
εexit. The algorithm is not sensitive to the choice of Tmax as
long as it is large enough. AltGDmin-MRI1 is its modification
that can be understood as assuming a 3-level hierarchical LR
model that (i) first estimates the baseline/mean image across
all frames (approximately the r = 1 case), and computes the
measurement residual by removing this estimate; (ii) next it uses
the residual as input to auto-altGDmin (r = r̂ case, where r̂ is
the automatically estimated rank), and (iii) finally it estimates
the residual error in the above mean + LR model column-wise
(this is the r = min(n, q) case). In case of altGDmin-MRI2,
this last residual error is assumed to be temporally Fourier
sparse. The mean computation step (LS problem solved using
the Stanford CGLS code) and the MEC steps also require only
two parameters each, while being sensitive to only one of them:
loop exit tolerance and maximum number of iterations. The
ISTA algorithm used in case of altGDmin-MRI2 needs one more
parameter - the threshold for soft thresholding.

Memory-Efficiency. The effect of memory complexity is not
very evident in this paper since we only do single-slice imaging,
but will be when working with dynamic multi-slice imaging.
In that case, n would be the number of voxels in each volume
(all slices at one time) with q still being the sequence length.
AltGDmin uses the X = UB factorization, with U and B
being matrices with r columns and rows respectively. Here r is
the assumed (low) rank. Storing and processing U ,B requires
memory of size only max(n, q)r instead of nq. Our approach
for estimating r caps its value at r ≤ min(n, q,m)/10. The
initial mean computation step estimates an n-length vector z̄
using GD (CGLS code); it can be made memory-efficient by
using a for-loop to compute the gradient sum at each iteration.
For AltGDmin-MRI1, the last MEC step is done individually
for each e∗k. Thus both these steps have memory complexity of
order n only. The MEC step of AltGDmin-MRI2 can be made
memory-efficient by processing each row separately using a

for-loop over all n rows. This step thus has memory complex-
ity of order q. Thus the overall memory complexity of both
AltGDmin-MRI1 and AltGDmin-MRI2 is order max(n, q)r
with r � n, q, while that of most other LR-based methods
(except AltMin and PSF-sparse) is nq.

Time Complexity and Speed. The most computationally ex-
pensive part of both algorithms is altGDmin. The two expensive
steps of this algorithm are (i) computing the gradient w.r.t. U ,
and (ii) computing AkU for the LS step to estimate bks. When
implemented for the MRI setting using the 2D-FFT operators,
AkU requires computing r 2D-FFTs for n1 × n2 images with
n = n1 · n2. One 2D-FFT needs time of order n2n1 log n1 +
n1n2 log n2 ≤ 2n log n. Thus this step needs time of order
nr log n. The gradient computation needs q 2D inverse FFTs,
thus its cost is nq log n. Since r ≤ q, the overall cost is order
nq log n per iteration. Without provable guarantees for the MRI
setting, we cannot say anything theoretically about the number
of iterations required. From our experiments (see Fig. 4 and
Tables I, II), our algorithm error decays faster than that of all the
other compared approaches.

Summary of Experiments. In the highly undersampled setting
of only 4 radial lines (32 times acceleration), AltGDmin-MRI2
and AltGDmin-MRI1 have much lower errors and better visual
recon quality than all compared methods, while also being the
fastest. In all cases, on average, the AltGDmin-MRI2 errors and
time taken are still the best (lowest). Our Subspace Tracking
based mini-batch modifications are even faster, while providing
almost comparable, or better, quality reconstructions for batch
sizes α ≥ 64. For this reason, these can only be used on longer
sequences. Notice that the last model error correct (MEC) step of
altGDmin-MRI1 uses a maximum of only 3 iterations, while that
of altGDmin-MRI2 uses a maximum of 10 iterations. As noted
by an anonymous reviewer, this may be one reason for the latter
having slightly better performance. We tried using 10 maximum
iterations also for MEC of altGDmin-MRI1 (not shown); with
this, its computed error does reduce further to almost the same
level as MRI2. However, for a some cases, the visual quality of
MRI2 still is better.

Discussion of Compared Methods and DL-Based Methods.
MixedNorm, AltMin, and kt-SLR are much slower compared
with AltGDmin-MRI. For many of the pseudo-radial datasets,
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kt-SLR has the lowest errors and visual performance, with that
of AltGDmin-MRI2 being either as good or only slightly worse.
But kt-SLR has very large errors for the Cartesian undersampled
ones and consequently its average error is large. A possible
reason for this is that its parameters have been tuned for the
pseudo-radial sampling. On the other hand, L+S-Otazo and
L+S-Lin have low errors for the two Cartesian undersampled
datasets (both of these were used in their papers); but have
larger errors for most of the pseudo-radial 4 and 8 radial
lines (highly undersampled) datasets. The likely reason again is
similar.

We also compared with the PSF-sparse algorithm of [52] for
one dataset; see Table II. This only works with the kt-sampling
scheme developed by the authors, so we used this sampling for
it while changing the code parameters to ensure comparable
mc

∑
k mk/(nq) (comparable acceleration factor). PSF-sparse

first estimates the row space of the unknown image sequence
matrix using the data at the frequency locations fully sampled
along time. This means it estimates the row span of B first.
Next, it estimates the column space, span of U , by minimizing
the error w.r.t. all observed data while also imposing a (tempo-
ral Fourier) sparsity constraint. The first step needs sufficient
number of low frequency samples for accurate recovery. This
is why, when

∑
k mk is small, either the first step recon is bad

or there are almost no samples left to get a good estimate at all
frequencies. In contrast, our algorithms simultaneously estimate
U ,B using multiple alternating iterations initialized using a
carefully designed spectral initialization for U .

Supervised DL methods need a lot of training data. Hence
for most MRI applications (except breath held cardiac or ECG
gating), these are designed for image-based reconstruction and
cannot model the spatiotemporal correlations across the se-
quence. Consequently, their performance on dynamic MRI is
often worse than that of LR or LR+S based methods which do
not need any training data. Moreover, the energy cost for training
the DLs for entire image sequences can be prohibitive.

On the other hand, the new unsupervised DL methods can
model the spatiotemporal correlations without training data, but
these are slower on query data by orders of magnitude. The rea-
son is these do not use a pre-trained network but instead train the
deep network on the query data. As an example, to reconstruct
a typical speech sequence with n = 1002 = 10000 pixels and
q = 500 frames, this class of approaches needs 45mins to an
hour on a GPU. Our algorithm only needs 1-2 minutes for a
similar dataset. Also, these need careful hyperparameter tuning
(cannot be used for different MRI applications without tuning)
while our methods do not.

Clarification That No Binning is Needed in This Work. None of
our proposed approaches (not even the subspace tracking ones)
need raw data sorted into various predefined temporal phases
(such as defining cardiac phases) or “bins”. As an example, for
the cardiac cine sequence, we did not need knowledge of which
frames are pre-contrast and which are post-contrast.

Practical Utility of Mini-Batch and Online Subspace Tracking
(ST). Besides operating in mini-batch mode, the algorithm speed
of mini-batch ST is also much faster, and, from our experiments,
the increase in recovery error is insignificant for mini-batch size
α ≥ 64. In the speech sequence, the error actually decreases

when using ST. The reason is this is a very long sequence and
the subspace likely changes over time. The ST method tracks this
change. With online ST, the reconstruction quality does suffer.
But its speed is very fast, and the algorithm works in true real time
mode after the first mini-batch ofα1 frames is processed. Hence,
in practice, a combination of the two approaches would be the
most useful: in online mode, obtain real-time reconstructions
which are very fast but often not very accurate; and follow it up
with mini-batch updates (after the mini-batch has arrived) that
are much more accurate.

Because we do not need any binning, and because the ST
approaches provide a reconstruction as soon as a small mini-
batch of time frames are acquired, these would be suitable for a
variety of real-time ungated type of applications, where the raw
data is continuously being acquired without an a-priori definition
of temporal phases. Example applications include free breathing
ungated cardiac cine, real-time dynamic MRI of vocal tract shap-
ing during speech production, free breathing dynamic contrast
enhanced MRI (also see example in Fig. 8). There is a need to
have a fast on-the-fly reconstructions to inspect quality of the
dynamic reconstructions. For example, in dynamic speech MRI,
low latency reconstructions are useful to adjust for localization
planes, adjust center frequency to minimize off-resonance arti-
facts, and to visualize articulatory movements in biofeedback
type experiments. Similarly, in real-time ungated free breathing
cardiac MRI experiments, a fast reconstruction without a prior
definition of cardiac phases allows one to visualize arrhythmic
events on the fly.

Limitations and How to Tune Parameters to Tailor to Ap-
plications. As can be seen from our results, the reconstruction
performance is not the best for all applications. In a few cases,
there is some visible blurring. The reason is our goal was to show
what our algorithm can achieve using a single set of parameters.
The blurring can be reduced by increasing the rank r̂ that is
used in AltGDmin while still ensuring it is sufficiently smaller
than min(mcmink mk, n, q); and/or increasing the number of
MEC step iterations. Making the loop exit criterion more robust
can also help, e.g., instead of exiting after only two consecutive
estimates of U are close in subspace distance, one could exit if
this happens consecutively for a few iterations. The algorithm
speed can be improved further by using a variable step size ηt
for the GD step: use larger values in the initial iterations and
reduce it over time. Lastly, the initial mean computation step of
altGDmin-MRI1 and altGDmin-MRI2 can be made more robust
by using truncation similar to that used in the initialization of
altGDmin.

For both mini-batch and online ST methods, we need to
initialize using a mini-batch. From our experiments, the first
mini-batch needs to be at least 32-64 frames long. It is possible
to replace even the first mini-batch step by a fully-online one
if we replace the GD for updating U by stochastic GD that
only uses the gradient w.r.t. the data term for the current yk.
However, the tradeoff will be a worsened reconstruction quality.
This approach will be explored in future work. Moreover, our
ST methods are not very robust to outliers, e.g., due to a deep
breath by the subject. One way to make them somewhat robust is
to re-initialize every so often. The second solution is to develop
an L+S model based algorithm.
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VII. CONCLUSIONS AND FUTURE WORK

We developed a set of fast, memory-efficient, and “gen-
eral” algorithms for accelerated/undersampled approximately
LR dynamic MRI. Here, “general” means that it works with the
same set of parameters for multiple MRI applications, sampling
schemes and rates. We also developed an altGDmin-MRI-based
subspace tracking solution that operates in mini-batch mode and
provides comparable reconstruction quality while being even
faster. Unlike the supervised DL methods, our algorithms do
not need any training data, and also do not need the hours
or days of training time and computational power. Unlike the
newer unsupervised DL based methods, our methods are orders
of magnitude faster. In experimental comparisons with the best
known existing LR, L+S or L&S based methods (kt-SLR, L+S-
Otazo, L+S-Lin, PSF-sparse, AltMin, MixedNorm), on average,
our methods have the best reconstruction quality, and are also
the fastest. Future work will explore reconstruction of 3D+t
data (multi-slice dynamic imaging) using the proposed approach
and also try to develop tensor-based modification of our ideas.
A second goal will be to design a fast and memory-efficient
altGDmin-based algorithm for the L+S model. We will also try
to design a truly online ST method that does not need mini-batch
initialization.
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