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Abstract—We present theoretical and experimental results synchonization that was designed to minimize the amount of
for a distributed beamforming system based on a simple 1- coordination with the BS. The basic idea is to first frequency
bit feedback algorithm. The algorithm is based on an iter- |50k the carrier signals of all the transmitters using a erast
ative procedure, that synchronizes multiple transmitters to | hitect for th twork d th f .
cooperatively send a common message signal coherently to aSlave arC_ : eg ure for the ne o_r ' gn en. periorming
receiver, using only a single bit of feedback in each timeslot. Phase calibration and channel estimation to achieve cohere
Under this scheme, the transmitters make independent, random transmission. It was shown in [5] that a simple iterative
phase adjustments every timeslot, and retain only those phase procedure can be used for phase calibration and channel

adjustmt_ants that increase_ the SNR at the receiv_er. We describe estimation, provided that the BS is able to send a single
the design of an experimental prototype to implement the bit of feedback fi lot
beamforming algorithm, and present measurement data that It oF feedback every timesiot.

shows the SNR gains from beamforming. We also analyze the ~ The 1-bit feedback procedure of [5] has been shown [6]
convergence behavior of the procedure mathematically using to have attractive performance and scalability properties

a statistical approach. We show that the mathematical model this paper we present new theoretical results, and empirica
gives accurate predictions for the convergence rate in static ah observations from an experimental prototype of a distetut

time-varying channels, and use the analysis to demonstrate the . . : .

scalability of the algorithm. beamforming system based on t_h|s algonthm. The_ experi-
mental results show that substantial portion of the thézalet

I. INTRODUCTION SNR gains from beamforming are achievable in practical

Cooperative communication has recently been investigat&@nditions. The theoretical model is based on an elegant
[1] as a method for improving the performance of wire-Statistical approach, and reveals interesting matheaiatic
less networks. The basic idea is for two or more radioBroperties of the algorithm, when the number of transnstter
to cooperatively form avirtual antenna array, and obtain 'S large. . o . .
diversity gains against channel fading, and array gains fro Thg research described in this paper is related to previous
increased directivity. Depending on the specific commuork in many different areas. In closely related work, ar-ite
nication constraints, different combinations of disttém &tive algorithm for beamforming was presented in [7], but fo
coding and array processing [2] have been proposed fgrcentralized antenna array. Other authors have studiegisiss
cooperative communication. This paper describes a methéglated to distributed beamforming [8], however most of the
for distributed beamforming, where a network of multiple prior work in this area does not address the synchronization
transmitters cooperate to transmit a common message Sigr{gpblem. There is also a substantial amount of literature on
coherently to a distant Base Station receiver (BS) in order téhe theory of stochastic approximations; the 1-bit feeélbac
obtain diversity and array gains. algorithm described in this paper could be considered as a

The potential benefits of distributed beamforming ardlistributed version of the procedure described.in [9]. T® th.
well-known - full diversity andN-fold increase in energy Pestof our knowledge the prototype described in this paper i
efficiency for N transmitters. The main challenges are irfhe first experimental demonstration of a cooperative @il
synchronizing the RF carriers of all the transmitters, andyStém. _ _ _
measuring the channel of each individual transmitter to the The rest of the paper is organized as follows. Section |l
BS. In the context of large-scale wireless networks, it wloulPresents a communication model for the distributed beam-
be advantageous to develop methods that scale well witArming system, and reviews the 1-bit feedback algorithm.
the number of transmitters. This problem was investigatefin @nalytical study of the algorithm is presented in Section

experimental prototype to study the performance of this
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message signal:(t) by modulating it with its RF carrier
signal. All transmitters are frequency locked to a refeeenc
carrier signal using the master-slave architecture desdri
in [3]. As a result, all the carrier signals are at the same
frequency f. and there is no frequency offset between the
transmitters. There is however, an arbitrary phase diffeze

between the transmitters because of unknown propagation

delays in the master-slave architecture. Thus we can write
the carrier signal of transmittéras:

ci(t) = g%(ej(%fct-i-w)) (1)

wherev; is the phase offset. Transmitterotates the message
signal by a angle;, modulates it withc;(¢) and transmits
the modulated signal; (¢) = R (m(t)el% ei?/<1+i71) on the
wireless channel. If its channel to the BShis= a;e?¥7, then
the total received signal at the receiver is:

N
r(t) = gE(m(t)ejzwfct S aiemmeﬁjwi)
i=1
In practice, this signal at the receiver would be corrupted b
additive noise which is not shown explicitly in (2). Let us
denote the phase of the received signal from transniitser
®; = v, +6; + ;. The power of the received signal is given

by:
S, = ‘Z a;e?®i

)
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Fig. 1.

The powerS,. is maximized when the signals from all
the transmitters are received coherently at the BS, i.e.

d; = constant. The purpose of the distributed beamformingybest[” +1 =

algorithm is for the transmitters to adjust their phasetiota
0; to achieve this condition of coherence. We observe tha]
if the BS is far away compared to distances between the
transmitters, the channel attenuatioms are of the same

order of magnitude, and can be modeled as iid realizatiofs
of a stochastic fading process e.g. Rician fading. Without
loss of generality, we normalize the signal units such tham
E(a;) = 1. Similarly the received phase anglds are

bbest,i[n + 1] = {

1) Each transmitter keeps a recdigl,; ;[n] of the best
known value of its phase rotation, where is the
timeslot index. The BS measures the received signal
strength (RSS)V[n] at each timeslot: and keeps a
recordV.s:[n] Of its best previously observed RSS:

ybest[n] = max y[m]

m<n
N

V[m] = |Za’16]—¢i[m]’
=1

At timeslotn + 1, each transmitter generates a random
phase perturbation; from some probability distribu-
tion fs5(d;) (this distribution can change in time), and
transmits its message signal with an incremental phase
rotation d;: 6;[n + 1] = Opest.s[n] + J;. This results in

the received phase:

(4)

2)

<I>Z[n + 1] = @best,i[n] + 61 (5)

Where@best,i[n] = Vi + Hbest,i[n] + %‘ is the phase of
the received signal from transmittércorresponding

to Opesti[n]. Note that the received phasds and
Byt i[n] are auxiliary variables used in our analysis,
and are not known to either the transmitters (which can
only control the phase rotatiorts and 6,5, ;[n]), or

the BS (which can only observe the aggregate received
signalr(t)).

The BS measures the received signal strength and
generates a single bit of feedback that is set to ‘1’ if the
received signal strength in the current timeslot is better
than the previous best RSS, and ‘0’ otherwise. The BS
then broadcasts this bit of feedback (the broadcast is
assumed to be noiseless, which can easily be assured
using large amounts of redundancy if needed).

The BS updates its value @pesi[n + 1] and the
transmitters update the phase rotatighs,; ;[n + 1]

to retain the perturbation§ if the feedback bit is ‘1’,
and discard them otherwise.

5) The process is repeated in the next timeslot.

3)

4)

The update process can be written mathematically as:

Y[n+1],
ybest[nL
ebest,i[n] + 52 [n]v

ebest,i [n] )

y[n + 1] > ybest[n]
otherwise.

y[n + 1] > ybest[n]
otherwise.

(6)

{

Analytical Model for Convergence

Fig. 2 shows the convergence behavior of the phase angles
a simulation of the 1-bit feedback algorithréye: ;7]

and V.s¢[n] are stochastic processes, whose behavior over

completely unknown before the feedback control algorithrime depends on the random choidgsWe'd like to model

is executed, and the initial values @; are modeled as the behavior of this algorithm analytically to obtain irfsig
uniformly distributed random variables -, 7). into its performance, and also to maximize the convergence
) ) . rate by choosing the distributiong;(d;) optimally over
A. Review of Feedback Control algorithm for static channels  ime. Such an analytical model was derived in [6], and has
We now present a brief summary of the 1-bit feedbackeen shown to give accurate results, when compared with
algorithm for distributed beamforming first proposed in.[5] simulations. We now sketch the details of this model.



10 iterations

0 iterations

50 iterations 500 iterations
1 0 1 0
15 0 15 0
18 0 18 0
21 30 21 30
240—--300 240—5-5-300
Fig. 2. Convergence of feedback control algorithm

the random procesd¥).;[n] evolves in a highly predictable
way. For instance, Fig. 3 shows two simulated instances
the feedback algorithm, and we can see that the convergence,
of the two instances are close to each other. Therefore we’!

examine the convergence behavior of the avergge of

the proces9),.s:[n] and use it to understand the behavior of

the algorithm and optimize the convergengg| is formally
defined as follows:

y[1] = E(Vpest[1])

y[n + 1] - E(ybest[n + 1] |yb€8t [Tl] = y[n]) (7)

70

received signal strength: y[n]
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Fig. 3. Motivating the Analytical Model: two simulated instzes with
N =100, f5(5;) ~ uniform[—g5, 55].

Note that (7) defineg(n] iteratively in time:y[n + 1] is
evaluated as a conditional expectation)af.[n + 1] given
Vrest[n] = y[n]. If we know the statistics of[n + 1], we
can compute the expectation in (7) using ®)» + 1] can
be written using (4) and (5) as:

N
y[n + ]_] — ’Z aiejq)best,i[n]"l‘jéi (8)
i=1

The cumulative effect of the phase perturbatiaisis
to modify the complex received signal by increasing

y K‘n‘\' X—X

X2

y[nJcos(8) ]Xl‘
L

v[n] |

Fig. 4. Cumulative effect of phase perturbations on the vecesignal

decreasing its length and by rotating it. This is shown in
Fig. 4, wherer; andx, are zero mean random variables:

C)

where Cy is a constant whose precise definition will be
given shortly.z; and x, can be expressed as the sum of
iid contributions from each transmitter's perturbation
%erefore for largeN, they look approximately Gaussian
g}pd their variances are:

Vin+1] = |CsVoestIn] + 1 + jao

1 al 1 al
= 5(1 —C3) E ai — 5(6’52 — Cas) E a? cos(2¢;)
i—1 i=1

(10)
1 Y 1 =
o3 =5(1-C3) ;af +5(C3 — Can) ;a? cos(2¢)
11)
where¢; = Ppesti — o,
N
and®y = £ (Z azejq)b"“”’i) (12)
=1

In the preceding equationg)s E(cosd;) and Cy5 =
E(cos(24;)), and both constants are parameters of the dis-
tribution function f5(4;).

Using this representation @P[n + 1], we can evaluate
the expectation in (7). We note however that this expeatatio
depends on the distribution functigfi(d;) (throughCs and
Css), and also on the actual values of the received angles
Dyt ;. However, for a large number of transmitteys it is
possible to simplify this considerably by using a statatic
approach. The idea of the statistical model is subtle, theze
we discuss it in some detail next.

C. Satistical Model for the Received Phase Angles

This approach is motivated by the techniques of statistical
physics. Consider a system consisting of a large number of
non-interacting ideal gas particles (atoms). The macigisco
properties e.g. pressure of this system can be calculaied us
classical mechanics if the position and velocity of eaclmato
was specified at some instant of time. However this approach
requires the specification d@f coordinates for each of (the
order of) 10?3 particles, and is therefore unsatisfactory and
not very useful. The statistical physics approach is to use
symmetry arguments and inquire into ttistribution of the
positions and velocities rather than their precise valurethe

oterminology of statistical physics, we are only interesied



characterizing thenacrostates of the system, each macrostatetypicality arguments tcestimate the empirical distribution

consisting of a huge number of microstates obtained by (¢;) without having to know the individual phase angles

permutation of the coordinates of different atoms. ¢;. Using E(a;) = 1 and (15), the conditio®y.s:[n] = y[n]
The key idea is that there exists one macrostate thaan be written as:

contains almost all of the possible microstates [10]. Ttous f y[n]

instance, using the statistical model, we assert that tke ga E (COS ¢i) =N (16)

atoms are uniformly distributed in the volume of the system

the direction of their velocities is isotropic i.e. equahmoer

of atoms are moving in all directions, and the fraction o

This is the huge simplification offered by the statistical
]method and it allows us to compute the variances in (10)

—mo? and (11) as:
the atoms with a speed, is proportional toe?*sT , where
T is the temperature of the system is the mass and ;2 — ﬂ((l — ) - (C2 - 025)]3((305(2@))) 17)
kp is the Boltzmann constant. Even though there are an 2N
o

infinite number of other possible positions and velocities Ug ((1 —05) (C§ _026)E(Cos(z¢i))) (18)
(i.e. microstates) that are consistent with the constraints of 2
this system, the overwhelming majority of those positionsvherea = E(a?) is just a constant. For the simplest case
and velocities follow the distributions above, which maythat all transmitters have LoS channels of equal attenwatio
be regarded as “typical”. The validity of this model isto the receiverp = 1.
demonstrated by comparing its predictions with experiment All that remains is to computE(cos(2¢i)). We compute
We adopt a similar approach in modeling the receivethis, by first deriving an estimaté,(¢;) of the empirical
phases®,. Initially, all the phases®;[0] are completely distribution of ¢; that satisfies the constraint (16). We now
unknown, and they can be considered as iid and uniformlyresent the typicality argument to compuytg ¢, ). Although
distributed in (—m,7]. Even though any combination of many possibleg; combinations can satisfy the constraint
the phases®;[0] is equally likely, when the number of (16), the overwhelming majority of thosg; combinations
transmitters N is large, the empirical distribution of the have the same empirical distribution if the number of trans-
angles®;[0] is with high probability close to the distribution mitters IV is very large. In order to calculate this typical
uniform(—m, 7). As the feedback algorithm progresses, thelistribution, we use the Conditional Limit Theorem from the
phasesb;[n] are no longer distributed independently of eachheory of typical sequences ([11], Sec. 12.6). This theorem
other, but rather tend to get increasingly clustered. Hewevstates that the empirical distribution of symmetricallg-di
for large N, we still expect the empirical distribution @f;[n] tributed random variables conditioned on some symmetric
to be close to some fixed distribution with high probabilityconstraints on the random variables, is, with high proba-
(analogous to the Maxwell-Boltzmann distribution for thebility, the distribution that satisfies the constraintsdas
velocities of ideal gas particles). Our goal is to find thiclosest in Kullback-Liebler distance from the unconditibn

distribution. distribution. In our case, the unconditional distributmithe
Recall that our definition of[n + 1] in (7) is an average phases; is u(¢) = uniform(—m, ], because without any
conditioned onY,.s:[n] = y[n]. This can be written as: constraints, the phases will be uniformly distributed over
N (—m, w]. Finding the closesf,(#;) is a problem in calculus
Viest[n] = ’Zaiembm,i = y[n] (13) of variations. To solve this, we construct a Lagrangian for
) = this optimization problem as:
N T
f (¢4)
or Zai cos(Ppest.i — Po) = y[n] (14) fqﬁ ¢z / fo(9i)l ¢(¢ ) )
i=1 ¢
The phased,, the phase of the total received signal (as +Cl(/ cos ¢; fo (0i)dd; — L)
defined in (12)), is of no interest to us, therefore we conside -
the distribution of the phasg@l- about fthe ove.ralll phfase n 02( Foldi)dep; — 1) (19)
®,. In other words, we are interested in the distribution of
¢i = Ppest,i — Po. We now rewrite the LHS of (14) as: We can show that the solution to (19) is as follows:
N
_ _ 1 A cos ¢;
Z:ai cos ¢; = N-E(ai cos qbi) (15) fo(9i) = o ()\)6 (20)
Note that we expressed the sum of the temmsos ¢; in E ; = yT and Ji()) is the

terms of an expectation over the probability distributidn omodified Bessel function of the first kind and order

a; and ¢;. As long as the expectation in (15) is carried Fig. 5 shows a comparison of the distribution from (20)
out over the actual empirical distribution @f cos¢; (i.e. and an empirical distribution of the received phase angles
the relative frequencies af; cos ¢; over its range), (15) is ¢; obtained by simulation. The same figure also shows the
trivially true, because it is just the definition of the enigad  Laplacian and Gaussian distributions for the phase angles
average ofa; cos¢;. For large N, however we can use for comparison. The close match between the empirical
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— oxp-cosine dstrbuion verges to perfect coherenamost surely, for any
N=5000 transmitters — Gaussian A .
600 o o || initial value of the received phase angkes

2) Monotonicity. The expected received signal strength at

any number of timeslots is a non-decreasing function
aool _ ] of N, the number of transmitters, i.e. more transmit-
/N ters always provide a larger expected received signal
s00r 1 amplitude.

3) Scalability. The number of timeslots required to con-
verge to within a given fraction e.gf = 90% of
100
Ll |
-3 -2 -1 0 1

Phase distribution in (=11, T1)

500

2001

] perfect convergence increases with the number of
transmitters,V, but no faster than linearly withv.
|- N

The above description and analytical model apply to the
static case, where the complex channel gdins= a;e’%:,
Fig. 5. Histogram of empirically observed phase angles coetbaith  and the phase offsetg are constant with time. In practice,
analytically computed distributions the h; could change due to Doppler effects in the wireless
channel, andy; could be affected by oscillator phase noise.

_i;“;?;ifiﬁ 1-bit algorithm If the phase noise is small enough, and the cumulative
1H - - - exp-cosine 1 Doppler variations are small through a significant number
o Sj};’;ﬂfn of timeslots, we can reasonably model the channel as static.

For the more general time-varying channel, we present
a slightly modified version of the feedback algorithm, that
allows the transmitters to dynamically track the channeitva
ations. Most of the analytical results for the static case, ¢
be extended to the time-varying case, and this is addressed
in detail in Section IV.

0.5f

E(cos(Zcpi))

Ill. EXPERIMENTAL PROTOTYPE FORDISTRIBUTED
BEAMFORMING

0.4 1 We now describe an experimental prototype developed to
investigate the performance of distributed beamforming in
practical situation. Figs. 7 and 8 show the block diagamenati

representations of the transmitters and BS respectively.

E(cosq)l)

Fig. 6. Comparison off(cos(2¢;)) from empirically observed phase
angles with analytically computed distributions

FPGA

cos(wct)

histogram and the distribution in (20) (the “exp-cosine’
distribution) observed in Fig. 5 validates our analysist Fd
the distribution in (20), we can show:

Jo(N)
Jo(N)

Random number {1}

Generator cos (wct u 0)

E(cos(2¢;)) =

(21)

21

Fig. 6 compares empirical estimatesBfcos(2¢;)) from a
simulation of the 1-bit algorithm with (21), and also with
similar expressions corresponding to other assumptions L~
the distribution of¢; e.g. Gaussian, Laplacian and uniform
distributions. The plots in Fig. 6 provide more evidence tha200Hz 1 bit feedback from Receiver
the empirical distribution ofp; is indeed close to the “exp-
cosine” distribution of (20).

Using (21) to evaluate the variances in (17) and (18) allows \ye now describe the operation of the prototypes for the

us to computey[n] for all n, by using (9) to evaluate the neamformer nodes i.e. transmitters, and the receiver.
conditional expectation in (7). This completes our anadfti

model for the average convergence rat€)gfs;[n]. A. Description of the prototype design

The analytical model outlined above can be used t0 The Beamformer node consists of an FPGA (Spartan-3
establish some attractive properties of the 1-bit feedbagimily from Xilinx [12]), two digital to analog converters
algorithm[6]. We now summarize some of these propertiegpaCs), a quadrature modulator, power amplifier and an-

1) Asymptotic Convergence.Given some mild condi- tenna. The baseband processing is done in the FPGA. To

tions on the distributionfs(d;), the algorithm con- implement the random number generator, a simfé4

Fig. 7. Block diagram of transmitter prototype
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Fig. 8. Block diagram of receiver (BS) prototype Fig. 9. Photograph of experimental setup
point lookup table was created. The table contains pseudo 300ms

random numbers1 generated in Matlab. Each beamformer

node is loaded with a different table generated in Matlab

using a different seed for the random number generator. The

phase shifts steps is set §06° by using a64 point sine

and cosine table. The lookup address to the table is set

to the sum of the output of the random number generator

and the address corresponding to the best phase from the

previous iteration. When the SNR feedback arrives from the

receiver, the best phase is updated if the SNR improved from

the previous iteration. We designated one beamformer to be

the master device. The master device distributes a low rate Time

clock to the other beamformer nodes so that all nodes can Fig. 10. Received Power Measurement over time

frequency-multiply this clock to the RF frequency, and thus

be frequency locked. The clock distribution was done over

a simple wired interface but could easily be done wirelessly

as well. convergence we measured the received power and compared
The receiver consists of an antenna, bandpass filtéhis with the theoretical value we were expecting. This

guadrature demodulator, two analog to digital convertellowed us to measure the beamforming gain. Table | shows

(ADCs), an FPGA and a DAC for debugging purposes. Aithe results for one case.

intermediate frequency af0 kHz was arbitrarily chosen to  |f the beamforming was ideal, the theoretical received
avoid the problems associated with converting the incominlgc,Wer would have beeb3704WW while the actual received
signal directly to DC. A simple power detector was implepower wasl 23041 Thus we were withi0 % of the theo-
mented in the FPGA. The power measurements are averaggfcal limit. We also ran the algorithm while the beamforme
over the feedback interval. The receiver feeds back a ‘hodes BPSK modulated the carrier with a knowm kbps

to the beamformer nodes if the received power is greatgequence. The modulation did not affect the convergence
than the averaged power measurements from the previogge or the beamforming gain as expected. We ran several
M iterations.M was arbitrarily set tak for the experiments. trjals and obtained similar results. The convergence of the
When M was set tol, the algorithm still converged to large gigorithm took approximatel$0 iterations. With a200 Hz
received power, but we observed more oscillatory behaviggedback rate that corresponded to approximazelyms. A

as the algorithm was frying to continue to search for bettqypical realization of the received power while the aldumit
phase values even after convergence. ran is shown in Fig. 10.
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B. Experimental Results
The test setup is shown in Fig. 9. The test consisted of

mounting N = 3 beamformer nodes across from a receiver Transmitters ON| Received Powery(V)
: . _— i 1 120

node. To test the beamforming gains we initially did not > 85

modulate any data onto the carrier. For calibration, each 3 280

beamformer was turned on while the othehbeamformer 1,2and3 1230

nodes were turned off. We then measured the received power TABLE |

due to each of the beamformer nodes. We then turned on RECEIVED POWER MEASUREMENTS

all of the beamformer nodes and ran the algorithm. After



IV. TRACKING A TIME-VARYING CHANNEL mathematically as:

Section 1I-B presents an analytical model for the conver- Zy.q[n + 1] = {y[n 1, Y+ U > Zvest[] (23)
gence of the synchronization when the wireless channels p Zvest[n],  otherwise.
from each transmitter to the receiver is static i.e. coristan Opest.i[n] + 0:[n], V[ +1] > Zpest[n]
in time. For such channels, the 1-bit algorithm can be Opest,i[n + 1] = 9 ’4[77] otherwise
shown to converge asymptotically to perfect coherence with best il '
probability 1. Once converged, the transmitters can use the Dpest,i[n] + Ai[n] + d;[n],
optimal valued,.; ; obtained from the algorithm to maintain = ;. ;[n + 1] = Vin+1] > Zpest|n]
coherent transmission in subsequent timeslots. However in Bpest.i[n] + Ailn], otherwise.

practical cases, the channel phase responses change in time

e.g. due to Doppler effects from moving scatterers. For such Unlike the static case, this tracking version of the 1-bit
channels, the channel variations cause the transmittedlisig feedback algorithm does not converge to a fi3gg [n], but

to lose coherence over time: even when the transmittefdther to a dynamic steady state. Intuitively, if at any tiime

use the same phase rotatidh,. ;, the received phase received phase®,;[n] become highly coherent, it becomes
DBpestiln] = i + Opestiln] + ¥i[n] will not remain the harder to find “favorable” perturbatiords, and therefore, the
same, because of the change in the channel phase respoigsall tendency for the RSS is to decrease because of the
¥;[n]. As a result, the received signal strength.[n] = Cchannel drifts. The steady state balances the tendencyeof th
|Zi:1 aiej%est,i[n]‘ decreases on average. Fortunately, thehannel driftsA; to drive the phases away from coherence,
1-bit algorithm can be easily adapted to dynamically adjugind this is partly compensated by the random perturbations

the transmitted phas,..; ;[n]. We now present this modi- d: with feedback.
fied algorithm. To quantitatively analyze this, we model the drift process

1)

2)

3)

4)

5)

) ) A;[n] as iid across sensors, and stationary and uncorrelated
At each timeslot:, each transmitter keeps a recordiy time with a distributionfa (A;). Much of the analysis of
Ovest.i[n] of the best known value of its phase rotationgection 11-B can now be extended for the time-varying case.
and the receiver keeps an estimaig. [n] of the best | particular, the typicality argument of Section 11-C cae b
achievable RSS. Unlike the static cagg,.:[n] isonly  ysed in this case also, and therefore the empirical distoibu
an estimate of the best achievable RS5.:[1] that o the phase®;[n] at any instant is still given by (20) if the
changes randomly because of channel variations.  ymper of transmittersV is large. As before we can write
At timeslotn +1, each transmitter generates a randonge aggregate effect of the phase perturbations, and channe
phase perturbation; from some probability distribu- gyt a5 an increase or decrease in the magnitge; [n] of
tion f5(d;), and transmits its message signal with afng received signal, and a rotation of its phase, and we can
incremental phase rotation: 0;[n+1] = Opesti[n]+0i-  \write an expression similar to (9):
This results in the received phase:
Y[n+1] :‘CécAybest[n] + 21+ 2 (24)
il 41 = oestaln] +0i + Ailn] (22) whereCx = E(cos A;). This also suggests a natural choice
for the discounting factor ap = Ca. This choice would
= make Zyest[n] = E(Vpest[n]). As beforez, and z, are
the channel drift i.ex);[n + 1] = ti[n] + Aq[n]. uncorrelated, zero mean random variables whose distribu-
The BS measures the received signal strerifh,+~  tjons are approximately Gaussian because of the Central

1] =1 a;e’ 1] and generates a single bit of | jmit Theorem, and their variances can be shown to be
feedback that is set to ‘1’ if the received signal Strengﬂﬂespectively:

in the current timeslot is better than the estimated
best RSSZc.[n], and ‘0" otherwise. The BS then 2 _ ﬂ((l — C3C%)
broadcasts this bit of feedback to all transmitters. 2

Where®b65t7i[n] =5+ QbESm‘[n] + ’L/}Z[n] and Al[n] is

If the feedback bit is ‘1, the BS updates its value - (C3Ck —Cgach)E(cos(2<bbest7,;))> (25)
of Zpest[n + 1] with the new measured RSS, and the oN

transmitters update the phase rotatiéps, ;[n+1]to 03, = - ((1 — C3CR)

retain the perturbationg; otherwise the BSliscounts .

its estimated best RSS,..:[n] by a factorp < 1 + (CaCA - C25C?A)E(COS(2‘bbest,i)>) (26)

to reflect the expected deterioration due to channel

variation, and the transmitters discard the perturbatiorﬁh_ere Can = E(cos(24;)), and ¢; = Ppesri — Lo, By
5 efined as in (12). From (23) and (24), we observe that

The process is repeated in the next timeslot. Vrest[n] is @ Markov process, and its transition probability
function is defined by:

The received phases change due to both the update process )
and the channel drifts. The update process can be written frr (y2’y1) = f(Voest[n +1] = y2’ybest[”] =) (27)



The transition probability functionfy;(y=|y1) can be ex- V. CONCLUSIONS

pressed in terms of the known Gaussian densities:10f  The results presented in the previous sections are promis-
and z. From fy(y2]y1), we can calculate the steady-jng and show that large SNR gains are achievable under
state probability density’.(y) of the Markov chain as the practical conditions using distributed beamforming. This
solution to the eigenvalue problem: initial investigation leaves substantial scope for futwerk.
The most important open issue is measuring and optimiz-
ing the algorithm for tracking time-varying channels. Our
o experiments in a static laboratory environment does not
Fos(y) = / Far(ylyn) fos (yr)din (28) provide information about the tracking performance of the
algorithm. Our analytical model is intuitive and provides
valuable insights; it is conceptually possible to use the
analytical model and solve for the optimal choices of sdvera
important parameters including the distributigg(é;) and
the discounting factop. However we do not yet have closed-
form solutions for these important parameters, and charac-
terizing these parameters compactly is an open problem for
g.gture work.

Yy1=—00

Fig. 11 compares the steady-state distributjQg(y) com-
puted by solving (28), with a histogram 9%...:[n] obtained
from a simulation of the 1-bit algorithm with channel time-
variations (after discarding the initial “transient” saleg).
The excellent agreement betweén (y) and the histogram
shows that the analytical model accurately predicts the b
haviour of the algorithm. REFERENCES
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