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Abstract— We present theoretical and experimental results
for a distributed beamforming system based on a simple 1-
bit feedback algorithm. The algorithm is based on an iter-
ative procedure, that synchronizes multiple transmitters to
cooperatively send a common message signal coherently to a
receiver, using only a single bit of feedback in each timeslot.
Under this scheme, the transmitters make independent, random
phase adjustments every timeslot, and retain only those phase
adjustments that increase the SNR at the receiver. We describe
the design of an experimental prototype to implement the
beamforming algorithm, and present measurement data that
shows the SNR gains from beamforming. We also analyze the
convergence behavior of the procedure mathematically using
a statistical approach. We show that the mathematical model
gives accurate predictions for the convergence rate in static and
time-varying channels, and use the analysis to demonstrate the
scalability of the algorithm.

I. INTRODUCTION

Cooperative communication has recently been investigated
[1] as a method for improving the performance of wire-
less networks. The basic idea is for two or more radios
to cooperatively form avirtual antenna array, and obtain
diversity gains against channel fading, and array gains from
increased directivity. Depending on the specific commu-
nication constraints, different combinations of distributed
coding and array processing [2] have been proposed for
cooperative communication. This paper describes a method
for distributed beamforming, where a network of multiple
transmitters cooperate to transmit a common message signal,
coherently to a distant Base Station receiver (BS) in order to
obtain diversity and array gains.

The potential benefits of distributed beamforming are
well-known - full diversity andN -fold increase in energy
efficiency for N transmitters. The main challenges are in
synchronizing the RF carriers of all the transmitters, and
measuring the channel of each individual transmitter to the
BS. In the context of large-scale wireless networks, it would
be advantageous to develop methods that scale well with
the number of transmitters. This problem was investigated
in [3], [4], which also described a procedure for distributed
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synchonization that was designed to minimize the amount of
coordination with the BS. The basic idea is to first frequency-
lock the carrier signals of all the transmitters using a master-
slave architecture for the network, and then performing
phase calibration and channel estimation to achieve coherent
transmission. It was shown in [5] that a simple iterative
procedure can be used for phase calibration and channel
estimation, provided that the BS is able to send a single
bit of feedback every timeslot.

The 1-bit feedback procedure of [5] has been shown [6]
to have attractive performance and scalability properties. In
this paper we present new theoretical results, and empirical
observations from an experimental prototype of a distributed
beamforming system based on this algorithm. The experi-
mental results show that substantial portion of the theoretical
SNR gains from beamforming are achievable in practical
conditions. The theoretical model is based on an elegant
statistical approach, and reveals interesting mathematical
properties of the algorithm, when the number of transmitters
is large.

The research described in this paper is related to previous
work in many different areas. In closely related work, an iter-
ative algorithm for beamforming was presented in [7], but for
a centralized antenna array. Other authors have studied issues
related to distributed beamforming [8], however most of the
prior work in this area does not address the synchronization
problem. There is also a substantial amount of literature on
the theory of stochastic approximations; the 1-bit feedback
algorithm described in this paper could be considered as a
distributed version of the procedure described in [9]. To the
best of our knowledge the prototype described in this paper is
the first experimental demonstration of a cooperative wireless
system.

The rest of the paper is organized as follows. Section II
presents a communication model for the distributed beam-
forming system, and reviews the 1-bit feedback algorithm.
An analytical study of the algorithm is presented in Section
II-B. Section III motivates and describes the design of an
experimental prototype to study the performance of this
system. The theoretical results of Section II-B are extended
to time-varying channels and compared with experimental
measurements and simulation data in Section IV. Section V
concludes with a brief discussion of future directions.

II. BACKGROUND

Fig. 1 shows our communication model for distributed
beamforming. It consists of a network ofN transmitters,
that cooperatively transmits a common (complex baseband)



message signalm(t) by modulating it with its RF carrier
signal. All transmitters are frequency locked to a reference
carrier signal using the master-slave architecture described
in [3]. As a result, all the carrier signals are at the same
frequencyfc and there is no frequency offset between the
transmitters. There is however, an arbitrary phase difference
between the transmitters because of unknown propagation
delays in the master-slave architecture. Thus we can write
the carrier signal of transmitteri as:

ci(t) = ℜ
(

ej(2πfct+γi)
)

(1)

whereγi is the phase offset. Transmitteri rotates the message
signal by a angleθi, modulates it withci(t) and transmits
the modulated signalsi(t) = ℜ

(

m(t)ejθiej2πfct+jγi
)

on the
wireless channel. If its channel to the BS ishi = aie

jψi , then
the total received signal at the receiver is:

r(t) = ℜ
(

m(t)ej2πfct

N
∑

i=1

aie
jγi+jθi+jψi

)

(2)

In practice, this signal at the receiver would be corrupted by
additive noise which is not shown explicitly in (2). Let us
denote the phase of the received signal from transmitteri as
Φi = γi + θi +ψi. The power of the received signal is given
by:

Sr =
∣

∣

∑

i

aie
jΦi

∣

∣

2
(3)
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Fig. 1. Phase synchronization using receiver feedback

The powerSr is maximized when the signals from all
the transmitters are received coherently at the BS, i.e.
Φi = constant. The purpose of the distributed beamforming
algorithm is for the transmitters to adjust their phase rotation
θi to achieve this condition of coherence. We observe that
if the BS is far away compared to distances between the
transmitters, the channel attenuationsai are of the same
order of magnitude, and can be modeled as iid realizations
of a stochastic fading process e.g. Rician fading. Without
loss of generality, we normalize the signal units such that
E(ai) = 1. Similarly the received phase anglesΦi are
completely unknown before the feedback control algorithm
is executed, and the initial values ofΦi are modeled as
uniformly distributed random variables in(−π, π].

A. Review of Feedback Control algorithm for static channels

We now present a brief summary of the 1-bit feedback
algorithm for distributed beamforming first proposed in [5].

1) Each transmitter keeps a recordθbest,i[n] of the best
known value of its phase rotation, wheren is the
timeslot index. The BS measures the received signal
strength (RSS)Y[n] at each timeslotn and keeps a
recordYbest[n] of its best previously observed RSS:

Ybest[n] = max
m≤n

Y[m]

Y[m] =
∣

∣

N
∑

i=1

aie
jΦi[m]

∣

∣ (4)

2) At timeslotn+1, each transmitter generates a random
phase perturbationδi from some probability distribu-
tion fδ(δi) (this distribution can change in time), and
transmits its message signal with an incremental phase
rotation δi: θi[n + 1] = θbest,i[n] + δi. This results in
the received phase:

Φi[n + 1] = Φbest,i[n] + δi (5)

whereΦbest,i[n]
.
= γi + θbest,i[n] + ψi is the phase of

the received signal from transmitteri corresponding
to θbest,i[n]. Note that the received phasesΦi and
Φbest,i[n] are auxiliary variables used in our analysis,
and are not known to either the transmitters (which can
only control the phase rotationsθi and θbest,i[n]), or
the BS (which can only observe the aggregate received
signalr(t)).

3) The BS measures the received signal strength and
generates a single bit of feedback that is set to ‘1’ if the
received signal strength in the current timeslot is better
than the previous best RSS, and ‘0’ otherwise. The BS
then broadcasts this bit of feedback (the broadcast is
assumed to be noiseless, which can easily be assured
using large amounts of redundancy if needed).

4) The BS updates its value ofYbest[n + 1] and the
transmitters update the phase rotationsθbest,i[n + 1]
to retain the perturbationsδi if the feedback bit is ‘1’,
and discard them otherwise.

5) The process is repeated in the next timeslot.

The update process can be written mathematically as:

Ybest[n + 1] =

{

Y[n + 1], Y[n + 1] > Ybest[n]

Ybest[n], otherwise.
(6)

θbest,i[n + 1] =

{

θbest,i[n] + δi[n], Y[n + 1] > Ybest[n]

θbest,i[n], otherwise.

B. Analytical Model for Convergence

Fig. 2 shows the convergence behavior of the phase angles
in a simulation of the 1-bit feedback algorithm.θbest,i[n]
andYbest[n] are stochastic processes, whose behavior over
time depends on the random choicesδi. We’d like to model
the behavior of this algorithm analytically to obtain insight
into its performance, and also to maximize the convergence
rate by choosing the distributionsfδ(δi) optimally over
time. Such an analytical model was derived in [6], and has
been shown to give accurate results, when compared with
simulations. We now sketch the details of this model.
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Fig. 2. Convergence of feedback control algorithm

The analysis is based on the empirical observation that
the random processYbest[n] evolves in a highly predictable
way. For instance, Fig. 3 shows two simulated instances of
the feedback algorithm, and we can see that the convergence
of the two instances are close to each other. Therefore we
examine the convergence behavior of the averagey[n] of
the processYbest[n] and use it to understand the behavior of
the algorithm and optimize the convergence.y[n] is formally
defined as follows:

y[1] = E
(

Ybest[1]
)

y[n + 1] = E
(

Ybest[n + 1]
∣

∣Ybest[n] = y[n]
)

(7)
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Note that (7) definesy[n] iteratively in time:y[n + 1] is
evaluated as a conditional expectation ofYbest[n + 1] given
Ybest[n] = y[n]. If we know the statistics ofY[n + 1], we
can compute the expectation in (7) using (6).Y[n + 1] can
be written using (4) and (5) as:

Y[n + 1] =
∣

∣

∣

N
∑

i=1

aie
jΦbest,i[n]+jδi

∣

∣

∣
(8)

The cumulative effect of the phase perturbationsδi is
to modify the complex received signal by increasing or

Fig. 4. Cumulative effect of phase perturbations on the received signal

decreasing its length and by rotating it. This is shown in
Fig. 4, wherex1 andx2 are zero mean random variables:

Y[n + 1] =
∣

∣

∣
CδYbest[n] + x1 + jx2

∣

∣

∣
(9)

where Cδ is a constant whose precise definition will be
given shortly.x1 and x2 can be expressed as the sum of
iid contributions from each transmitter’s perturbationδi.
Therefore for largeN , they look approximately Gaussian
and their variances are:

σ2
1 =

1

2

(

1 − C2
δ

)

N
∑

i=1

a2
i −

1

2

(

C2
δ − C2δ

)

N
∑

i=1

a2
i cos(2φi)

(10)

σ2
2 =

1

2

(

1 − C2
δ

)

N
∑

i=1

a2
i +

1

2

(

C2
δ − C2δ

)

N
∑

i=1

a2
i cos(2φi)

(11)

whereφi = Φbest,i − Φ0,

andΦ0
.
= ∠

(

N
∑

i=1

aie
jΦbest,i

)

(12)

In the preceding equations,Cδ = E(cos δi) and C2δ =
E(cos(2δi)), and both constants are parameters of the dis-
tribution functionfδ(δi).

Using this representation ofY[n + 1], we can evaluate
the expectation in (7). We note however that this expectation
depends on the distribution functionfδ(δi) (throughCδ and
C2δ), and also on the actual values of the received angles
Φbest,i. However, for a large number of transmittersN , it is
possible to simplify this considerably by using a statistical
approach. The idea of the statistical model is subtle, therefore
we discuss it in some detail next.

C. Statistical Model for the Received Phase Angles

This approach is motivated by the techniques of statistical
physics. Consider a system consisting of a large number of
non-interacting ideal gas particles (atoms). The macroscopic
properties e.g. pressure of this system can be calculated using
classical mechanics if the position and velocity of each atom
was specified at some instant of time. However this approach
requires the specification of6 coordinates for each of (the
order of) 1023 particles, and is therefore unsatisfactory and
not very useful. The statistical physics approach is to use
symmetry arguments and inquire into thedistribution of the
positions and velocities rather than their precise values.In the
terminology of statistical physics, we are only interestedin



characterizing themacrostates of the system, each macrostate
consisting of a huge number of microstates obtained by
permutation of the coordinates of different atoms.

The key idea is that there exists one macrostate that
contains almost all of the possible microstates [10]. Thus for
instance, using the statistical model, we assert that the gas
atoms are uniformly distributed in the volume of the system,
the direction of their velocities is isotropic i.e. equal number
of atoms are moving in all directions, and the fraction of

the atoms with a speed,v is proportional toe
−mv2

2kBT , where
T is the temperature of the system,m is the mass and
kB is the Boltzmann constant. Even though there are an
infinite number of other possible positions and velocities
(i.e. microstates) that are consistent with the constraints of
this system, the overwhelming majority of those positions
and velocities follow the distributions above, which may
be regarded as “typical”. The validity of this model is
demonstrated by comparing its predictions with experiment.

We adopt a similar approach in modeling the received
phasesΦi. Initially, all the phasesΦi[0] are completely
unknown, and they can be considered as iid and uniformly
distributed in (−π, π]. Even though any combination of
the phasesΦi[0] is equally likely, when the number of
transmittersN is large, the empirical distribution of the
anglesΦi[0] is with high probability close to the distribution
uniform(−π, π]. As the feedback algorithm progresses, the
phasesΦi[n] are no longer distributed independently of each
other, but rather tend to get increasingly clustered. However
for largeN , we still expect the empirical distribution ofΦi[n]
to be close to some fixed distribution with high probability
(analogous to the Maxwell-Boltzmann distribution for the
velocities of ideal gas particles). Our goal is to find this
distribution.

Recall that our definition ofy[n + 1] in (7) is an average
conditioned onYbest[n] = y[n]. This can be written as:

Ybest[n] ≡
∣

∣

∣

N
∑

i=1

aie
jΦbest,i

∣

∣

∣
= y[n] (13)

or
N

∑

i=1

ai cos(Φbest,i − Φ0) = y[n] (14)

The phaseΦ0, the phase of the total received signal (as
defined in (12)), is of no interest to us, therefore we consider
the distribution of the phasesΦi about the overall phase
Φ0. In other words, we are interested in the distribution of
φi = Φbest,i − Φ0. We now rewrite the LHS of (14) as:

N
∑

i=1

ai cos φi ≡ N ·E
(

ai cos φi

)

(15)

Note that we expressed the sum of the termsai cos φi in
terms of an expectation over the probability distribution of
ai and φi. As long as the expectation in (15) is carried
out over the actual empirical distribution ofai cos φi (i.e.
the relative frequencies ofai cos φi over its range), (15) is
trivially true, because it is just the definition of the empirical
average ofai cos φi. For large N , however we can use

typicality arguments toestimate the empirical distribution
fφ(φi) without having to know the individual phase angles
φi. UsingE(ai) = 1 and (15), the conditionYbest[n] = y[n]
can be written as:

E
(

cos φi

)

=
y[n]

N
(16)

This is the huge simplification offered by the statistical
method, and it allows us to compute the variances in (10)
and (11) as:

σ2
1 =

αN

2

(

(

1 − C2
δ

)

−
(

C2
δ − C2δ

)

E
(

cos(2φi)
)

)

(17)

σ2
2 =

αN

2

(

(

1 − C2
δ

)

+
(

C2
δ − C2δ

)

E
(

cos(2φi)
)

)

(18)

whereα = E(a2
i ) is just a constant. For the simplest case

that all transmitters have LoS channels of equal attenuation
to the receiver,α = 1.

All that remains is to computeE
(

cos(2φi)
)

. We compute
this, by first deriving an estimatefφ(φi) of the empirical
distribution of φi that satisfies the constraint (16). We now
present the typicality argument to computefφ(φi). Although
many possibleφi combinations can satisfy the constraint
(16), the overwhelming majority of thoseφi combinations
have the same empirical distribution if the number of trans-
mitters N is very large. In order to calculate this typical
distribution, we use the Conditional Limit Theorem from the
theory of typical sequences ([11], Sec. 12.6). This theorem
states that the empirical distribution of symmetrically dis-
tributed random variables conditioned on some symmetric
constraints on the random variables, is, with high proba-
bility, the distribution that satisfies the constraints, and is
closest in Kullback-Liebler distance from the unconditional
distribution. In our case, the unconditional distributionof the
phasesφi is u(φ) ≡ uniform(−π, π], because without any
constraints, the phasesφi will be uniformly distributed over
(−π, π]. Finding the closestfφ(φi) is a problem in calculus
of variations. To solve this, we construct a Lagrangian for
this optimization problem as:

L
(

fφ(φi)
)

=

∫ π

−π

fφ(φi) log
(fφ(φi)

u(φi)

)

+ C1

(

∫ π

−π

cos φifφ(φi)dφi −
y[n]

N

)

+ C2

(

∫ π

−π

fφ(φi)dφi − 1
)

(19)

We can show that the solution to (19) is as follows:

fφ(φi) =
1

J0(λ)
eλ cos φi (20)

where λ is the solution toJ1(λ)
J0(λ) = y[n]

N
and Jk(λ) is the

modified Bessel function of the first kind and orderk.
Fig. 5 shows a comparison of the distribution from (20)

and an empirical distribution of the received phase angles
φi obtained by simulation. The same figure also shows the
Laplacian and Gaussian distributions for the phase angles
for comparison. The close match between the empirical
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histogram and the distribution in (20) (the “exp-cosine”
distribution) observed in Fig. 5 validates our analysis. For
the distribution in (20), we can show:

E
(

cos(2φi)
)

≡
J2(λ)

J0(λ)
(21)

Fig. 6 compares empirical estimates ofE
(

cos(2φi)
)

from a
simulation of the 1-bit algorithm with (21), and also with
similar expressions corresponding to other assumptions on
the distribution ofφi e.g. Gaussian, Laplacian and uniform
distributions. The plots in Fig. 6 provide more evidence that
the empirical distribution ofφi is indeed close to the “exp-
cosine” distribution of (20).

Using (21) to evaluate the variances in (17) and (18) allows
us to computey[n] for all n, by using (9) to evaluate the
conditional expectation in (7). This completes our analytical
model for the average convergence rate ofYbest[n].

The analytical model outlined above can be used to
establish some attractive properties of the 1-bit feedback
algorithm[6]. We now summarize some of these properties:

1) Asymptotic Convergence.Given some mild condi-
tions on the distributionfδ(δi), the algorithm con-

verges to perfect coherencealmost surely, for any
initial value of the received phase anglesΦi.

2) Monotonicity. The expected received signal strength at
any number of timeslots is a non-decreasing function
of N , the number of transmitters, i.e. more transmit-
ters always provide a larger expected received signal
amplitude.

3) Scalability. The number of timeslots required to con-
verge to within a given fraction e.g.f = 90% of
perfect convergence increases with the number of
transmitters,N , but no faster than linearly withN .

The above description and analytical model apply to the
static case, where the complex channel gainshi = aie

jψi ,
and the phase offsetsγi are constant with time. In practice,
the hi could change due to Doppler effects in the wireless
channel, andγi could be affected by oscillator phase noise.
If the phase noise is small enough, and the cumulative
Doppler variations are small through a significant number
of timeslots, we can reasonably model the channel as static.

For the more general time-varying channel, we present
a slightly modified version of the feedback algorithm, that
allows the transmitters to dynamically track the channel vari-
ations. Most of the analytical results for the static case, can
be extended to the time-varying case, and this is addressed
in detail in Section IV.

III. E XPERIMENTAL PROTOTYPE FORDISTRIBUTED

BEAMFORMING

We now describe an experimental prototype developed to
investigate the performance of distributed beamforming ina
practical situation. Figs. 7 and 8 show the block diagammatic
representations of the transmitters and BS respectively.

Fig. 7. Block diagram of transmitter prototype

We now describe the operation of the prototypes for the
beamformer nodes i.e. transmitters, and the receiver.

A. Description of the prototype design

The Beamformer node consists of an FPGA (Spartan-3
family from Xilinx [12]), two digital to analog converters
(DACs), a quadrature modulator, power amplifier and an-
tenna. The baseband processing is done in the FPGA. To
implement the random number generator, a simple1024



Fig. 8. Block diagram of receiver (BS) prototype

point lookup table was created. The table contains pseudo
random numbers±1 generated in Matlab. Each beamformer
node is loaded with a different table generated in Matlab
using a different seed for the random number generator. The
phase shifts steps is set to5.6◦ by using a64 point sine
and cosine table. The lookup address to the table is set
to the sum of the output of the random number generator
and the address corresponding to the best phase from the
previous iteration. When the SNR feedback arrives from the
receiver, the best phase is updated if the SNR improved from
the previous iteration. We designated one beamformer to be
the master device. The master device distributes a low rate
clock to the other beamformer nodes so that all nodes can
frequency-multiply this clock to the RF frequency, and thus
be frequency locked. The clock distribution was done over
a simple wired interface but could easily be done wirelessly
as well.

The receiver consists of an antenna, bandpass filter,
quadrature demodulator, two analog to digital converters
(ADCs), an FPGA and a DAC for debugging purposes. An
intermediate frequency of20 kHz was arbitrarily chosen to
avoid the problems associated with converting the incoming
signal directly to DC. A simple power detector was imple-
mented in the FPGA. The power measurements are averaged
over the feedback interval. The receiver feeds back a ‘1’
to the beamformer nodes if the received power is greater
than the averaged power measurements from the previous
M iterations.M was arbitrarily set to4 for the experiments.
WhenM was set to1, the algorithm still converged to large
received power, but we observed more oscillatory behavior
as the algorithm was trying to continue to search for better
phase values even after convergence.

B. Experimental Results

The test setup is shown in Fig. 9. The test consisted of
mountingN = 3 beamformer nodes across from a receiver
node. To test the beamforming gains we initially did not
modulate any data onto the carrier. For calibration, each
beamformer was turned on while the other2 beamformer
nodes were turned off. We then measured the received power
due to each of the beamformer nodes. We then turned on
all of the beamformer nodes and ran the algorithm. After

Fig. 9. Photograph of experimental setup
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Fig. 10. Received Power Measurement over time

convergence we measured the received power and compared
this with the theoretical value we were expecting. This
allowed us to measure the beamforming gain. Table I shows
the results for one case.

If the beamforming was ideal, the theoretical received
power would have been1370µW while the actual received
power was1230µW . Thus we were within90 % of the theo-
retical limit. We also ran the algorithm while the beamformer
nodes BPSK modulated the carrier with a known10 kbps
sequence. The modulation did not affect the convergence
time or the beamforming gain as expected. We ran several
trials and obtained similar results. The convergence of the
algorithm took approximately60 iterations. With a200 Hz
feedback rate that corresponded to approximately300 ms. A
typical realization of the received power while the algorithm
ran is shown in Fig. 10.

Transmitters ON Received Power (µW )
1 120
2 85
3 280

1, 2 and 3 1230

TABLE I

RECEIVED POWER MEASUREMENTS



IV. T RACKING A TIME-VARYING CHANNEL

Section II-B presents an analytical model for the conver-
gence of the synchronization when the wireless channels
from each transmitter to the receiver is static i.e. constant
in time. For such channels, the 1-bit algorithm can be
shown to converge asymptotically to perfect coherence with
probability 1. Once converged, the transmitters can use the
optimal valueθbest,i obtained from the algorithm to maintain
coherent transmission in subsequent timeslots. However in
practical cases, the channel phase responses change in time
e.g. due to Doppler effects from moving scatterers. For such
channels, the channel variations cause the transmitted signals
to lose coherence over time: even when the transmitters
use the same phase rotationθbest,i, the received phase
Φbest,i[n] = γi + θbest,i[n] + ψi[n] will not remain the
same, because of the change in the channel phase response
ψi[n]. As a result, the received signal strengthYbest[n] =
∣

∣

∑N
i=1 aie

jΦbest,i[n]
∣

∣ decreases on average. Fortunately, the
1-bit algorithm can be easily adapted to dynamically adjust
the transmitted phaseθbest,i[n]. We now present this modi-
fied algorithm.

1) At each timeslotn, each transmitter keeps a record
θbest,i[n] of the best known value of its phase rotation,
and the receiver keeps an estimateZbest[n] of the best
achievable RSS. Unlike the static case,Zbest[n] is only
an estimate of the best achievable RSSYbest[n] that
changes randomly because of channel variations.

2) At timeslotn+1, each transmitter generates a random
phase perturbationδi from some probability distribu-
tion fδ(δi), and transmits its message signal with an
incremental phase rotationδi: θi[n+1] = θbest,i[n]+δi.
This results in the received phase:

Φi[n + 1] = Φbest,i[n] + δi + ∆i[n] (22)

whereΦbest,i[n]
.
= γi + θbest,i[n] +ψi[n] and∆i[n] is

the channel drift i.e.ψi[n + 1] = ψi[n] + ∆i[n].
3) The BS measures the received signal strength,Y[n +

1] =
∣

∣

∑N
i=1 aie

jΦi[n+1]
∣

∣ and generates a single bit of
feedback that is set to ‘1’ if the received signal strength
in the current timeslot is better than the estimated
best RSSZbest[n], and ‘0’ otherwise. The BS then
broadcasts this bit of feedback to all transmitters.

4) If the feedback bit is ‘1’, the BS updates its value
of Zbest[n + 1] with the new measured RSS, and the
transmitters update the phase rotationsθbest,i[n+1] to
retain the perturbationsδi; otherwise the BSdiscounts
its estimated best RSSZbest[n] by a factor ρ < 1
to reflect the expected deterioration due to channel
variation, and the transmitters discard the perturbations
δi.

5) The process is repeated in the next timeslot.

The received phases change due to both the update process
and the channel drifts. The update process can be written

mathematically as:

Zbest[n + 1] =

{

Y[n + 1], Y[n + 1] > Zbest[n]

ρ Zbest[n], otherwise.
(23)

θbest,i[n + 1] =

{

θbest,i[n] + δi[n], Y[n + 1] > Zbest[n]

θbest,i[n], otherwise.

Φbest,i[n + 1] =











Φbest,i[n] + ∆i[n] + δi[n],

Y[n + 1] > Zbest[n]

Φbest,i[n] + ∆i[n], otherwise.

Unlike the static case, this tracking version of the 1-bit
feedback algorithm does not converge to a fixedYbest[n], but
rather to a dynamic steady state. Intuitively, if at any timethe
received phasesΦi[n] become highly coherent, it becomes
harder to find “favorable” perturbationsδi, and therefore, the
overall tendency for the RSS is to decrease because of the
channel drifts. The steady state balances the tendency of the
channel drifts∆i to drive the phases away from coherence,
and this is partly compensated by the random perturbations
δi with feedback.

To quantitatively analyze this, we model the drift process
∆i[n] as iid across sensors, and stationary and uncorrelated
in time with a distributionf∆(∆i). Much of the analysis of
Section II-B can now be extended for the time-varying case.
In particular, the typicality argument of Section II-C can be
used in this case also, and therefore the empirical distribution
of the phasesΦi[n] at any instant is still given by (20) if the
number of transmittersN is large. As before we can write
the aggregate effect of the phase perturbations, and channel
drift as an increase or decrease in the magnitudeYbest[n] of
the received signal, and a rotation of its phase, and we can
write an expression similar to (9):

Y[n + 1] =
∣

∣

∣
CδC∆Ybest[n] + z1 + jz2

∣

∣

∣
(24)

whereC∆
.
= E

(

cos ∆i

)

. This also suggests a natural choice
for the discounting factor asρ = C∆. This choice would
make Zbest[n] = E

(

Ybest[n]
)

. As before z1 and z2 are
uncorrelated, zero mean random variables whose distribu-
tions are approximately Gaussian because of the Central
Limit Theorem, and their variances can be shown to be
respectively:

σ2
11 =

αN

2

(

(

1 − C2
δ C2

∆

)

−
(

C2
δ C2

∆ − C2δC2∆

)

E
(

cos(2Φbest,i)
)

)

(25)

σ2
22 =

αN

2

(

(

1 − C2
δ C2

∆

)

+
(

C2
δ C2

∆ − C2δC2∆

)

E
(

cos(2Φbest,i)
)

)

(26)

where C2∆
.
= E

(

cos(2∆i)
)

, and φi
.
= Φbest,i − Φ0, Φ0

defined as in (12). From (23) and (24), we observe that
Ybest[n] is a Markov process, and its transition probability
function is defined by:

fM

(

y2

∣

∣y1

) .
= f

(

Ybest[n + 1] = y2

∣

∣Ybest[n] = y1

)

(27)



The transition probability functionfM (y2|y1) can be ex-
pressed in terms of the known Gaussian densities ofz1

and z2. From fM (y2|y1), we can calculate the steady-
state probability densityfss(y) of the Markov chain as the
solution to the eigenvalue problem:

fss(y) =

∫ ∞

y1=−∞

fM (y|y1)fss(y1)dy1 (28)

Fig. 11 compares the steady-state distributionfss(y) com-
puted by solving (28), with a histogram ofYbest[n] obtained
from a simulation of the 1-bit algorithm with channel time-
variations (after discarding the initial “transient” samples).
The excellent agreement betweenfss(y) and the histogram
shows that the analytical model accurately predicts the be-
haviour of the algorithm.

0 20 40
0

0.02

0.04

0.06

P
ro

b.
 d

en
si

ty
, f

ss
(y

)

received signal strength, y

histogram from simulation
Markov steady−state pdf

Fig. 11. Distribution of received signal:N = 40, channel driftf∆(∆i) ∼
uniform[− π

25
, π

25
], phase perturbationsfδ(δi) ∼ uniform[−π

7
, π

7
]

The above analysis of the tracking algorithm as a Markov
process can be used to choose the distributionfδ(δi) op-
timally to maximize the average steady state RSS. This
analysis is still an ongoing research, but we can make a few
general remarks.

1) In order to get good tracking performance, the pertur-
bationsδi need to be at least as large as the channel
drifts ∆i on average.

2) The perturbationsδi should not be too large on aver-
age, to avoid large fluctuations in the RSS.

3) The effect of phase jitter (i.e. fluctuations in the phase
γi) is similar to channel variations. If we apply the
above steady state analysis to the experimental results
of Section III, the steady state beamforming gain
correspond to a rms phase jitter of about10◦. This is
consistent with a visual observation of the RF carrier
signals on an oscilloscope.

V. CONCLUSIONS

The results presented in the previous sections are promis-
ing and show that large SNR gains are achievable under
practical conditions using distributed beamforming. This
initial investigation leaves substantial scope for futurework.
The most important open issue is measuring and optimiz-
ing the algorithm for tracking time-varying channels. Our
experiments in a static laboratory environment does not
provide information about the tracking performance of the
algorithm. Our analytical model is intuitive and provides
valuable insights; it is conceptually possible to use the
analytical model and solve for the optimal choices of several
important parameters including the distributionfδ(δi) and
the discounting factorρ. However we do not yet have closed-
form solutions for these important parameters, and charac-
terizing these parameters compactly is an open problem for
future work.
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