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ABSTRACT Consider a WiFi distributed beamforming system at a
carrier frequency of 2.4GHz with ten fixed transmit nodes

Distributed beamforming requires phase and frequency syiynd one fixed receive node. Suppose at time 0, the
chronization. As oscillators drift, through Brownian mwti  {ransmit nodes are perfectly synchronized and have perfect
induced phase noise, their instantaneous phases must B€3nnel state knowledge. The received powet at 0 is
tracked and compensated. Several papers and IEEE 15%10&0(102) = 20dB. Even though there is no motion in
have proposed Kalman Filter (KF) based tracking algorithmgne system, the oscillators will begin to drift for tinte> 0.
using the unwrapped phase measurements. This paper quardiscillators used in WiFi transceivers typically drift with
fies the effect of Brownian Motion induced drift at two levels gtandard deviation of df.5 nanoseconds per second [5]. At
First we derive Cramer-Rao Lower Bounds (CRLB) manifesb 4GHz, this corresponds to a phase standard deviation of
in one shot estimation of frequency and phase from unqgg degrees at time = 0.050s, which corresponds to an
wrapped phase observations, and reveal fundamental and gvarage received power of appoximately 11dB (1dB better
luminating differences with the existing frequency ands#ha tnan incoherent transmission). In other words, even though
estimation CRLBs in the literature derived in the absencgnhe standard deviation of the clocks offsets was only 125 pi-
of Brownian motion. Second, we consider a KF that trackggseconds at = 0.050s, this is manifested as a large phase

forming, and is switched off during beamforming. Boundstypical radio frequencies.

are derived relating the error growth as a function of the” Thys in order to maintain good performance in dis-

underlying duty cycle. tributed transmit beamforming systems, it is important to
Index Terms— Oscillator Drift, Phase Noise, Brownian understand how frequently one must resynchronize. Recent
Motion, Kalman Filter, Cramer Rao Lower Bound papers including [1, 2] and IEEE 1588, [7] have adopted a
two-state Kalman filtering approach, in which they assume
1. INTRODUCTION that the unwrapped phase is available, and track phase and

Distributed beamforming requires phase and frequency syrd€duency using these unwrapped phase measurements. The
chronization. Even without mobility, oscillators underydft efficacy of such a Kalman filter based approach to distributed

that must be tracked and compensated. The process char@nsmit beamforming has also recently been demonstrated i

terizing this drift is Brownian motion, typically in both plse [ . , .
and frequency [L]-[3]. This causes the variance of the phase 1MiS Paper is focused on acquiring a fundamental un-
offset with respect to an ideal reference to grow with time.  derstanding of the effect of Brownian motion driven phase

The stochastic nature of independent local oscillators imdift at two levels. In the first we derive Cramer-Rao Lower

plies that it is not just enough to estimate the channels fron?OunOIS (CRLB) _manlfest in one shot estimation of frequency
the transmit nodes (which include the effect of clock off- and phase from instantaneous obseryaﬂons OT the l_anrapped
sets) and expect them to hold for long, even without motion.phase’ and reveal fundamental and illuminating difference

In techniques that require close synchronization of transWIth the existing frequency and phase estimation CRLBS in

mit nodes, uncorrected Brownian motion oscillator driftcal the literature, e.g. [4], derived assuming the absence aéph

leads to desynchronization. Oscillator offsets must bektrd drift. Atthe second level we consider the use of a Kalman fil-

and appropriately compensated, else channel estimates 68[ that tracks the instantaneous unwrapped phase of &singl

come stale, transmit nodes become unsynchronized, and tﬁ?%!ltatt?lr’ |r\1/\/|i|:t$]rvgllsﬁV\(/jherir§ tf;)erer;sf r:?n?nearrgorr:éng, remg
gains of distributed transmission are lost. evitably switched oft auring beamio 9. bounds are de-

rived relating the error growth as a function of the undewdyi
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fect of Brownian motion frequency noise can be assumed tBor example withV = 4
be negligible [3]. Thus, the basic model we consider is one in

which the unwrapped phase obeys

n—1
y(nTs) = wenTs + 6 + Z w(iTs) + v(nTs), (1)

i=—p
wherew, is the nominal oscillator frequency, a nominal
phase/[T is the sampling intervaky(iTs) ~ N(0,w?Tsq =

u

andv(nTy) ~ N(0,02) is also a white sequence, modeling
the effect ofny and phase unwrapping errors. In the sequel

define,y[n] = y(nTy), win] = w(nTs) andv[n] = v(nTy).
The fact that the summation in (1) startsiat —p, reflects

the fact that the first observation madevisamples after the

phase noise takes effect.

A state variable respresention for (1) is:
zlk + 1) = Falk] + Gw[k] ylk] = Hzlk] +v[k], (2)

where

-8 2oy 7] =[] wei o

3. CRAMER RAO LOWER BOUND

The past literature on CRLBs for frequency and phase estima-
tion, e.g. [4], involves observations of complex exporedsti

in white noise, without oscillator drift. Specifically, tifiecus
is to study the estimation of. andf from

2(t) = relUwet9) (). 4)
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YN = WETGQ (8)

Thus the conditional density functiofy. jo..e (Y |we, 0) is
N (w.Tssy + 6un,Xn). Then, [8], the Fisher Information

2) is a white sequence that models the Brownian motion™Matrix (FIM) is given by:

2.7 yv—1
Fy = TZsyXy 1sN
~TyshEy un

—T.sEy-tly
UT g—llf; N ) (9)
N~N YN
where, withz; = w. andze = 0, the (¢, j)-th element of
Fy represents-E {02 1og [ fyy|a..0 (Yn|we, 0)] /02;02;}.
Direct verification shows that:

EN[L 0> e 7O]T = (p + 1)W3TSQUN
Likewise:
EN[fla Oa T 703 1}T = w(Z;TGQSN

Subsituting into (9) we get,

1 1
Fy = dia N-)T,, ————». 10
N w2 g{( ) (p+1)Ts} (10)
The CRLB matrix is then:
2 . 1
adiag { o 0+ U 1)

wherer(t) is complex Gaussian noise. Analysis of the ef-where the first and second diagonals are the CRLB for fre-
fect of the statistics ofj, the sampling rate and the number quency and phase estimation, respectively. By contrast the
of samples is given. As our goal is to understand the effeqtRLB matrix for estimatingv, andd from (4) is:

of Brownian motion, rather than studying the effectofve
derive the CRLBs by neglectingnT%) in (1) or equivalently
v[n] in (2). We work instead with

n—1

y[n] = wenTs + 6 + Z wli]. (5)

i=—p

Our goal is to obtain the CRLB in estimating andé from

the N-observation vectob’y = [y[0],--- ,y[N — 1]]T. To
this end observe that with
0 N-1 T
1=—p 1=—p

there holdsYy = w.Tssy +0un + Wy, with the N-vectors
sy =[0,1,2,---,N —1]T anduy = [1,1,---,1]7. Ob-
serve,Wx ~ N(0,Xy), where the{ij}-th element; < j,
of the symmetric matris2 y = E [Wy W] obeys:

Sn (i, j) = (i + p)wiTsq, @)

r2 —(p+P) (12)

T.N(Q—P?)

P2+2pP+Q
N(Q-P?)

2 l 1 —(p+P) 1
0" | TZN(Q-P?) T.N(Q—P?)

wheres? is the variance of the uncorrelated real and imagi-
nary components of, P := (N —-1)/2,Q := (N —1)(2N —
1)/6. The most striking thing about the comparison between
(11) and (12) is that in the estimation of frequency, despite
fact that the computation of (11) neglects phase unwrapping
errors, the improvement with the number of observations is
only linear, as opposed to quadratic in (12), reflecting the i
fluence of Brownian motion. Further, while the CRLB fbr

is unaffected by the number of observations in the Brownian
motion case, it grows linearly witfi;. By contrast, without
Brownian motion,N does affect the phase estimation CRLB,
butT, does not.

4. KALMAN TRACKING

In the rest of this paper we consider state tracking perfor-
mance within a two-stage format. Specifically we will assume



that there are two interlaced epochs that are repeateddperio ‘ ‘ ‘ ‘ ‘ ‘ e
ically. In the first, thetraining or tracking epoctthe Kalman ar EE.“;‘V:’;’;’;L“:S(‘E;’?
filter (KF) runs using the unwrapped phase measurements to .|
track the actual state in (2). In the secdhd idling or beam-
forming epochit is idle. For positive integeréd, > N and
all natural numbers\/, the tracking epoch comprises sam-
ples{ML,ML+1,--- , ML+ N —1}, and the idling epoch
comprise§SML+N,ML+N+1,--- ML+ L-1}. The
duty cycleinvolved isD = (L — N)/L. Both, z[k] andy][k] N
are now offsets from some initial estimates.

Definei[k + 1|k| to be the state prediction estimate ob-

3l
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tained at timé:+ 1 on the basis of observatiopd)], - - - , y[k] o w W W e T s s
andi[k|k] to be the state prediction estimate obtained at time
k on the basis of observationg0], - -- ,y[k]. Observe, the Fig. 1. One shot ML tracking vs interlaced KF tracking with

idling epoch precludes the use of steady state Kalman gaisteady state error bounds for KF tracking.
Rather in the tracking epoch we use the standard KF equations
as used in the controls literatdrg9]. With 02 = w2T,q,

stated purely as a recursion in termsiok + 1|&|, this be- . - . . . :
purely 148 + 1/A] to incoherent combining. The black lines will be explained i

comes: the next section. The results are averaged oOéiterations.
2k +1[k] = (F — K[k]HT)2[k|k — 1] + K [k]y[k]. 5. KALMAN FILTER PERFORMANCE
Kkl = FSIklE — WHT(HS Ik — 11HT 2y—1 During the training epoch, i.e. fok € {ML ML +
¥ U M (HE[K ] o) 1,---, ML+ N —1}, (13) holds, while during the idle epoch,
ie. fork e {ML+ N, ML+ N+1,--- ML+ L -1},
Yk+1k] = FX[klk—1] - Sklk—1)(HZ[k|k - 1]HT there obtains

+ o) HSkE - 1)JFT + 02GGT (13)
B . . N[k + 1)k] = FX[k|k — 1]F' + 02GG". (15)
Specifically, X[k + 1|k] represents the error covariance matrix
attimek + 1, based on the observatiog®)], - - - ,y[k]. Inthe  We begin by making some important remarks. Most proofs
sequel we quantify performance on the basiE@f+ 1/k], as  of KF convergence, even with no idling, assume tatG]
the obviously defined[k|k] is readily obtained fromit. Inthe is stabilizable. In this casg”, G] is not stabilizable, let alone
idle epoch, in the absence of training, the correct placédrol completely controllable. However, the fact that the unomnt
for the state estimate used to initialize at the next tragkin lable mode is simple and at 1, implies, [12], tkia complete
epochiis: observability of(F, H] ensures that had we only trained, i.e.
&k + 1|k] = Fz[k|k — 1]. (14)  only (13) held,X[k|k — 1] would still converge to a steady
state value, that obeys the standard algebraic Riccati equa
Figure 1 exemplifies the performance of the Kalman filtertion. Wha_t the lack of stabilizability do_es is to guarantee that
versus the one-shot maximum likelihood estimator [10] witht1€ resulting steady state Kalman gains such that”— K 1

a phase process noise parameter selected to yield a stand3/f One eigenvalue at 1.

deviation of 108 degrees of offset after 50ms (as is typizal f Inthis case one has to contend with the idle epoch as well.
WiFi transceivers as discussed in Section)= 0.6169. In ~ SUch a setting has not been analyzed in the case WHet&

this example, each tracking epoch is 0.5ms, followed by als not stabilizable. The setting whel, G| is stabilizable has
idle epoch of 4.5ms With, = 10us. After the first track- been considered in the sensor scheduling literature, 1§, [

ing interval, the KF and the one-shot estimators perform simPut only forV-= 1. Here we consider a generall and show

ilarly during the idle epoch. The advantage of the KF pethat at steady state this results in a periodic solution.att f

comes evident after subsequent observations where the K€ have the following Theorem.

incorporates the prior knowledge with the new observation L
- heorem 5.1 For every pair of integerd. > N > 1, scalars
In steady state, the prediction error of the KF at the end of ,, 9 : :
a;, > 0ando; > 0, there exists a unique > 0 such that

the idle epoch is less than 30 degrees RMS, which providestﬁL

beamforming gain less than 1.5dB of the ideal with 10 transi-sirf’ieﬂgd;%;(\’;\?gr dse?ﬁ]%%hogl;] F?)?f;r;ler?a?gr;r(naufrzlé)oe?véng
mit nodes [6]. The MLE has an RMS phase error in excess ML?* (b) Forall & € {ML ML+1 ~-~ML+N71},
of 200 degrees at the end of each idle epoch, correspondir% -a ’ ’

. . . . . 2
1There is a slight difference in terminology between the ailstand es- _ a’[K] 2
timation literature, though the end products are equivalent a[k + 1] - a[k] T g2 4 a[k] + 0w (16)
v



(c) There holds:

phase and frequency from the unwrapped phase and have de-

lineated notable differences from existing CRLBs for phase

a]ML+ N]+ (L — N)o? = a. (17)
Further, consider the x 2 symmetric matrix sequence
Y[k|k—1], thatunder (3), obeys (13) forallc {M L, ML+
1,---ML+N —1},and (15) fork € {ML+ N, ML+ N +
1,--- ML+ L — 1}, with symmetri&[0| — 1] > 0. Then:
klim IZ[k + 1|k] — diag{a[k],0}| = 0. (18)
c— 00
Evidently, the frequency estimation error goes to zero. [1]
This is unsurprising as the second state in (2) is constdng. T
phase tracking error variance at steady state is periodie. T
largest value, at the end of the idle period is giverubyWe
now provide bounds on. To this end observe that (16) is a
first order Riccati equation with steady state solution:

(2]

a* = (02 + /ot +40202)/2. (19)

3]
From (17),a[LM + N] < a. Then asu[k] in (16) is mono-
tonic the solution to (16) is nonincreasing in the interval [4]
[LM, LM + N —1]. Thusa[LM + N] > a*, and

a> (L —N)o2 + (02 + /ot +40202) /2.

v

(20)

. . 5
Also observe that from the nondecreasing and nonegative na—[ ]
ture of the sequence in (16), in the tracking epofj > a*.

Thus with

g
0< A= = 1. 21
- o2+ a* (21) [6]
oy 2 2
alk +1] = m“[k} + 0y, < Aalk] + o,
Then using the fact that[LM] = a, a repeated recursion  [7]

shows that

L1 AN
TN

Consequently using (17), we obtain:

aLM 4+ N < XNa+o 8]

[9]

L—-N 1 > 22)

<o~ 4+ -
“—”"(1—AN+1—A

Observe ife2 = 0, then the two bounds coincide, i.e. under
high SNR the bounds are arbitrarily tight. These also gfianti

the effect of duty cycleD, L and N. In Figure 1 the steady

state error evidently matches the lower bound, and the two[11]
bounds are quite close.

6. CONCLUSION
Motivated by stringent carrier synchronization requiretse
for beamforming, we have studied the effect of Brownian mo- [12]
tion induced phase noise. Influenced by IEEE 1588's adop-
tion of a Kalman Filter based tracking of carrier noise using
unwrapped phase measurements, we have studied two funda-
mental issues. We have derived the CRLB for estimating the

[10]

and frequency estimation in the absence of Brownian motion.
We have studied the performance of a two stage Kalman Fil-
ter, interlacing periods of idling and tracking. We havewho
that the steady prediction error covariance matrix is icio
and have provided bounds on its value.
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