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ABSTRACT

We introduce UCSB’s Visual Sensor Network (VISNET) and

discuss current research being conducted with the system.

VISNET is a ten-node experimental camera network at UCSB

used for various vision-related research. The mission of VIS-

NET is to provide an easy-to-use multi-node camera network

to the vision research community at UCSB. This paper briefly

discusses design and setup considerations before discussing

current research. Current research includes operation visual-

ization, camera network calibration, tracked object modeling,

and multiple object / multiple camera tracking.

Index Terms— Camera Networks, Smart Cameras, Track-

ing, Sensor Networks

1. INTRODUCTION

Rapid advances in technology have changed the goal of visual

surveillance from building systems using only a few power-

ful cameras to building systems deploying many cheap cam-

eras. Given a large camera network (e.g. hundreds of cam-

era nodes), a typical architecture with one central server col-

lecting the video streams and performing all of the analy-

sis would fail due to communication and computation con-

straints. However, as the capabilities of a camera’s on-board

processing advance, distributed solutions have become feasi-

ble. The question is how to make such a distributed system

scalable without compromising its performance.

In this paper, we introduce our distributed vision testbed

– Visual Sensor Network (VISNET). Our setup creates flex-

ibility, since the processors we use allow us to consider al-

gorithms first, and processing constraints later, while the vi-

sualization system allows us to see our results quickly. In

this system, we take advantage of the overlapping views of

multiple cameras to contribute three algorithms for different

areas of computer vision: (1) a distributed camera calibration

algorithm, (2) a simple human appearance model, and (3) a

multiple human tracking scheme.

Distributed Camera Calibration

The problem of camera calibration [1, 2, 3] is a well-

studied problem in the vision literature. Indeed calibration

is used in any application that studies objects in 3D space

through 2D images. For instance, work on gesture recogni-

tion [4] and virtual reality [5] all use calibration techniques

based on the camera projection model. However, surprisingly

little attention has been paid to the automatic calibration of

a distributed large camera network, especially under the con-

straint of bandwidth and computation. We propose a simple,

distributed calibration method that uses a moving planar pat-

tern and automatically calibrates the network in a way that is

much less complicated than classical nonlinear estimation [6]

with comparable results.

Simple Multiview Human Model

With the calibrated cameras, one task we approach is to

create a human model for data association across cameras and

identification during tracking. Much of the work in this area

has been with single cameras, and either 2D models or in-

ferred 3D models. Zhou and Hoang [7], for example, uses

position, velocity, color histograms, and the number of pixels

to represent tracked people. Work in multicamera networks

has expanded upon the single camera models. Wu and Agha-

jan [8] fit colored ellipses to body segments to build a 3D ar-

ticulated human model. Our approach is to instead to eschew

the more complicated models and build a simple, multiview

human model that can be updated at a central location.

Multiple Person Tracker

Adding a human model to camera calibration allows us to

address tracking, a popular topic in computer vision. Chal-

lenges to good tracking include tracking multiple people, es-

pecially in a crowd, and tracking in the presence of occlu-

sions. With a single camera, Rasmussen and Hager [9] uses a

joint probability data association filter (JPDAF) to re-associate

objects after occlusion. With multiple cameras, Cai and Ag-

garwal [10] and Khan et al.[11] use the camera with the best

view and hand off the tracking to neighboring cameras when

the target leaves the field of view. Ercan et al.[12] also use

multiple cameras and a particle filter to handle static and mov-

ing occluders. In this paper, we present a method that avoids

complicated filters like JPDAF and particle filters. Instead,
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taking advantage of the overlapping cameras, our method uses

only a Kalman filter and transmission of predicted 3D posi-

tion to the nodes to deal with multiple objects and occlusions.

To minimize data communication in VISNET, all process-

ing related to images are done locally. This is similar to

the system presented by Xu et al. [13] for tracking people

in sports applications. They use a dedicated feature server to

process video from each camera and a multi-tracker module

that only needs to merge information from individual track-

ers using a nearest neighbor method. Communication and

synchronization is achieved through a “request-response” pat-

tern, invoked by the multi-tracker. In this paper, we use a dif-

ferent mechanism where all camera nodes and central nodes

simply broadcast their tracking results and synchronization is

achieved through timestamps. This removes the necessity for

a central node to coordinate all the message passing and al-

lows the system to scale easily.

Section 2 details the hardware and setup used in VISNET

and Section 3 describes our main interface to the system. In

Section 4, we describe our camera calibration scheme. Sec-

tion 5 briefly overviews the simple 3D object model. Finally,

Section 6 describes our object tracker with results.

2. CAMERA NETWORK DESIGN

The driving force behind the VISNET system is camera sen-

sor network research. We envision a network of camera-enabled

autonomous nodes which could be easily configured for a va-

riety of applications. As our interests lie in software and al-

gorithms rather than hardware design and configuration, the

system consists of off-the-shelf hardware.

Each of the ten VISNET nodes consists of a PC with an

attached IEEE 1394 camera. This setup provides us with the

flexibility to test algorithms. For simplicity, the nodes are

networked via wired Ethernet. An eleventh node serves as

a central tracker and is also used for application control and

visualization. All nodes run the Ubuntu Linux distribution

and applications are developed using open source tools.

The room is 10 meters long by 6 meters wide by 2.8 me-

ters high, and the ten cameras are mounted approximately

150 mm from the ceiling pointed slightly downward. Fig.

1 shows a mounted camera along with three typical camera

views.

In order for cameras to collaborate in tracking and other

applications, it is important that data correspond to the same

time instant. Due to the difficulty of synchronizing the captur-

ing and processing of video, we employ timestamps to ensure

data coherence. However, this approach requires the times-

tamps produced at each node are accurate. While exact syn-

chronization is not required and likely not possible, the timing

errors should be small compared to the timescales of the target

motion. To this end, we employ the Network Timing Protocol

(NTP) [14]. NTP synchronizes the camera nodes’ clocks with

the central node. Our timing error using NTP are on the order

(a) Mounted Camera (b) Node 1 View

(c) Node 5 View (d) Node 8 View

Fig. 1. VISNET Camera and Views

of 4 ms which is sufficient for tracking people in the VISNET

system.

3. SYSTEM VISUALIZATION AND CONTROL

To visualize and control the operation of VISNET, we have

built a GUI front end for the system. The visualization node

communicates with the central node using a custom message

format. When the front end first establishes its connection to

the tracking server, it requests a description of the topology of

the camera network and the parameters for each camera. The

front end then draws a 3D representation of each camera in

the network using OpenGL, as shown in Fig. 2.

From this view, the user can select an individual node to

see live video from the corresponding camera. Specifically,

the interface periodically requests video frames from the cam-

era node, which encodes the frames using MPEG4 and trans-

mits them to the visualization.

The interface also periodically requests the locations of

objects being tracked by the central server. After receiving

the 3D and 2D locations of each object in the selected cam-

era’s viewpoint, the front end draws markers along with the

received frame.

4. CAMERA NETWORK CALIBRATION

The goal of camera network calibration is to determine the

nodes’ positions and orientations with respect either to each

other or to some world reference. In our system, the cali-

bration is performed in real time using a planar chessboard

calibration pattern since planar patterns are easy and cheap

to build. During the calibration process, the chessboard is



Fig. 2. Visualization Front End

moved through the network. Calibration based on planar pat-

terns has been proposed in literature for single camera cali-

bration, such as [1, 2]. However, how to use it to calibrate

a large network has not been paid much attention. The main

challenge is how to efficiently process thousands of planar

patterns captured by the cameras over the time so that the

network can be scaled easily. Here we propose a distributed

calibration method, aiming to minimize communication and

computation, without comprise to the performance.

When the chessboard moves in the network, each camera

node i actively seeks the chessboard pattern. If the chess-

board is detected at time t, the node performs typical extrin-

sic calibration as detailed in [1], i.e., estimate its own orienta-

tion Ri(t) and position Ti(t) with respect to the chessboard.

Ri(t) and Ti(t) are stored at the camera node together with

the timestamps t, which are then broadcasted to all the other

nodes including the central control node.

When two nodes i and j detect the chessboard at about

the same time (by comparing timestamps), their relative ex-

trinsic parameters {Rij(t),Tij(t)} can be easily computed.

When this calibration between two nodes is performed mul-

tiple times, the mean relative parameters are computed. In

this way, over time, the Vision Graph [15] is built, showing

the successful relative calibration between nodes. A typical

vision graph for VISNET is shown in Fig. 3.

Once sufficient internodal connections are calculated, the

chessboard is placed in a world origin position (in our case,

the center of the room) and those cameras which sense the

board compute their extrinsic parameters with respect to it.

The remaining nodes’ absolute extrinsic parameters are then

computed by tracing the path along the vision graph back to

the world origin.

With the proposed method, the entire calibration process

Fig. 3. VISNET Vision Graph - A connection between nodes

indicates a shared field of view

is done in a distributed fashion, which makes the it fully scal-

able to a large network.

1. Each camera node actively detects the chessboard and

passively computes its relative orientations and posi-

tions to neighboring cameras. The calibration does not

need any control from the central node, which makes it

feasible for a network without central control.

2. The communication among the nodes is minimized by

broadcasting {Ri(t), Ti(t)} instead of actual images or

2D pixel positions of the detected chessboard pattern.

3. Image processing (the detection of the chessboard) and

the estimation of {Ri(t), Ti(t)} are performed at the

individual nodes. In addition, the relative extrinsic pa-

rameters between cameras {Rij ,Tij} are simply the

average of {Rij(t),Tij(t)} over time. Compared with

a method that estimates extrinsic parameters directly

from all the 2D pixel measurements from the chess-

board (e.g. bundle adjustment [6]), our method requires

much less complex computation. This feature could

be crucial when camera nodes have only limited com-

puting power and internal memory (e.g. a small smart

camera).

To evaluate our distributed calibration method, we use the

calibration results to locate a set of sparsely-spaced points in

3D and compare the localization results with ground truth.

The average error is about 2cm in the current setup of 10

cameras. We also tried a different calibration method which

collects the 2D pixel positions of the chessboard from all the

camera nodes over the entire calibration process and estimates

the extrinsic parameters directly using a global bundle adjust-

ment method [6]. Using results from this global calibration

method, we locate the same set of points in 3D. The same

average localization error is observed. Fig. 4 shows the lo-

calization error for both methods. We can see that the global



Fig. 4. 3D localization error

Fig. 5. Multiview Human Model

calibration method does not provide much improvement for

the 3D localization compared to our distributed method.

5. LEARNED MULTIVIEW HUMAN MODELING

Given that the cameras are calibrated, we turn our attention

to tracking people. However, it is desirable when tracking to

assign each a unique signature which can be used to differ-

entiate people when complex situations such as occlusion or

interaction occur. Such a signature is also useful when a sys-

tem is composed of two or more disjoint subsystems as it can

enable the subsystems to share information about people and

events in each area. One common method uses color features

of the tracked region, i.e. the person’s silhouette. The VIS-

NET system utilizes a multiple-view color-based appearance

model for tracking. The model is composed of eight views as

shown in Fig. 5.

Each 2D view of a person is segmented into head, torso,

and legs sections and each section is represented by color in-

formation in the CIE*Luv color space. Each region is mod-

eled as a Gaussian mixture model (GMM) using the Expecta-

tion Maximization (EM) algorithm. In addition to being used

for nodal tracking, the resulting mixture model is transmitted

to the central tracker for inclusion into the global appearance

model for each tracked person. As a person is tracked over

time, the corresponding global model is updated using inputs

from all sensing camera nodes. While we currently assume

no occlusions during the training period, the learning algo-

rithm could be easily adapted to account for such issues. Fig.

6 shows an example of a typical human GMM appearance

model.

Fig. 6. GMM Human Appearance Model Example

6. MULTIPLE HUMAN TRACKING

VISNET takes advantage of the calibration and the learned

human model to track people within the space. Fig. 7 and 8

show the flow chart for the nodal and central processes, re-

spectively. At each node, a Kalman filter estimates the posi-

tion of each person visible in a camera. The central server also

has a Kalman filter that tracks the 3D position of every person

in the space. To track multiple people across occlusions, we

assume that any person is visible to at least two cameras, and

then pass the 3D localization back to the nodes. As we show

experimentally, this creates better results than Kalman filter-

ing without feedback, yet is not as complicated as JPDAF or

particle filters.

6.1. Nodal Tracking

In a camera network, the nodes initiate the process of track-

ing people through detection. The camera node in our case

handles most of issues with occlusions and multiple objects

with the help of the 3D positions of the existing people. The

flowchart in Fig. 7 shows the major blocks in the nodal pro-

cess.

To detect people, VISNET extracts silhouettes, or masks,

using background subtraction in the CIE*Luv colorspace. This

colorspace reduces the effect of shadows and other illumina-

tion abnormalities with minimal computation. To extract a

bounding box, we avoid the typical, noisy connected compo-

nents analysis. Instead, in a method inspired by Ercan [12],



Fig. 7. Flowchart for tracking at camera node.

the mask is, first, projected vertically in order to identify hor-

izontal head position. Then, an edge detector runs vertically

from the head location to find the head and feet, and horizon-

tally to find the sides.

After detection, the node tries to identify the objects and

check for occlusion. With a local Kalman filter, multiview

model, and global predicted points, it identifies matches the

observed person to existing objects in the system through near-

est neighbor analysis and model comparison. Simultaneously,

the global predictions detect occlusions that cause two masks

to combine into one.

Now, the Kalman filter is ready for update. We use a typi-

cal Kalman filter with a state xk = [ x ẋ y ẏ ]T, where

(x, y) represent the image coordinates and (ẋ, ẏ) represent

the velocity, and a measurement of z = [ x y ]T. Thus,

our Kalman filter is:

xk =









1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1









xk−1 + vk vk ∼ N (0,Qk) (1)

zk =

[

1 0 0 0
0 0 1 0

]

xk + wk wk ∼ N (0,Rk) (2)

We vary zk and Rk based on the occlusion.

Fig. 8. Flowchart for tracking at central node.

zk =

{

P · Zk if object is occluded

zh if object is not occluded
(3)

where P is the projection matrix for that camera and Zk is the

3D point for the person, and zh is the head location observed

by the camera.

Rk =

{

2Rh if object is occluded

Rh if object is not occluded
(4)

where Rh is measurement noise of the person, which is cho-

sen heuristically.

Finally, the data is sent to the central tracker for further

processing.

6.2. Centralized Tracking

The centralized tracking process receives inputs from all cam-

era nodes within the network, combines and computes the 3D

location for the Kalman filter, and sends the filter predictions

to the nodes, as shown in Fig. 8.

The central tracker must first re-sort incoming data ac-

cording to the identifies found by the nodes. Existing objects

are trivially sorted. New objects, however, requires the central

server to correspond points through other means and create a

new multiview model, Sec. 5.



(a) 2D Track with feedback

(b) 3D Track from all cameras

Fig. 9. Tracking results for looping paths.

Then, the tracking process localizes the 3D with the nodal

observations. Localization is computed by a least square es-

timate using only unoccluded observations. Occluded obser-

vations are based on the prediction and thus not necessary in

our case.

Next, the tracker adds the 3D localization to the person’s

Kalman filter. The Kalman filter is very similar to the Kalman

filter in Eq. 2, except that there are three coordinates: Xk =
[ X Ẋ Y Ẏ Z Ż ]T, and Zk = [ X Y Z ]T

where (X, Y, Z) and (Ẋ, Ẏ , Ż) represent the 3D position and

velocity respectively.

The tracking prediction is now sent to the nodes to start

the next cycle.

6.3. Experimental Results

To test our tracking system, we ran tests on several scenarios

collected within the data. We present here two representa-

tive scenarios of multiple object tracking with occlusion, that

VISNET collected and processed.

(a) 2D Track with feedback

(b) 3D Track from all cameras

Fig. 10. Tracking results for crossing paths.

In the first scenario, one person enters first and begins to

walk around the room. A second person then enters, and also

walks around the room in a different path. The two people of-

ten occlude each other for short periods when they pass each

other. A 3D estimation of the path created by VISNET can be

seen in Fig. 9(b).

The tracking results with feedback from camera 1 are shown

in Fig. 9(a), and the localization result is shown in Fig. 9(b).

In camera 1, the two targets are occluded once. During the

first occlusion, no other cameras can see person 2; therefore,

their position is updated by a Kalman filter prediction. Af-

ter the occlusion is resolved, the result converges on the true

track.

In the second scenario, we’re mainly concerned with the

view from camera 5, shown in Fig. 10(a). From this camera,

two people start at the bottom on opposite corners, walk away

from the camera and towards the middle, until they are walk-

ing in a single file line away from the camera. After a short



Fig. 11. Kalman filter track without feedback.

time, they separate to the same side of the camera view from

which they originated. This path can be seen in Fig. 10(b).

The results with feedback in the main camera is shown in

Fig. 10(a), and the 3D localization from all cameras is shown

in Fig. 10(b). Within the node, the track remains fairly close,

except for a slight deviation at the start of occlusion.

In a track created by a Kalman filter without feedback

from the other nodes cameras, the predicted diverge at the

start of occlusion, as shown in Fig. 11. These measurements

are obviously incorrect and cannot be used in localization.

Even if they are ignored during occlusion, after the occlu-

sion, the Kalman filter will require time to converge to the

new track. The tracker can either wait for convergence to

send data or send bad data. The track collected with feedback

is ready for use by the first non-occluded point.

Another possible solution for this scenario without feed-

back is to stop the 2D Kalman filter when a prolonged occlu-

sion is detected, and then start a new one when measurements

are again available. In this case, the data association would

fail if a nearest neighbors condition were applied, and thus

an appearance model or more complicated data association

method would be required.

7. CONCLUSION AND FUTURE RESEARCH

This paper overviews UCSB’s Visual Sensor Network (VIS-

NET) which is a 10-node testbed for a smart camera network.

On this system, we’ve developed novel algorithms in three

areas: (1) a simple, pairwise calibration method that is less

complex than bundle adjustment, but similar in performance;

(2) a low-bandwidth multiview model using GMMs that can

be updated at a central location; and (3) object tracking that

uses feedback from the central tacker to the node to handle

occlusions and multiple objects.

In the future, we will be expanding on all of these areas.

In tracking, for example, we will be researching sending mea-

surements from a block of time to reduce overall bandwidth,

and, also, selection of the best set of cameras for tracking or

dynamically setting the measurement and process covariances

depending on the observation.
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