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Abstract: Motivated by synchronous communications, we propose a consensus based carrier
synchronization algorithm involving two transceiving units. Our algorithm achieves frequency
lock globally and exponentially. Further it also achieves phase synchronization in the following
sense. Asymptotically it induces the two transmitters to be either in phase, or out of phase by 180
degrees. We provide a simple method for the transmitters to know if they are out phase by 180
degrees. This constitutes a significant advance over existing carrier synchronization technology
which is largely based on Phase Locked Loops that only achieve lock locally.
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1. INTRODUCTION

This paper enunciates a globally stable nonlinear consen-
sus based algorithm that achieves carrier synchronization
between two cooperating transmitters. Here carrier syn-
chronization refers to frequency and phase synchroniza-
tion.

The setting we consider involves two transmitters. Each
transmits to the other its sinusoidal carrier, and adjusts
its frequency and phase to achieve global consensus. In
particular depending on a design parameter α, both carri-
ers globally attain a common frequency that is an integer
multiple of π/α. As explained in the sequel, even with
α = 1 second, such a granularity is entire acceptable.
As also explained in the sequel a larger α does not cause
performance problems, and thus arbitrary granularity can
be achieved at no practical expense.

The steady state phase offset induced by the algorithm is
an integer multiple of π. Should the multiple be even, then
this corresponds to a complete phase lock. In many appli-
cations a phase disparity of π is completely acceptable.
Where exact phase lock is needed, it turns out that the
transmitters can determine whether a phase disparity of
π exists simply from the consensus frequency they attain,
and can thus correct for the phase discrepancy.

This algorithm thus represents a very substantial im-
provement on existing carrier synchronization methods
that largely employ Phase Locked Loop (PLL) technology,
Lathi and Ding [2008]. As is well known PLL’s achieve
only local carrier synchronization. Despite having sinu-
soids in its update kernel our algorithm is globally stable.

Carrier synchronization is critical to virtually all syn-
chronous communications tasks, Lathi and Ding [2008].

⋆ This work was supported by NSF grants ECS-0622017, CCF-

072902, and CCF- 0830747.

In a standard communication system the receiver and
transmitter must have carrier lock to achieve high fidelity
demodulation. This is also an instance where a phase
disparity of π is as good as a phase disparity of zero.

Carrier synchronization is also essential for beamforming,
Mudumbai et. al. [2006]- Mudumbai et. al. [2010], that is
an important part of the emerging field of cooperative com-
munications, Sendonaris et al. [2003], Erkip et al. [2004],
Nostratinia, et. al. [2004], Jayaweera [2006], Scaglione
et. al. [2007]. In this case two nodes must achieve phase
and frequency synchronization for cooperative transmis-
sion that causes their respective carrier powers to reinforce
each other. Beamforming algorithms, e.g. Mudumbai et. al.
[2006]- Mudumbai et. al. [2010], assume a priori frequency
synchronization which our algorithm provides.

At another level this paper should be viewed as a contri-
bution to the multiagent consensus literature, Yamaguchi
and Beni [1996], Toner and Tu [1998], Vicsek et al.
[1995], Jadbabie et al. [June 2003], Lin et. al. [2004] and
Ren and Beard [2007], or the related synchronization
literature. The latter includes the synchronized flashing
of fireflies Mirollo and Strogatz [1990] that has motivated
other researchers to propose similar methods to achieve
synchronization in wireless networks, Werner-Allen et. al.
[2005]. Other examples include the study of various bio-
logical phenomena, Pittendrigh [1960], Buck [1988] and
Murthy and Fetz [1996], network time synchronization,
Cavendish [2000], Butterline and Frodge [1999], and Nel-
son et. al. [2002] and on-chip clock distribution, Hemani
et. al. [2000].

Section 2 describes our synchronization algorithm and its
implementation. Another candidate for frequency synchro-
nization is the Kuramoto algorithm Acebrón et. al. [2005].
In section 3 we compare our algorithm with Kuramoto.
Section 4 characterizes all locally stable stationary trajec-
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tories. Section 5 provides global stability analysis. Section
6 concludes.

2. THE ALGORITHM

Consider two transmitters that must achieve frequency
lock. To this end they continuously broadcast to each
other their current carrier and must adjust their carriers
to achieve a consensus frequency.

In particular assume that the i-th agent broadcasts a signal
cos(θi(t)). Such an agent receives a signal j 6= i,

si(t) = A cos(θj(t)) + vi(t), (1)

where A reflects the attenuation suffered in the transmis-
sion from agent j to i and vi(t) is noise. In an uncluttered
environment it is reasonable to assume that the attenua-
tion suffered by both is the same.

The algorithm we propose is as follows. For β, α > 0,
{i, j} = {1, 2} and j 6= i

θ̇i(t) = ωi(t) (2)

ω̇i(t) =−βA sin (θi(t) − θj(t) + αωi(t)) . (3)

Thus ωi(t) represents the locally generated instantaneous
frequency. The αωi(t) term in the frequency update equa-
tion in (3) is extremely crucial to our synchronization
algorithm, because it ensures the stability of the consensus
solution. An obvious discrete time counterpart of (3) is as
follows. For small time step ∆:

θi(t + ∆) = θi(t) + ∆ωi(t), (4)

ωi(t + ∆) = ωi(t) − β∆A sin (θi(t) − θj(t) + αωi(t)) (5)

It is clear that the qualitative properties of (4, 5) approach
those of (2, 3) for small time steps ∆. For larger ∆, the
same effect can be achieved by scaling down β.

We next turn to the implementation of the algorithm given
that the information available to agent i, is the signal gen-
erated by the other agent, exemplified by (1), its instanta-
neous frequency ωi(t) and the instantaneous phase θi(t).
We first note that in practice, though not in concept, all
signals will be translated from RF to IF or baseband. As-
sume that the difference between initial instantaneous fre-
quencies are small compared to their values. In other words
both sin (θi(t) − θj(t)) and cos (θi(t) − θj(t)) represent rel-
atively low pass signals as compared to sin (θi(t) + θj(t))
and cos (θi(t) + θj(t)).

Then consider the setting of Figure 1 where the blocks
labeled LPF are low pass filters. Observe as θi(t) and ωi(t)
are available to agent i, one can generate:

gi(t) = 2si(t) cos(θi(t))

= A [cos(θi(t) − θj(t)) + cos(θi(t) + θj(t))]

+ 2vi(t) cos(θi(t)). (6)

Thus, to within a noise perturbation, the low pass filtered
version of gi and by similar anlaysis, that of 2si(t) sin(θi(t))
are respectively given by

A cos(θi(t) − θj(t)) and

A sin(θi(t) − θj(t)).

Thus, as ωi(t) is available, one can indeed as per Figure 1
generate the kernel in (3) to within a perturbing noise. It
is also clear that should the noise vi(t), be white Gaussian,
so is the noise perturbing the kernel of (3). Further the net
noise is additive and is the original noise scaled by 2β.

Note this implementation assumes that the initial fre-
quency disparity is small relative to the actual frequencies.
To be more concrete let us consider some realistic numbers.
In practice the nominal frequencies would be at RF, i.e.
hundreds of MHz or even GHz. Frequency disparities on
the other hand would be in at most hundreds of Hz. Thus
the components to be retained at the output of the LPF’s
in fig. 1 have frequencies (hundreds of Hz) that are orders
of magnitude lower than the frequencies (at least hundreds
of MHz) of the components to be filtered out. Thus the
filtering can be very effectively implemented.

This also emphasizes the need for stability that is not
merely local, as initial frequency errors could be nontrivial,
as high as hundreds of Hz. In practice, (2, 3) or indeed
(4,5) will be implemented at baseband, i.e. tens of KHz.
This will involve a standard frequency translation prior to
implementation.

3. COMPARISON WITH KURAMOTO

One well studied algorithm that can achieve frequency
synchronization is the Kuramoto algorithm, Acebrón et.
al. [2005]. Translated to a two node network it becomes
for {i, j} = {1, 2}, i 6= j,

θ̇i = ωi + K sin(θj − θi), (7)

where K is a coupling parameter, θi and ωi are the instan-
taneous phase and the initial frequency estimate of node i’s
oscillator signal, respectively. Frequency synchronization is
achieved if for all i, j

θ̇i = θ̇j . (8)

We now reveal a key difficulty with (7) to carrier frequency

synchronization. For the θ̇i to synchronize we need

ω1 + K sin(θ2 − θ1) = ω2 + K sin(θ1 − θ2).

At the minimum this requires that

2K ≥ |ω1 − ω2|. (9)

In fact the actual bound needed for stable synchronization
is significantly higher, Jadbabaie et al. [June 2004], Dor-
fler and Bullo [2010]. Thus the coupling coefficient K
must be large. The implementation of (7) would involve
similar procedures as those for (2,3). As a consequence it
can be verified that in this implementation the noise gets
amplified by 2K. Thus unless the initial frequencies are
sufficiently close, not only will Kuramoto stabilize only at
the expense of noise amplification, but will even lack a well
defined consensus state, unless K is significantly large.

By contrast as shown in the next section, the equilibrium
trajectories of (2, 3) are independent of β.

Now consider Figure 2. This depicts the frequency plot
generated by our algorithm in a 2-node network with
initial frequencies at 2000 and 2100 radians/sec, initial
phase difference of π/4 radians, with β = 1, α = 1 and
demonstrates synchronization. Thus the noise amplifica-
tion factor in this case is 2. On the other hand (7) would
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Fig. 1. Implementation
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Fig. 2. Convergence with ω1(0) = 2000 rad/sec and
ω2(0) = 2100, and β = 1 and α = 1.

require a K = 50. Thus our algorithm synchronizes with a
much smaller noise amplification factor than required by
Kuramoto to even have a well defined consensus state, let
alone stablity.

4. LOCALLY STABLE CONSENSUS STATES

The two node algorithm is with α, β > 0 to: for i ∈ {1, 2}
(2) and:

ω̇1(t) = −β sin (θ1(t) − θ2(t) + αω1(t)) (10)

and
ω̇2(t) = −β sin (θ2(t) − θ1(t) + αω2(t)) (11)

hold.

We say that consensus is achieved if there hold:

sin (θ1(t) − θ2(t) + αω1(t)) = 0, ∀t (12)

and
sin (θ2(t) − θ1(t) + αω2(t)) = 0, ∀t, (13)

We begin by characterizing the consensus states for the
algorithm.

Theorem 4.1. Consider (2) for i ∈ {1, 2}, and (10) and
(11) with β, α > 0. The only equilibrium trajectories for
this system are: for integers m and n, and any φ,

θ1(t) =
(m + n) π

2α
t + φ +

(m − n) π

2
, (14)

θ2(t) =
(m + n) π

2α
t + φ (15)

ω1(t) = ω2(t) =
(m + n) π

2α
. (16)

Proof: Equilibrium requires that (12) and (13) hold and
because of (10) and (11), for some ω∗

i , i ∈ {1, 2}

ωi(t) = ω∗

i ∀t. (17)

Thus, as θi(t) and ωi(t) are both continuous, on this
trajectory for some integer l, for all t, there holds:

θ2(t) − θ1(t) + αω∗

2
= θ1(t) − θ2(t) + αω∗

1
+ lπ

⇔ θ2(t) − θ1(t) =
α (ω∗

1
− ω∗

2
) + lπ

2
. (18)

Further because of (17) and (2) for all t and i ∈ {1, 2}, on
this trajectory for constant φi:

θi(t) = ω∗

i t + φi. (19)

Because of (18) this must mean that for some ω∗

ω∗

1
= ω∗

2
= ω∗.

Finally for some integers m,n

φ2 − φ1 + αω∗ = nπ

and
φ1 − φ2 + αω∗ = mπ.

Thus (14) to (16) hold.

We next show through a linearized analysis that certain
consensus frequency and phase combinations are locally
unstable and some others are stable.

Theorem 4.2. Consider (2) for i ∈ {1, 2}, (10) and (11)
with β, α > 0. Then the equilibrium trajectories charac-
terized in Theorem 4.1 are locally exponentially stable iff
m and n are both even. If either m and/or n is odd then
the trajectory is unstable.

Proof:

For integer m,n, define

θ̃(t) = θ1(t) − θ2(t) −
(m − n) π

2
(20)

for i ∈ {1, 2},

ω̃i(t) = ωi(t) −
(m + n) π

2α
(21)
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and
ω̃(t) = ω1(t) − ω2(t). (22)

Evidently such a trajectory is a stationary trajectory if for
all t

[θ̃(t), ω̃1(t), ω̃2(t)]
′ = 0.

Further by subtracting (2) for i = 2 from (2) for i = 1,
one obtains:

˙̃
θ(t) = ω̃(t), (23)

Also from (10) one obtains:

˙̃ω1(t) =−β sin (θ1(t) − θ2(t) + αω1(t))

=−β sin

(

θ1(t) − θ2(t) −
m − n

2
π +

m − n

2
π

+ αω1(t) −
m + n

2
π +

m + n

2
π

)

=−β sin
(

θ̃(t) + mπ + αω̃1(t)
)

=−(−1)mβ sin
(

θ̃(t) + αω̃1(t)
)

(24)

Similarly, from (11) one obtains:

˙̃ω2(t) =−β sin (θ2(t) − θ1(t) + αω2(t))

=−β sin

(

θ2(t) − θ1(t) +
m − n

2
π −

m − n

2
π

+ αω2(t) −
m + n

2
π +

m + n

2
π

)

=−β sin
(

−θ̃(t) + nπ + αω̃2(t)
)

=−(−1)nβ sin
(

−θ̃(t) + αω̃2(t)
)

(25)

Linearizing (23), (24) and (25) around zero, we obtain (23),

˙̃ω1(t) = −(−1)mβ
(

θ̃(t) + αω̃1(t)
)

(26)

and:
˙̃ω2(t) = −(−1)nβ

(

−θ̃(t) + αω̃2(t)
)

. (27)

We now consider two cases that exhaust all possibilities.

Case I: Either both m and n are even, or they are both
odd. In this case subtracting (27) from (26) we get

[

˙̃
θ(t)
˙̃ω(t)

]

= (−1)m

[

0 1
−2β −βα

] [

θ̃(t)
ω̃(t)

]

. (28)

Clearly (28) is exponentially stable iff m and thus n are
both even, and is unstable if both are odd.

Case II: One among m and n is even and the other is
odd. In this case because of the underlying symmetries we
can without loss of generality assume that m is even and
n is odd. Then (23), (26) and (27) become:





˙̃
θ(t)
˙̃ω1(t)
˙̃ω21t)



 =

[

0 1 −1
−β −βα 0
−β 0 βα

]





θ̃(t)
ω̃1(t)
ω̃2(t)



 . (29)

Now observe that
[

0 1 −1
−β −βα 0
−β 0 βα

]

has determinant 2β2α 6= 0. Further its trace is zero.
Consequently it must have an eigenvalue in the open right
half plane, and thus (29) is unstable.

Observe the stable frequencies are thus multiples of π/α.
The potential steady state phase offsets (modulo 2π) are
0 and π. Sometimes, e.g. in a standard communications
framework a phase difference that is an odd multiple of
π is entirely acceptable. Nonetheless it would be useful to
easily determine whether the achieved phase discrepancy
is an odd multiple of π. The following lemma helps in
detecting such a disparity, should it occur.

Lemma 4.1. With even integers m and n, consider

k =
m + n

2
and l =

m − n

2
.

Then both k and l are integers and k is even iff l is even.

Proof: That with even m and n, k and l are integers is
self evident. Now l is odd iff for some integer i,

m − n

2
= 2i + 1

⇔m − n = 2(2i + 1)

⇔m = n + 2(2i + 1)

⇔ k =
m + n

2
= n + (2i + 1).

Then the result follows as n is even.

In view of this lemma and Theorem 4.2 a phase offset that
is an odd multiple of π will occur iff the locally consensus
frequency one achieves is an odd multiple of π/α. Should
that happen, one of the nodes can simply advance its
phase by π and de facto phase as well as frequency lock
is achieved.

5. GLOBAL STABILITY

In this section we prove the global stability of (2,3). As
noted in the introduction this represents a substantial
advancement over existing technology. To be specific cur-
rent carrier synchronization between a transmitter and a
receiver, is effected using standard PLL technology. In a
PLL one node transmits its carrier to a receiver, which
adjusts its frequency/phase to match the transmitter’s
frequency. The transmitter does not adjust its carrier.
Consequently, unless the phase and the frequency of the
receiver are sufficiently close to that of the transmitter,
frequency/phase lock will not eventuate. By contrast our
algorithm requires both nodes to adjust their carriers, and
forces them to achieve a consensus.

We observe that the system is autonomous. It is thus the
type of system that is potentially amenable to analysis by
Lasalle’s Theorem, Khalil [2002]. However, Lasalle’s The-
orem requires a positively invariant set that is compact.
There are technical difficulties with this requirement, as
even after consensus is achieved, the θi(t) do not belong
to a compact set. To circumvent this difficulty we propose
an alternative, related state space for which compactness
is easier to prove. Indeed this is a fifth order state space
for which the state elements zi are as below.
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z1(t) = sin(θ1(t) − θ2(t) + αω1(t)), (30)

z2(t) = sin(θ2(t) − θ1(t) + αω2(t)), (31)

z3(t) = cos(θ1(t) − θ2(t) + αω1(t)), (32)

z4(t) = cos(θ2(t) − θ1(t) + αω2(t)), (33)

and
z5(t) = ω1(t) − ω2(t). (34)

Under the two node system equations we obtain:

ż1(t) = cos(θ1(t) − θ2(t) + αω1(t)) (ω1(t) − ω2(t) + αω̇1(t))

= z3(t) (z5(t) − βαz1(t)) , (35)

ż2(t) = cos(θ2(t) − θ1(t) + αω2(t)) (ω2(t) − ω1(t) + αω̇2(t))

= z4(t) (−z5(t) − βαz2(t)) , (36)

ż3(t) =− sin(θ1(t) − θ2(t) + αω1(t)) (ω1(t) − ω2(t) + αω̇1(t))

=−z1(t) (z5(t) − βαz1(t)) , (37)

ż4(t) =− sin(θ2(t) − θ1(t) + αω2(t)) (ω2(t) − ω1(t) + αω̇2(t))

=−z2(t) (−z5(t) − βαz2(t)) , (38)

and
ż5(t) = −β(z1(t) − z2(t)). (39)

We now analyze the stability of the system represented
by (35)-(39) regardless of its origins, i.e. the tie to our
algorithm.

Lemma 5.1. With z = [z1, · · · , z5]
′ : R → R

5, consider the
system represented by (40) to (44) below.

ż1(t) = z3(t) (z5(t) − βαz1(t)) , (40)

ż2(t) = z4(t) (−z5(t) − βαz2(t)) , (41)

ż3(t) =−z1(t) (z5(t) − βαz1(t)) , (42)

ż4(t) =−z2(t) (−z5(t) − βαz2(t)) , (43)

and
ż5(t) = −β(z1(t) − z2(t)). (44)

Then z(t) is bounded and converges uniformly asymptot-
ically to:

z1 ≡ 0 (45)

and
z2 ≡ 0. (46)

Proof: Since the system of equations under considera-
tion is autonomous, asymptotic stability implies uniform
asymptotic stability.

Observe first that (dropping the argument t)

d

dt

(

z2

1
+ z2

3

)

= 2 (z1ż1 + z3ż3)

= 2 (z1z3(t) (z5(t) − βαz1(t))

− z3z1(t) (z5(t) − βαz1(t)))

= 0.

Similarly:
d

dt

(

z2

2
+ z2

4

)

= 0.

Thus [z1, · · · , z4]
′ is bounded. Thus the function

V (z(t)) = −β [z3(t) + z4(t)] +
z2

5
(t)

2
(47)

is bounded from below. Further, there holds:

V̇ (z) =−β (ż3 + ż4) + z5ż5

=−β
(

−z1z5 + βαz2

1
+ z2z5 + βαz2

2

)

− βz5 (z1 − z2)

=−β2α
(

z2

1
+ z2

2

)

≤ 0. (48)

Thus V (z) and hence z5(t) is bounded. Consequently, z is
in a compact set. Thus from Lasalle’s Theorem, and (48)
asymptotically z converges to the trajectory corresponding
to V̇ (z) ≡ 0, i.e. to (45) and (46).

This brings us to our main theorem demonstrating global
convergence.

Theorem 5.1. Consider (2) for i ∈ {1, 2}, (10) and (11)
with β, α > 0. Then for some φ, for integers m and n,
[θ1(t), θ2(t), ω1(t), ω2(t)]

′ converges uniformly asymptoti-
cally to





















(m + n) π

2α
t + φ +

(m − n) π

2
(m + n) π

2α
t + φ

(m + n) π

2α
(m + n) π

2α





















.

Further for almost all initial conditions, m and n are even.

Proof: Under (30)-(34), (40)-(44) hold. Thus from
Lemma 5.1, uniformly asymptotically, (12) and (13) hold.
Then the result follows from Theorems 4.1 and 4.2.

Thus global consensus involving both phase and frequency
lock is indeed achieved. Further in view of Theorem 4.2
this consensus ensues at an exponential rate. Uniform
asymptotic stability also guarantees robustness to noise
and delay.

6. CONCLUSION

We have proposed a consensus based frequency synchro-
nization algorithm, and proved its global convergence. We
have shown that frequency lock occurs at an exponential
rate, and to a frequency that is nπ/(2α), α being a design
parameter, and n an integer. At consensus the phase
difference is nπ, for the same n. Thus should n be odd,
it can be detected and the de facto phase difference of π
can be corrected.
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