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A Wind that rose though not a Leaf 
In any Forest stirred, 

But with itself did cold engage 
Beyond the Realm of Bird. 

A Wind that woke a lone Delight 
Like Separation's Swell – 

Restored in Arctic Confidence 
To the Invisible. 

– Emily Dickinson
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ABSTRACT 

Access to reliable electric power is considered by the developed world to be a 

minimum requirement for a reasonable standard of living. In addition to meeting a 

fluctuating demand, the modern electricity industry must now integrate intermittent 

generation sources like wind into the grid. Reserve margin allocation (RMA) for an 

acceptable loss of load expectation (LOLE) allows traditional generators to maintain grid 

reliability in the presence of small penetrations of wind energy. However, traditional 

RMA over-allocates the reserve capacity in the presence of short-term intermittency 

mitigation techniques like energy storage and demand response. For economic operation 

of the modern, grid better characterization techniques are needed for reserve margin 

reduction behavior in the presence of wind energy. This thesis addresses this challenge 

with a quantitative RMA analysis using real-world and simulated wind data for three 

different grid scenarios, with and without intermittency mitigation. The research is novel 

in its first-principles approach and its investigation into the practical validity of the 

analogy between demand response and energy response.  
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CHAPTER 1 - 

INTRODUCTION 

This thesis is organized into four chapters. This initial chapter provides a brief 

synopsis of the background material and summarizes our primary results in light of the 

previous reserve margin allocation research. Chapter two is designed to provide 

background material and “big picture” motivation for the study. The second chapter 

begins by outlining the development of the electric grid and concludes with an overview 

of modern electric generation. Chapter three represents the heart of this thesis – a two-

part statistical reserve margin allocation analysis of real world wind power and grid load 

data. The first section of chapter three addresses the theoretical motivation for our 

investigation, dataset considerations, and simulation architecture. The second section of 

chapter three examines the quantitative results of high wind penetrations and 

intermittency mitigation technologies on reserve margin allocation. The final chapter in 

this thesis presents a summary of the conclusions of chapter three, along with suggestions 

for future research.  

Background Synopsis 

The tumultuous 133-year history of the commercial electric grid in the United 

States provides significant evidence to support the following three suppositions about 

large-scale grid dynamics: 

1. Competition drives the development of new grid-related technologies. 

2. Public policy determines which new technologies are integrated into the grid. 

3. Operation economics determine whether or not a new technology is here to stay. 

If the electric power industry is to remain healthy, engineers must optimize the 

competitive framework, public policy implications, and economics of the grid. One of the 

primary ways in which this complex three-way optimization is being addressed is through 
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the large-scale integration of wind generation into the electric grid. The distributed nature 

of wind farms tends to support a more “open” grid, which encourages competition among 

electricity providers. U.S. public policy has been very supportive of wind energy since 

the late 1970’s, and more recently has disbursed substantial wind energy funding with the 

EPACT of 2005 and the more recent Recovery Act of 2009. Moreover, the lifecycle 

economics of wind energy are currently significantly more mature than other industry-

ready sustainable technologies [1]. 

One of the supporting factors for the widespread integration of wind energy into 

the existing grid is that the current grid is already designed to support periodic variations 

in load. A technique called frequency control mode allows generators to adjust to small 

changes in load in a matter of seconds. And, for larger unexpected load variations, grid 

operators have access to high ramp-rate “peaker” plants capable of reaching full output 

capacity in minutes and can purchase power on demand if necessary from other 

independent electric grids via grid interconnects. Today, reliability is guaranteed by over-

provisioning generation capacity some 1% above peak historical load (assuming worst-

case wind generation output) such that the LOLE (loss of load expectation) is less than 

0.027% (1 day in 10 years) [2]. The determination of the necessary generation capacity to 

meet the required LOLE is known as Reserve Margin Allocation (RMA). Despite all of 

the measures that are in place to ensure the grid’s robustness, excessive unpredictable 

variation can be extremely costly and therefore should be avoided if possible. 

Wind penetration is defined as the ratio of wind generation to the total load. At 

low penetrations of wind generation, the intermittency in generation caused by wind can 

simply be viewed as additional “noise” on top of the demand curve. However, as the 

penetration of wind increases, the variability in generation becomes too great for 

traditional grid technologies to accommodate economically. The stiff penalties for 

“dropping” a unit of required load, and the expense of frequently operating “peaker” 

plants far overshadow the aggregate decrease in traditional generation requirements. 
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Thus, under high penetrations of wind, short-term intermittency mitigation technologies 

such as energy storage and demand response (DR) are needed to reduce the variability of 

aggregate wind generation output to a level at which the economics and politics of 

running a reliable grid make sense [3]. This competitive new field of intermittency 

mitigation technology has already fostered substantial innovation, and promises much 

more for the future. 

Yet, despite substantial advances in the implementation technology for energy 

storage and demand response, there remains a growing need for high-level integrated 

assessment models to aid in the planning and policymaking related to wind energy [4]. 

This thesis investigates the fundamental constraints and modeling considerations of 

reserve margin allocation at high wind penetrations and discusses the quantitative effects 

of energy storage, and demand response on reserve margin reduction. 

Related Work 

Our work differs from previous research in two ways. First, it is a first-principles 

analysis which avoids market considerations in preference for engineering solutions. 

Previous scholarly work related to the effects of high wind penetrations on RMA have 

focused primarily on the costs associated with intermittency [5], and utilize complex 

industry models to predict market behavior [6]. In this thesis, we have specifically 

avoided the use of such market-based methods, to favor a more first-principles RMA 

approach. The benefit of this method is the freedom to gain insight into the fundamental 

physical limits of reliable wind generation without the tight practical constraints 

associated with the reserve margin calculations undertaken each year by the major 

electricity suppliers. Our initial results yield intuition into the statistical characteristics of 

wind which are important to long term allocation planning, and include a comparison of 

four different wind simulation models. 
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The second way in which our work differs from previous research is that it 

provides a quantitative comparison between demand response and energy storage, rather 

than assuming the analogy a priori as in [7]. Substantial previous research has been 

accomplished in the fields of energy storage sizing for wind applications [8], and a 

number of studies have assessed demand response potential [9]. This thesis, however, 

specifically compares the ability of ideal demand response and energy storage models to 

reduce the reserve margin under high wind penetrations. First, we establish that large 

capacities of energy storage and large maximum delays of demand response are required 

for significant reserve margin reduction. Second, our initial results indicate that the 

relationship between demand response and energy storage is decidedly distinct from the 

straightforward “virtual storage” or “capacity credit” concepts often used when 

discussing the benefit of demand response. 

Contributions 

This thesis presents a first-principles RMA analysis for three different real-world 

grid scenarios corresponding to large, medium, and small independent grids under high 

wind penetration and in the presence of energy storage and demand response. The reserve 

margin behavior at a range of wind penetrations is calculated for seven different real-

world and simulated wind power scenarios ranging in scope from a centralized model to 

an large-scale distributed wind power profile. This thesis further develops these results by 

considering the effect of adding energy storage and demand response to each of these 

scenarios at 1%, 10%, and 100% wind penetration. In addition to contributing a statistical 

framework, software tools, and an evaluation of dataset considerations, this thesis applies 

its quantitative results to address the six important hypotheses listed in Table 1. These 

hypotheses are motivated by theoretical results of our statistical framework. 
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Initial Hypothesis Result 

1. Reserve margin reductions are close to the mean wind at low wind penetrations True 

2. Degree of reserve margin reductions will decrease with increasing wind penetration True 

3. High correlation of wind power with itself and with load both have a negative impact on 

reserve margin reduction 

True 

4. Geographic distribution of wind turbines result in a reduction of correlation and 

therefore increased suitability for reserve margin reduction 

True 

5. Benefits of demand response and energy storage are minimal at low deployment True 

6. Energy storage capacity of T hours of mean wind power is roughly equivalent to demand 

response delay limit of T hours. 

False 

Table 1. List of hypotheses 

Organization of Thesis 

Figure 1 graphically illustrates the organization of the rest of this thesis, and 

should be read top to bottom, left to right. The arrows illustrate the dependency 

relationships, or “motivation hierarchy” of our primary results. Chapter two supplies a 

brief history of the electric grid and a description of current grid operations in order to 

provide the long-term perspective and the immediate industry context in which to view 

our contribution. Chapter three describes the methods and results of our research. The 

methods section contains a theoretical discussion which motivates a list of hypotheses to 

be examined; a detailed description of the individual data sources used and discussions of 

the effects of preprocessing; and a presentation of a new wind power model along with an 

outline of the simulation software architecture. The results section of the third chapter 

presents graphs, tables, and discussions relating to the hypotheses presented in the 

methods section. Finally, chapter four offers a summary of our results and comments on 

future work related to this thesis. 
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CHAPTER 2 - 

BACKGROUND AND MOTIVATION 

Lessons from History 

The problem of mitigating intermittent grid conditions is not a new one. Electrical 

operators have been responding to fluctuating loads since Edison’s time – well over a 

century ago. However, the industrial, political, and social climate of today offers power 

operators a distinctly different set of technical and non-technical challenges than those 

they have faced in the past. To augment the quantitative results of our study and the 

technical implications of our statistical framework, it is helpful to obtain a grasp of the 

complex social, political, and economic factors that have influenced the development of 

the electrical grid throughout history. 

Electricity has become so commonplace that it is easy to forget the sheer wonder 

of living in a world where ubiquitous on-demand access to unlimited electrical power is 

to be had for pennies per kilowatt-hour. The steps humanity has taken to attain this 

astounding technical achievement were not easy. Like other stories of grand scope and 

sway, the history of the electrical grid is riddled with tales of intrigue, exhilaration, greed, 

corruption, genius, heartbreak, and friendship. However, unlike many other historical 

narratives which weave their tale circuitously and gradually, the story of the grid is 

decidedly disjoint – punctuated neatly by three transformative events: The commercially-

viable electric light bulb (which transformed electricity from a scientific curiosity to a 

commercial product); the atom bomb (which resulted in a nuclear energy program which 

nearly bankrupted the electric power industry); and the oil embargo of 1973 (which 

introduced the political and social motivation for a move toward privatization and 

environmentally conscious electricity generation). 
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Figure 2. Timeline of electrical innovations (highlights from [10] and [11]) 

Energy as basic research 

Thales of Miletus’ descriptions of the behavior of amber, rubber, and lodestones 

from 600 B.C. are the first recorded deductive observations of the basic electromagnetic 

laws that govern the operation of all electrically-powered devices today. However, 

Thales’ primary interest in electricity was not to understand its physical behavior. 

Instead, he studied the phenomenon in order to support a particular metaphysical 

philosophy. Thus, aside from its reverent awe of lightning, humanity did not seriously 

investigate electrical phenomena again for almost a millennium. In A.D. 1600, a century 

after Europe’s Dark Ages, an astronomer named William Gilbert published a single 
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volume which contained the whole of human knowledge about electricity and magnetism 

to-date. This volume sparked interest among scholars across Europe and people began 

investigate the phenomenon further. 

In 1650, Otto von Guericke developed a simple electrostatic generator. Some 

years later, in 1747, Musschenbroek developed a basic capacitor, which became the first 

example of electrical storage. This device was spectacularly demonstrated to the king of 

France by Benjamin Franklin’s gravest scientific opponent, Jean Nollet: After instructing 

seven hundred friars to hold hands and form a circle, Nollet reputedly discharged enough 

power through this monkish circuit to cause them all to simultaneously leap into the air. 

In the years that followed, Franklin, Ohm, Kirchhoff, Ampere, Faraday, Maxwell 

and others made significant contributions to electrical theory. However, even seemingly 

revolutionary technologies like the battery and the electric motor were little more than 

scientific curiosities at the time of their invention. In fact, Hungarian scientist Anyos 

Jedlik, the inventor of the electric generator, did not even apply to patent his device. 

While the vast majority of contributions during this period were purely scientific in 

nature, Volta’s battery did prove sufficient to support a handful of commercial 

technologies like the telegraph in 1840, as well as the telephone in 1870. 

Industrial product development 

Apart from the telegraph and telephone, electricity remained a scientific curiosity 

and was largely distinct from commerce. The scientific community had taken an 

important step in working out the theory of how to generate, control, transmit, and store 

electricity. However there simply was not sufficient widespread demand for this new 

form of energy to merit a large-scale generation and distribution system for electricity. To 

consumers of the day, the modern energy needs seemed to be already more than met. Gas 

made it possible for people to cook their food, obtain hot water, and turn on the lights – 

all with only the turn of a valve. The coal-fired steam engine powered great factories and 
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a burgeoning railway system that spanned the nation. In fact, the first commercially-

viable electrical technology that required any substantial amount of power encountered 

strong opposition from many sectors. When Edison introduced his electric light bulb to 

the world, it took substantial market intervention, immense litigation, and no small 

amount of bribery to create the demand and infrastructure needed to support the first 

electric grid. 

The famous “war of currents” between Edison and Westinghouse (allied with the 

genius inventor Nikola Tesla, who had left Edison’s employ due to poor wages) is a well-

documented [12] and intriguing tale in itself. In summary, alternating current prevailed 

due to the lack of an efficient DC equivalent of the voltage transformer. Because the 

transformer made it possible for large volumes of power to be efficiently transported long 

distance, the electric grid began to develop around a centralized generation model. After 

leaving General Electric, Samuel Insul, Edison’s former private secretary, later became a 

key player in the utility industry. He successfully pushed for widespread government 

regulation of utilities in order to avoid the hassle dealing with individual municipalities. 

Technology and science continued to improve through scholarly journals like the 

transactions of the AEE (now IEEE), founded just four years after Edison implemented 

his light bulb. Electrical research during this era was primarily motivated by market 

factors of the utility industry, and the field experienced incremental rather than 

transformative changes. 

Politicians Invest in Science 

By 1930, almost all electricity generated in the united states was controlled by 

regulated utilities. In fact, the largest monopoly at this time controlled 40% [10] of the 

nations electric power. Moreover, New Deal legislation during the Great Depression of 

the late 1930s opened the door for Federal control of these public utilities, moving 

electricity regulation from the regional to the national level. 
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By the end of World War II, the U.S. economy was booming. After the war, the 

U.S. government was eager to harness the power of the atom to generate inexpensive 

energy and began to fund industrial research toward that goal. The 1950s brought about 

limited liability legislation, which freed utilities from some of the financial risks 

associated with building and operating a nuclear plant, and the Atomic Energy act of 

1954 added further financial incentives for utilities to develop a nuclear power 

infrastructure. 

Despite these incentives, the U.S. power industry remained reluctant to integrate 

nuclear power into their existing generation and distribution systems. The late 1950s and 

early 1960s were a period of financial and technical difficulties for electric utilities. This 

was exemplified by the large scale blackout occurring in 1965, and GE’s reported $1 

billion loss in income in 1966 due to unexpected costs of nuclear power integration. In 

1967, conventional power plants had reached the practical (and nearly the theoretical) 

limit for efficiency, and therefore ceased to become cheaper to build and operate. 

Generation costs had increased, demand continued to rise, and yet prices remained fixed 

by law. The industry entered serious economic turmoil. 

Economic Collapse and Social Influences 

The bursting of an oil well off the coast of Santa Barbara, Califoria in 1969 

incited environmentalist groups to question the long term effects of fossil fuels. However, 

it took the economic difficulties brought on by the oil embargo of 1973 to catalyze 

changes in public policy. The next year, the National Renewable Energy Laboratory 

(NREL) was founded to support renewable energy alternatives to traditional generation. 

In an attempt to boost the economy and lessen dependence on foreign oil, the power of 

the utility monopolies was challenged and private utilities were slowly given more 

autonomy. As a result of senator John Durkin, utilities were allowed to exercise a limited 

form of market competition in 1978. And, while the nuclear plants were not living up to 
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their predictions of producing “electricity too cheap to meter,” the lavish investment in 

nuclear power of the decade before seemed to be slowly paying off. 

And then came the Three-Mile Island nuclear disaster of 1979. The insurance, 

regulatory, and safety costs associated with building a new nuclear plant skyrocketed. 

The production of new nuclear plants was abruptly halted just at a time when the 

electricity industry was in dire need of an economical and reliable way to generate power. 

In 1983, WPPSS, a major electric power utility went bankrupt. The same year, the 

Supreme Court upheld regulation to allow federal intervention to increase efficiency of 

generation. Despite the Energy Policy Act of 1992, which opened the door to greater 

competition among public utilities, the industry continued to experience financial 

difficulties. The ENRON scandal and subsequent bankruptcy filing of Pacific Gas and 

Electric in 2001 only added to the downward spiral of the industry. In 2004, Standard and 

Poor indicated a negative outlook for more than 40% of the electricity market [10]. In an 

attempt to get the industry back on its feet, Congress passed bills in 2005, 2007, and most 

recently 2009 that dedicated substantial funds to renewable energy research and smart 

grid. Despite these efforts, 2010 saw corporate research and development in renewable 

energy decrease significantly [13] – largely for financial reasons. 

What we’ve learned 

Figure 3 illustrates the historical progression of the technology and political 

structures that make up the current electrical grid. Today, there are three primary 

influences that are changing the “big picture” of how the electric grid works: competition, 

political and public policy factors, and market economics. The war of currents showed 

the innovation brought on by competition, and Samuel Insul demonstrated practical 

benefits from regulated monopolies. The stability of monopolies combined with continual 

incremental technology improvements of the late 1800s and early 1900s allowed the 

electric power industry to gain the reputation of “keeping the lights on, for cheap” among  
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1. Edison creates demand for electricity 

and first practical distribution system. 

2. Westinghouse successfully pushes for 

centralized generation model (long 

distance transmission lines) 

3. Samuel Insul successfully pushes for 

regulated utilities to limit competition 

and cut down operating expenses of 

running thousands of power plants. 

4. Market economics dictates sale of 

electricity between large companies 

5. National scale regulation under New 

Deal 

6. Strong political push to develop 

nuclear energy, increased regulation. 

7. Renewable technologies begin to be 

integrated after oil embargo 

Figure 3. Formation of the modern grid 

consumers, while providing a stable source of profitable income to utility investors. Since 

then, economic profitability of the electric power industry has slowed. There are heavy 

penalties for not meeting power demand, and the environmental regulations following the 

oil embargo have added additional costs to the power industry’s already-tight budget. 

Despite the recent government investments in renewable energy research, technological 

progress in the industry is erratic and many investors have lost faith in the financial 

stability of electric utilities. 

Government assistance continues to mitigate the economic difficulties of utilities 

and to fund important sustainable energy research – however, if the electric power 

industry is to continue, it must restore the faith of investors. Whether that means a return 

to the “slow and steady” profits of ages past, or a transformative entry into the exciting 

cutting-edge technology sector, utilities must integrate high penetrations of sustainable 

energy. To do this, the problem of intermittent generation must be addressed. 

Importantly, sustainable generation must be made profitable if it is to survive beyond the 
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current government subsidy. For intermittent generation to become profitable, it must be 

based on sound engineering and tested principles rather relying solely on market 

mechanisms. It is with this kind of first-principles engineering analysis that this thesis 

proceeds. In particular, this thesis addresses the problem of reserve margin allocation to 

ensure the reliability of the grid despite the presence of a significant degree of 

intermittent wind generation and investigates the ability of energy storage and demand 

response to reduce the reserve requirements. 

Grid Operations 

Response to Variable Load 

Even without any intermittent generation, the electric grid experiences significant 

variation in load over the course of time, and must respond to these changes. Because 

most of the variation is predictable, the majority of generation is scheduled ahead of time. 

Traditionally, the primary difficulty with this scheduling has been to minimize the costs 

to the generating utility. This cost minimization primarily occurs at the three different 

time scales illustrated by Figure 4. 

Cost minimization over long time periods (days) is mostly related to the problem 

of determining when to fire up and when to power down a particular power plant. This 

procedure is known as unit commitment. A shorter time-scale problem (hours), known as 

economic dispatch, involves allocating generation optimally among those power plants 

which are currently running. The same problem, reduced to the scale of allocating 

individual generators within a power plant is known as secondary control and has a time 

frame of minutes. Because the demand at each of these time scales is essentially known, 

optimal control methods can be used at each one of these different time scales to ensure 

lowest cost generation. 
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Figure 4. Responding to load variations on different time scales 

During normal grid operation (i.e. no faults), it is only at the shortest time scale 

(seconds) that traditional generators must deal with a significant degree of uncertainty. 

Since the earliest days of the grid, a method known as frequency control mode has been 

used to allow generators to sense whether to increase or decrease their power output in 

response to changes in load. Several times a second, the generator control system makes a 

measurement of the grid frequency. If the grid frequency is above nominal, the generator 

reduces its power output to compensate for the reduced load. If the frequency is below 

nominal, the generator increases its power output to adjust for an increased load. Given a 

large enough spinning reserve and sufficient transmission capacity, the frequency control 

mode can account for most fluctuations in load. 

However, to account for unexpected long-term increases in demand (an 

unexpectedly hot day, for instance), the electricity provider also operates a number of fast 

ramp-rate “peaker” plants. In order to start up quickly, these plants typically burn natural 

gas and potentially petroleum and run at much lower efficiencies than base-load plants. 
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Because of the reduced efficiency, “peaker” plants are much more expensive to operate 

than base-load plants. 

An annual review of the unexpected variations in load allows grid operators to 

improve their predictions and to plan for building new generation capacity. In order to 

avoid the significant costs associated with failing to service a load (known as a dropped 

load), electric utilities complete what is known as reserve margin allocation (RMA) to 

ensure a certain minimum probability of outage. This probability is called the LOLE, or 

loss of load expectation. Reserve margin planning is similar to the previously-discussed 

scheduling problems in that it involves an allocation of power. However, it is different in 

that RMA allocates for worst case demand, while the shorter time scale generation 

scheduling methods allocate for most likely demand. 

Response to Intermittent Generation 

While wind power at low penetrations can be considered simply as additional 

variability of the demand, larger wind penetrations introduce too much variability for the 

electric grid to economically accommodate [1]. There are two primary methods of 

removing this variability. The act of removing the variability of an intermittent 

generation source is known as intermittency mitigation. 

The first intermittency mitigation technique is to add energy storage to “smooth” 

the power output of intermittent generators. Energy storage covers a wide variety of 

technologies, ranging from batteries and capacitors, to pumped fluids and biomass. These 

technologies also cover a wide range of time scales as well, with full-power duration of 

storage ranging from a couple of seconds up to four months [14]. Batteries, by far are the 

most commonly-investigated storage option, due to their competitive cost and 

comparatively fast charge and discharge rates [8]. This thesis considers a battery-like 

energy storage model. 
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The second method of intermittency mitigation is known as demand response. 

The idea behind demand response is to adjust demand to match the available supply. 

Consumers can adjust their demand in three ways. First, consumers may shift electricity 

usage to off-peak hours. Second consumers can reduce electricity usage during peak 

hours. Third, some consumers can meet some of their electricity requirements with on-

site generation [15]. To encourage participation in demand response programs, electricity 

companies offer monetary incentives and manipulate electricity prices. These two 

motivation techniques are known, respectively, as incentive-based programs and price-

based programs [9]. In this thesis, we do not investigate market factors such as pricing 

but instead consider an idealized a demand response model based on load shifting.  

To further a better fundamental understanding of wind energy and intermittency 

mitigation on reserve margin, this thesis performs a first-principles RMA on a number of 

real-world wind and load datasets. In particular, we assess the reserve margin effects of 

increasing wind penetration and the incorporation of intermittency mitigation techniques. 

The following chapter discusses this contribution in detail.  
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CHAPTER 3 - 

OUR CONTRIBUTION 

This chapter presents the methods and primary results of our contribution. The 

methods section provides a theoretical motivation which develops six research questions 

for investigation, a description of the data sources used which details preprocessing 

considerations, and an outline of the simulation architecture. The results section contains 

the results of our simulations and discusses how these results relate to the research 

questions posed in Table 2. 

Methods 

Theoretical Motivation 

The theoretical motivation for this thesis is a first principles statistical analysis 

that results in six research questions related to the properties of reserve margin under 

increasing wind penetration, used in conjunction with energy storage and demand 

response technologies.  

Relationship between reserve margin and mean wind power 

Because reserve margin is a practical engineering expression rather than a 

mathematical term, it may be calculated in a wide variety of ways [16]. In this thesis, we 

define the reserve margin to be the minimum constant generation capacity value   which 

satisfies a given loss of load probability (LOLP) constraint. That is, given that   and   

are positive random processes representing the grid load and the generated wind power 

respectively, reserve margin is the   which guarantees a sufficiently small probability of 

outage: 
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 r             

Now, assuming   and   are jointly stationary and ergodic, the probability density 

function of the grid load   is given by                        . For 

convenience, let us use the notation              . Next, define       

        to be the cumulative distribution function of the wind power. Re-arranging 

and integrating over all values of x, we obtain: 

 r             

 r          r                        
 

  

 

If we assume a maximum wind generation capacity         and furthermore 

assume that   and   are stationary, independent, and positive, we arrive at Equation 1: 

                    r          r      r                
 

  

                
 

  

                
       

 

         
 

       

 

Equation 1. 

Figure 5 illustrates how Equation 1 captures the intuitive notion that increasing 

reserve margin will reduce outage probability. An increase in reserve margin causes 

        to shift to the right, which reduces the “overlap” between         and 

     . Note that as it is drawn, Figure 5 represents a scenario with relatively high wind 
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penetration. At lower penetrations of wind,         will decrease and the         

curve will become “steeper.” 

 
Figure 5. Relating reserve margin to wind and load statistics 

Now, consider the effects of increasing the penetration of wind, by defining a new 

random process          , where      is a stationary, independent and positive 

random process representing the additional wind power added to the grid. Employing a 

derivation similar to that used to obtain Equation 1, we arrive at Equation 2: 

                      
            

          

 

 

Equation 2. 

In this case,        is the cumulative probability distribution function of   , 

     
    is the probability density function of     , and            is the 

additional installed wind generation capacity, beyond the existing wind generation 
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capacity. To simplify calculations, let us consider the first-order Taylor-series 

approximation of         in the neighborhood of  .  

                 
                  

Equation 3. 

Let                                 
 

  
 be a measure of the total 

distortion introduced by the approximation of Equation 3. Figure 6 shows that if we 

consider       to be a piecewise linear curve, then 

     
  

       
 

 
Figure 6. Taylor series approximation of cumulative distribution function 
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The approximation of       as a piecewise linear curve is valid if       is 

sufficiently “steep,” which translates to a low penetration of wind (see Figure 5). For the 

distortion      to remain small,   must be small in relation to        . This will 

remain true if the additional increment of wind is smaller than the total installed wind 

capacity (                  ). Now, plugging in the approximation of 

Equation 3 into Equation 2, we arrive at Equation 4: 

             
                   

          

 

 

       
                   

          

 

 

            
     

          

 

              
     

          

 

 

              
   E       

Equation 4. 

In this case, E       represents the expected value (mean) of the additional 

installed wind power. Applying the Taylor-series approximation again in reverse to 

Equation 4, we see that 

                  E            E        

This analysis suggests that the decrease in reserve margin under small wind 

penetrations will be approximately equal to the mean of the added wind power. However, 

because we have assumed that the additional wind generation is “small” in comparison to 

the existing wind generation, we expect that this relationship will break down for large 

penetrations of wind. Finally, we also expect a further increase in reserve margin in real-

life scenarios where the stationarity and independence assumptions of the wind and load 

do not hold. 
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Relationship between storage, demand response, and reserve margin. 

To investigate the reserve margin effects of adding demand response and energy 

storage to the grid, we now consider the wind and load to be independent cyclostationary 

random processes      and      respectively. The effect of a dispatchable-load type 

demand response implementation with maximum time delay   will be to effectively low 

pass filter      – smoothing out power fluctuations of duration   . Similarly, the effect 

of a storage implementation with capacity          will be to smooth the wind power 

fluctuations of duration   . Figure 7 illustrates the process of demand response and 

energy storage, where the wind is given by a square wave with period   . 

 
Figure 7. Illustration of demand response and energy storage 

Now, let us define the “mixing time” of the wind power process as          

where   is the frequency below which lies most of the power of     ’s frequency 

spectrum. At       , energy storage and demand response are not likely to have a 

measureable effect on reserve margin reduction. Furthermore, because the spectral power 

of      decreases rapidly with increasing frequency
1
,      is expected to be quite large 

on the time scale of interest. In particular, if we assume a      follows a Kolmogorov 

                                                 
1
 Meteorologically, the wind speed profile is made up of vortices of different energy and size. Larger 

vortices correspond to longer periods of fluctuation. Kolmogorov’s classic 1941 paper showed that the 

energy contained in turbulent vortices of non-viscous fluids (such as wind) decreases by an exponent of 5/3 

as the period of fluctuation decreases [20]. Moreover, studies such as [21] demonstrate empirically that the 

Kolmogorov energy spectrum for wind speed can also be applied to extracted wind power. 
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spectrum and that the      is longest-duration wind power fluctuation, then the power 

contained in fluctuations of duration greater than   is given by 

               
   

      

 
 

 
      

          

where   is a proportionality constant. The ratio           represents the 

percentage of total power contained in fluctuations of duration greater than  , and is 

given by 

    

    
    

 

    
 

   

 

Assuming that            , then 90% of the power is contained in fluctuations 

of duration greater than about 300 hours. On this time scale, we do not expect demand 

response to have a significant impact at delay limits of less than around 300 hours. 

Similarly, we expect energy storage to play a minor role until the capacity reaches almost 

two weeks of mean wind. 

Hypotheses 

In light of this cursory analysis, we present six hypotheses for investigation. 

These hypotheses are listed in Table 2. 

 
 
 

Initial Hypothesis Result 

1. Reserve margin reductions are close to the mean wind at low wind penetrations True 

2. Degree of reserve margin reductions will decrease with increasing wind 

penetration 

True 

3. High correlation of wind power with itself and with load both have a negative 

impact on reserve margin reduction 

True 

4. Geographic distribution of wind turbines result in a reduction of correlation and 

therefore increased suitability for reserve margin reduction 

True 

5. Benefits of demand response and energy storage are minimal at low deployment True 

6. Energy storage capacity of T hours of mean wind power is roughly equivalent to 

demand response delay limit of T hours. 

False 

Table 2. List of hypotheses 
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Source Name Credit/URL Wind Speed Wind Power Output Load 

NREL Eastern 

Wind Dataset 

http://www.nrel.g

ov/wind/integrati

ondatasets/easter

n/data.html 

1518 Sites 

157968 

samples each 

2004-2006, 

Sited, 

Interpolated 

from measured 

data, 10min 

1518 Sites 

157968 samples each 

2004-2006, Sited, 

Simulated IEC Class I, II, 

and III turbines, 10min 

 

Haina wind farm 

Dataset 

Haina wind farm, 

Dominican 

Republic 

1 Site 

38775 samples 

2010-2011, 

80m wind 

speed, 10min 

Simulated (piecewise 

linear power curve, class 

III turbine) 

 

MISO Historical 

Market Reports 

https://www.mid

westiso.org/Libra

ry/MarketReport

s/Pages/MarketR

eports.aspx 

 ~300 Sites 

 38640 samples 

2009-2012, Aggregate, 

Measured, Hourly 

21120 samples 

2009-2012, 

Measured, 

Hourly 

AESO Public 

Data 

http://www.aeso.

ca/gridoperations

/20544.html 

 ~50 Sites 

420768 samples 

2011, Aggregate, 

Measured, 10min 

420768 samples 

2011, Measured, 

10min 

 

National Grid UK http://www.natio

nalgrid.com/uk/E

lectricity/Data/D

emand+Data/ 

  194304 samples 

April 2001-April 

2012, Measured, 

Half-hour 

Table 3. Table of real-world information sources 

  

http://www.nrel.gov/wind/integrationdatasets/eastern/data.html
http://www.nrel.gov/wind/integrationdatasets/eastern/data.html
http://www.nrel.gov/wind/integrationdatasets/eastern/data.html
http://www.nrel.gov/wind/integrationdatasets/eastern/data.html
https://www.midwestiso.org/Library/MarketReports/Pages/MarketReports.aspx
https://www.midwestiso.org/Library/MarketReports/Pages/MarketReports.aspx
https://www.midwestiso.org/Library/MarketReports/Pages/MarketReports.aspx
https://www.midwestiso.org/Library/MarketReports/Pages/MarketReports.aspx
https://www.midwestiso.org/Library/MarketReports/Pages/MarketReports.aspx
http://www.aeso.ca/gridoperations/20544.html
http://www.aeso.ca/gridoperations/20544.html
http://www.aeso.ca/gridoperations/20544.html
http://www.nationalgrid.com/uk/Electricity/Data/Demand+Data/
http://www.nationalgrid.com/uk/Electricity/Data/Demand+Data/
http://www.nationalgrid.com/uk/Electricity/Data/Demand+Data/
http://www.nationalgrid.com/uk/Electricity/Data/Demand+Data/
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Source 

Name 

Credit Wind Speed Wind Power Output 

Synthetic 

Random 

Field 

Model 

Qiang Guo, 

Iowa State 

University for 

design and 

Matlab 

implementation 

16761600 samples, 

Arbitrary time period, 1 second 

data, interpolated from actual 10m 

wind data and surface roughness 

parameters using Markov chain 

approach 

Simulated (piecewise linear power 

curve, class II) 

Sandia 3D 

Turbulence 

Model 

P.S. Veers, for 

design and 

Francesco 

Perrone, for 

Matlab 

implementation. 

12000 samples, 

Turbulence model based on PSD 

of measured data. 1 second data. 

Uses Von Karmen power 

spectrum method. 

Simulated (piecewise linear power 

curve, class II) 

Stationary 

Wind 

Model 

self 38775 samples, 

Stationary random variable 

chosen from Weibull distribution 

with same mean and standard 

deviation as observed in Haina 

wind farm Dataset 

Simulated (piecewise linear power 

curve, class II) 

Filtered 

Gaussian 

Model 

self  185684 samples, simple truncated 

Gaussian random variable (mean, 

standard deviation = 10), applied to a 

linear filter obtained from power 

spectrum of aggregate NREL dataset. 

(similar in idea to the Van Der Hoven 

Model) 

Table 4. Table of simulated wind power sources 

The remainder of this section details the methods which were used to test these 

hypotheses. These methods include the design of a first-principles simulation framework 

for reserve margin calculations, along with the development of software tools for 

validation, preprocessing, statistical comparison, and spectral analysis of real-world and 

simulated wind and load profiles. In the process, we discovered a number of results 

which were not directly related to our initial hypotheses. These results, including the 
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design of a new wind power simulation model, are presented alongside the descriptions 

of the research methods of this thesis. 

Data Collection and Preprocessing 

The first step in the testing of our hypotheses was to locate, validate, collate, and 

preprocess real-world load data, along with real-world and simulated wind data. 

Significant efforts were made to ensure a consistent and error-free comparison between 

the datasets. As a part of the data validation, we analyzed the effects of detrending, 

verified the spectral and long-term statistical characteristics of the NREL wind datasets, 

and discussed the decorrelation effects of linear filtering of wind power and load time 

series. 

Data Sources 

Table 3 and Table 4 provide the details of the real-world and simulated datasets 

which were obtained for this study. The following discussion outlines the key 

characteristics that were discovered by initial analysis of the data. 

Preprocessing Flow 

Before each power dataset could be input into the model, it was necessary to 

perform the preprocessing flow shown in Figure 8 in order to obtain consistent data. A 

two-step detrending procedure was performed on the grid-obtained data, to remove the 

effects of demand growth rate and rate of wind energy integration. Figure 9 illustrates the 

detrending procedure, which removes linear growth in mean load and the linear growth in 

peak wind generation, while maintaining the initial ratio of mean to peak variation. As 

would be expected, the effect of the detrending was a uniform reduction in the 

magnitudes of the frequency response.  
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Figure 8. Preprocessing flow for real-world and simulated datasets 

Locate and 
Download Data

Convert and Collate 
Files

Analyze for Gaps 
and Inconsistencies

Fill or shift to 
remove gaps

Delete Inconsistent 
Data

Design/Obtain Model

Generate Data

Apply wind speeds to power 
curve model

If necessary, detrend data and 
verify the effects of detrending

Block average to obtain hourly 
data

Crop and extend data for 
duration and time alignment

Normalize magnitude to 
obtain unity mean
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1. Remove additive increase in demand and installed wind capacity 

a. Find upper envelope of signal using a deviation-from-moving average 

threshold
2
 

b. Find least-squares linear estimator of upper envelope:       
c. Subtract    from signal 

2. Remove multiplicative increase in demand and installed wind capacity 

a. Find lower envelope of signal (after part 3 above) 

b. Divide dataset by trend line (note that mean, relative to initial variation is 

preserved) 

Figure 9. Detrending procedure 

While higher-frequency data was available for some of the datasets, consistent 

comparison required that each dataset be normalized to the “lowest common 

denominator” sample time. In this particular case, each dataset was block-averaged to 

form hourly samples. Because the spectral power decreases with increasing frequency, it 

is likely that the effects of block averaging on reserve margin calculations will be 

minimal. However, it should be noted that, due to the limitations of the real-world 

datasets, this thesis only considers time scales greater than one hour. 

After the data was averaged, the maximum-length segment representing a whole 

number of years was repeated a number of times and shifted such that the alignment 

difference (as measured by the absolute difference of the normalized and extended 

                                                 
2
 Detection of the lower and upper envelopes was accomplished by first computing the moving average of 

the sample using local regression (Lowess method). Peaks were then detected as locations which met 

particular level of deviation above and/or below the moving average. 



 

  

30 

3
0

 

datasets) between all datasets was minimal. This alignment procedure was necessary so 

that phase differences between the periodic cycles of the datasets did not skew our 

results. The number of repetitions required was determined by the length of the longest 

hourly dataset. Finally, each dataset was scaled to have unity mean, in order to aid 

calculations. 

A summary of the important dataset parameters (before preprocessing) is given in 

Table 5. This table shows the observed increase in installed wind capacity for MISO and 

AESO and the observed change in total demand for MISO, AESO, and NG. Interestingly, 

the MISO load tended to decrease at a rate of 4.5 GWh/year, rather than increasing. 

 
 
 

Dataset 

Mean 

(MW) 

Min 

(% of 

mean) 

Max (% 

of 

mean) 

Growth Rate 

of Weekly 

Minimum 

(MWh/year) 

Growth Rate of 

Maximum 

Weekly Variation 

(MWh/year) 

Sample 

Size 

Sample 

Time 

(seconds) 

NREL 

Wind 

Power 261387.9 6.97 211.98 0 0 157968 600 

MISO 

Wind 

Power 2183.3 -4.13 279 98.97 1201.56 38664 3600 

AESO 

Wind 

Power 148.88 -22.27 341.39 0.76 59.34 420768 600 

Haina 

Wind 

Power 0.73 0 246.81 0 0 38775 600 

MISO 

Load 

Power 63722.15 58.97 166.95 -4523.74 -2740.53 21120 3600 

NG 

Load 

Power 37536.94 53.08 161.62 227.71 184.88 194304 1800 

AESO 

Load 

Power 7925 75.65 126.29 106.79 25.21 420768 600 

Table 5. Summary of raw dataset parameters 
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Descriptions and Discussion of Individual Datasets 

NREL Eastern Wind Dataset 

 
Figure 10. Wind farm power extraction curves for three example sites corresponding to high (Class 

I), medium (Class II) and low (Class III) wind speeds. 

The NREL Eastern Wind Dataset is a collection of 3 years worth (2004-2006) of 

10-minute simulated wind conditions at 80 and 100 meters, for 1518 potential wind farm 

sites across the Midwestern and Eastern United States. AWS TrueWind produced the 

wind speed data by inputting measured met-tower data into a meteorological model, and 

geographically interpolating to desired wind turbine locations. The wind speed listed 

represents an an average of the wind speeds at several individual turbine locations. The 

NREL study input the wind speed data into models for three different class turbines 

(designed for IEC class I, II, and II, corresponding to high, medium, and low wind speed 
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conditions), and selected the optimal turbine for maximum power extraction during the 

period of study. The IEC class I and II turbines were placed at 80 meters, and the IEC 

class III turbines were placed at 100 meters. The dataset does not include individual 

turbine power extractions, but rather wind farm power outputs. An example power curve 

of the IEC class III turbine is in Figure 10. Notice that the dataset includes wind farms of 

different installed capacity. 

 
Figure 11. “Box plot” of power and speed in the frequency domain, showing the minimum and 

maximum spectral components, along with the mean, 1
st
 and 3

rd
 quartiles. 
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The dataset used in this thesis represents an aggregate of all 1518 wind power 

time series, and contained no gaps or invalid timestamps. Figure 11 shows that the 

spectral characteristics remained consistent throughout the datasets, agreeing with the 

results of [21]. This figure was obtained by generating the frequency spectrum of each 

wind power time. The frequency spectrum was block-averaged by 8 frequency samples in 

order to reduce memory requirements. 

 
Figure 12. “Goodness of fit” analysis, demonstrating that the datasets followed a Weibull distribution 

in their long-term characteristics. 

To better understand the variations involved, the long-term probability 

characteristics (100-bin histograms) were obtained for each dataset. Figure 12 is a 

“goodness of fit” analysis of the NRE  wind speed dataset, as compared to the Weibull 

distribution, which is the well-accepted standard [17] distribution for long-term wind 

speeds. For comparison, it should be noted that the negative log likelihood of the MLE 
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Weibull fit for a the positive values of a truncated Gaussian dataset with mean 10 and 

standard deviation 10 is approximately       , an order of magnitude smaller than the 

minimum negative log likelihood calculated for this dataset. 

Figure 13 is a probability map of the wind power and wind speed. This plot 

accurately reflects the fact that areas of high average wind speed are prone to large 

variability in wind speed, and thus highly-variable power output. Color represents the 

probability of observing a particular wind speed. The colors in the power plot have been 

scaled logarithmically to highlight the variations at small probability. 

 
Figure 13. Long term probability map of site data. The y axis represents the site characteristic (mean 

wind speed or power), the x axis represents observed wind speed or power. 
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Haina wind farm Dataset 

The Haina dataset was generously provided by the EGE Haina wind farm in the 

Dominican Republic. There were nine gaps in the data, shown in Table 6. These gaps 

were expanded to coincide with an exact number of days, for more accurate spectral 

variation. In each gap-adjustment instance, 72 samples removed from the beginning of 

each gap so that there is a transition from 23:50:00 to 00:00:00, instead of a transition 

from 01:50:00 to 00:00:00. 

 
 
 

Number of gaps Gap duration Corrected gap duration 

1 27 days, 23 hours, 10 min 28 days 

7 23 hours, 10 min 1 day 

1 6 days, 23 hours, 10 min 7 days 

Table 6. Haina wind gap information 

Figure 14 and Figure 15 demonstrate the benefit of this procedure, by comparing 

the autocorrelations and frequency spectra of the original and gap-adjusted data with 

those of the largest section of 10minute wind data without gaps (corresponding to 24060 

samples). In each case, the adjusted data was shown to be more similar to the no-gap data 

than the non-adjusted data was. 

The Haina wind speed dataset was converted to a wind power dataset via a 

piecewise linear power curve corresponding to the Vestas V100-1.8 MW GridStreamer 

turbine. This turbine was selected among the eleven (2 MW or less) turbines available 

from Vestas because it produced the maximum capacity factor for the Haina wind speed 

dataset. 
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Figure 14. Differences between the autocorrelation functions of the no-gap data, with the gap-

adjusted and non-adjusted data 

 
Figure 15. Differences between the spectral velocity of the no-gap data, with the gap-adjusted and 

non-adjusted data. 
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Turbine 

Height 

(m) 

Rated 

Power 

(MW) 

Cut-in 

speed 

(m/s) 

Rated 

speed 

(m/s) 

Cut-out 

speed 

(m/s) 

Capacity 

Factor 

(% of 

Rated 

Power) 

80 1.8 3 12 20 40.52 

Table 7. Chosen turbine parameters for converting the 

Haina wind speed to power 

Rated 

Power 

(MW) 

Cut-in 

speed 

(m/s) 

Rated 

speed 

(m/s) 

Cut-out 

speed 

(m/s) 

Wind-

Class 

850 4 16 25 IEC S 

850 3.5 13 20 IEC IIB 

2000 4 16 25 IEC IIA 

2000 3.5 14.5 25 IEC IA 

1800 4 12 25 IEC IIA 

2000 4 12 25 IEC IIIA 

1800 3.5 13 25 IEC IIA 

2000 3.5 13.5 25 IEC IIIA 

2000 4 13.5 25 IEC IA 

1800 3 12 20 IEC S 

2000 3 12.5 20 IEC IIA 

Table 8. Turbine parameters for Vestas turbines, 

2MW or less (obtained from [22]) 

MISO Historical Market Reports 

The MISO Historical Market Reports dataset represents hourly aggregate wind 

and load information from the Midwest Independent System Operator. The most recent 

data represents an aggregate of approximately three hundred turbines, while the oldest 

data represents fewer aggregate turbines. There were no gaps in the hourly MISO data, 

however the dataset did require detrending. The results of this detrending process are 

detailed in Figure 16 and Figure 17. Table 5 on page 30 lists the detrending parameters 

for this and other datasets. Notice that the difference in spectra between the trended and 
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detrended data was not significant. The cumulative absolute spectral difference between 

original and detrended data was less than 3% of the total spectral energy for the load 

dataset and less than 20% of total spectral energy for the wind dataset. 

 
Figure 16. Detrending process for MISO load 

 
Figure 17. Detrending process for MISO wind 

AESO Wind power / AIL Data 

The most recent data in the AESO Wind power dataset represents cumulative 

wind power from around 50 wind farms, with the earlier data representing fewer farms. 

Similar to the MISO datasets, the AESO wind and load datasets required detrending. In 
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this dataset, there were eight 1-hour gaps in the 10 minute data. To avoid a half-day phase 

shift in the data across the course of the dataset, these gaps were filled by inserting a copy 

of the six samples prior to each gap. In addition to the eight data gaps, there were eight 

segments of data containing repeated timestamps. This extra data was discarded. The 

results of the gap-adjustment procedure and the detrending were similar to those observed 

in the Haina wind and the MISO datasets. 

NationalGrid UK Demand Data 

The NationalGrid UK demand dataset was the largest single dataset considered. 

This half-hourly dataset was similar to the AESO data, in that there were a number of 

gaps (10), and incorrect timestamps (22). The gaps were filled with previous samples, 

and the data points with incorrect timestamps were removed. 

Synthetic Random Field Model 

The synthetic random field model is a generated random field model developed 

by Quing Guo and Baskar Ganapathysubramanian at Iowa State University. The method 

extracts variation statistics from measured wind data and uses these to initialize a random 

walk, using a MCMC (Markov Chain Monte-Carlo) type approach. The model realization 

we were provided with generates wind speeds at 10 meters above ground, at one second 

intervals. 

While an arbitrary number of samples could be generated, we generated only 194 

days worth of data, due to time and memory constraints. This data was block-averaged to 

ten-minute data, which was then used to select a turbine from the same list as was used 

for the Haina dataset. The piecewise linear power curve of this turbine was used to 

generate power data. 
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Sandia 3D Turbulence Model 

The Sandia 3D Turbulence Model was developed by P.S. Veers in 1988 for use in 

generating high frequency wind speeds [23]. The implementation we used was written by 

Francesco Perrone of AREVA Wind GmbH. The samples are generated at one second 

intervals, at a height of 80 meters. Due to time and memory constraints, only 50 days 

worth of data were generated. Conversion from wind speed to power was accomplished 

identically to the other simulated wind speed datasets. 

Stationary Wind Model 

The stationary wind model is nothing more than a stationary random variable 

(Weibull distribution) for wind speed, passed through a piecewise-linear power curve. 

The parameters for the Weibull distribution used were obtained by fitting the Haina wind 

speed data using maximum likelihood estimator. The number of data points generated 

was equal to the number of data points in the Haina wind dataset, and the turbine was 

chosen in the same manner as the other simulated wind speed datasets. 

Filtered Gaussian Model 

The filtered Gaussian model uses a method similar to [24] and others that 

compute random wind series from assumptions about the frequency domain 

characteristics (namely, that it follows a Kolmogorov power spectrum). However, this 

method does not attempt to reproduce turbulence characteristics or to reach any particular 

distribution in steady-state. The procedure is simply to filter Gaussian white noise 

(truncated to be strictly positive) with a comb-shaped filter defined by the spectral peaks 

of a training signal’s spectrum and then to filter again with a low-pass filter defined by 

the moving average of the training signal’s spectrum. Figure 18 illustrates the process. 
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Figure 18. Process for Filtered Gaussian Model 

 
Figure 19. Illustration of filtering process 
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Figure 20. Load profile showing the effects of filtering spectral peaks. 
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Figure 21. Wind profile showing effects of filtering spectral peaks. 

The peak-finding algorithm was the same as was used to find the upper and lower 

envelopes for the detrending procedure. The training signal for our the filtered Gaussian 

time series was the NREL aggregate wind power dataset. Three years worth of data were 

generated in this manner. 

Effects of predictable periodicity on autocorrelations 

Motivation for this filtered stationary process wind power model came from our 

initial investigations into the cyclostationary nature of grid loads. As the Figure 20 

illustrates, filtering out the obvious spectral peaks results in significant de-correlation of 

the grid load. Comparing the 10-day autocorrelation plots of the filtered and un-filtered 

loads, it is clear that the predictable behavior (i.e. that variation which results from the 
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spectral peaks) accounts for the majority of the non-stationarity of the load signal. The 

slope in autocorrelation is likely due to a low-frequency peak which was not detected. It 

was initially thought that wind power profile would respond in a similar fashion, given 

that the wind power spectrum also contains large peaks and that a filter which introduced 

these peaks into stationary data would accurately model the wind power variation. 

However, Figure 21 illustrates that the power spectrum of wind does share this 

reduction in autocorrelation when the spectral peaks were filtered – most likely due to the 

fact that the spectral peaks of wind power are few and are not so pronounced as those in 

the load spectrum. This is what led us to also introduce a low-pass filter into the model in 

addition to the comb-type filter. 

Simulation Architecture 

The simulation architecture for model comparison is shown in Figure 22. Hourly 

wind generation data were scaled to achieve a desired penetration of wind energy. 

Penetration is defined as total energy generated from wind divided by the total load 

serviced by the grid. After reserve power requirements for 100% reliability were 

calculated individually at each time sample, the reserve power requirements were sorted 

into percentile bins, and the minimum reserve margin for 0.027% loss of load probability 

(LOLP) was calculated. Note that this model does not include generator ramp rates or 

other practical considerations, but instead was designed to study the fundamental reserve 

margin limits imposed by high wind penetrations. 

In addition to calculating reserve power requirement, the following additional 

metric was calculated, which can be thought of as the “penetration benefit”: 

                         

Increase in Wind  enetration
 

The penetration benefit metric is comparable to the more commonly used 

intermittency-mitigation metrics of price elasticity and peak reduction [9]. However, in 
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Figure 22. Simulation model overview 
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storage and demand response. In particular, this metric is used to assess the first 

hypothesis of Table 2. 

Idealized Energy Storage Device 

 
Figure 23. Algorithm for energy storage model 
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Figure 24. Algorithm for demand response model 
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Since the energy storage model is intended to simulate an ideal (fast ramp rate) 

technology, we ignore any hardware-imposed restrictions on rate of charge, discharge, or 

the duration that a charge may be held. However, because battery capacity is one of the 

aspects under investigation, we do place a limit on the capacity of charge that can be 

stored. The algorithm for the energy storage model shown in Figure 23 modifies the wind 

and load profile to reflect renewable-oriented dispatch priorities. If possible, the current 

demand is met via wind energy. If there is any extra wind power, it is used to charge the 

energy storage device. Energy storage is discharged to reduce reserve requirements when 

the wind is less than the load. 

Idealized Demand Response 

The queue-based demand response model is based on one of the less intrusive 

methods of demand shaping. It is assumed that no user will reduce his or her electricity 

consumption, but that he or she is willing to delay the electricity usage by a certain 

amount of time. The amount of delay time is limited to a maximum beyond which the 

grid must immediately service the delayed load. Finally, the queue is emptied in a first-

come-first-serve (FIFO) manner in order to minimize the number of loads which “time 

out.” The algorithm for the demand shaping model is shown in Figure 24. 

Results 

Before presenting the results of our model analysis, we discuss how the the 

hypotheses made at the beginning of this chapter are to be tested and reiterate the primary 

assumptions associated with our simulation architecture. 

The first and second hypotheses may be tested by simply computing the reserve 

margin reductions for a range of wind penetrations. The third proposition may be tested 

by comparing the auto- and cross-correlations of the load and wind power datasets with 

the results of the reserve margin reduction calculations. The fourth conjecture is 
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answered by computing the reserve margin reductions of wind power datasets across an 

increasingly large geographic area. 

 
 
 

Initial Hypothesis Result 

1. Reserve margin reductions are close to the mean wind at low wind penetrations True 

2. Degree of reserve margin reductions will decrease with increasing wind 

penetration 

True 

3. High correlation of wind power with itself and with load both have a negative 

impact on reserve margin reduction 

True 

4. Geographic distribution of wind turbines result in a reduction of correlation and 

therefore increased suitability for reserve margin reduction 

True 

5. Benefits of demand response and energy storage are minimal at low deployment True 

6. Energy storage capacity of T hours of mean wind power is roughly equivalent to 

demand response delay limit of T hours. 

False 

Table 9. List of hypotheses 

The fifth supposition may be verified by computing the reserve margin reductions 

of energy storage and demand response, compared to the reductions without 

intermittency mitigation. The sixth premise may be proven or disproven by a comparison 

of the reserve margin reductions produced by demand response with those generated 

from energy storage, under the same conditions. 

As noted earlier in this chapter, the preprocessing steps and simulation 

architecture used in this thesis make a number of assumptions about the data and the grid 

under investigation: 

1. The hourly reserve statistics are representative of the shorter time-period reserve 

margin calculations. 

2. Detrending and repetition of load and wind power datasets does not distort reserve 

margin calculations. 

3. There are no ramp rate restrictions on reserve or energy storage. 
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4. There is no maximum capacity for demand response – only a maximum time till 

service. 

5. There is no maximum duration for energy storage – only a maximum storage 

capacity. 

Effects of high wind penetrations on RMA 

This section confirms hypotheses one through four with reserve margin 

simulations and a comparison of the auto- and cross-correlations of the various load and 

wind profiles. 

Reserve Margin Calculations 

As is shown in Figure 25 and Figure 26, the reserve margin reduction is shown to 

be close to 100% of the mean wind power at low wind penetrations – for each one of the 

real and simulated datasets. Thus, the first hypothesis is verified. Similarly, all but one 

simulation result in a substantial decrease in reserve margin reduction, with increasing 

wind penetration. The Sandia 3D model is the only case in which the reserve margin 

reduction remains close to 100% even at higher wind penetrations – indicating that this 

particular model adheres to the assumptions made in our analysis at the beginning of this 

chapter. It is also interesting to note that each dataset (with the exception of the Sandia 

model) reaches a relatively low potential for reserve margin decrease around 20% wind 

penetration, which corresponds to the 2030 wind penetration goal set by a the U.S. 

Department of Energy.  

The Synthetic Random Field simulation, which was intended to accurately model 

wind speed frequency characteristics up to one day, and the stationary wind speed model, 

which made no effort to reproduce frequency characteristics both performed similarly to 

the highly-aggregated NREL dataset. This result is consistent with [25], in that MCMC 

wind speed models tend to exhibit an inadequate level of correlation at longer time 

scales. However, this result also shows that high levels of aggregation tend to produce 
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Figure 25. Reserve margin calculations for real-world wind generation data 
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Figure 26. Reserve margin calculations for simulated wind data 

power profiles which are statistically similar to a stationary random process. The filtered 

Gaussian wind power model produced a reserve margin reduction profile that more 

accurately reflected the sharp decrease in reserve margin reduction that is observed in the 

dataset produced from real-world wind (Haina). 
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Figure 27. Marginal reserve variation with respect to degree of aggregation and wind penetration 

Jointly, the third and fourth hypotheses predict that the reserve margin will be 

reduced with increasing levels of aggregation. Based on the aggregation level alone, we 

would expect that the NREL dataset would result in the most reserve margin reduction, 

followed by the MISO dataset, followed by AESO, followed by the Haina wind farm 

dataset. However, as is shown in Figure 25, the Haina wind farm dataset actually 

outperformed the AESO wind power dataset. To further understand the effects of 

aggregation, the reserve margin calculations for the AESO load were re-calculated for 

varying levels of aggregation of the NREL wind power dataset. Figure 27 shows that 

aggregation does have an effect on reserve margin reduction, but exhibits relatively little 
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reserve margin reduction beyond around 100 wind sites. Thus, hypothesis four is verified, 

but with the qualification that the degree of aggregation is small. In the sequel, it will be 

shown that the differences in reserve margin requirements for the AESO, MISO, and 

Haina wind power datasets are due largely to their correlations with the different load 

datasets. 

It is interesting to note that reserve margin reduction profiles vary widely at low 

degrees of aggregation. This is illustrated by the probability map of Figure 28 which was 

formed by running the reserve margin calculations for the AESO load dataset on each 

individual wind farm location in the NREL dataset. The color spectrum has been scaled 

logarithmically to highlight the variations at low probability. From Figure 25, it can be 

noted that the Haina wind dataset is indeed a good representative of a “worst case” wind 

scenario since the reserve margin for the worst-performing NREL datasets also leveled 

off around 120% of mean load. 

 
Figure 28. Histograms of marginal reserve requirements for individual sites of the NREL dataset 

Auto- and Cross-Correlations 

Recall that hypothesis three states that that high correlation of wind power with 

load has a negative impact on reserve margin reduction. If this is true, we should be able 
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to order the wind datasets from “best” to “worst” reserve margin reduction performance 

according to their cross correlation with the load dataset. The correlation information in 

Figure 29, Error! Reference source not found., and Table 12 produces the set of 

orderings shown in Table 10 and Table 11. As is shown, the performance ordering 

obtained by the absolute sum of cross correlation is largely similar to the observed 

ordering. The incorrect ranking of the Haina wind dataset is likely due to the fact that the 

Haina dataset produces zero power output for a significant number of samples, while the 

percentage of “dead time” in the other wind power datasets is negligible. 

 
 
 

 Predicted Rank Observed Rank 

 NG Load MISO Load AESO Load  

NREL wind 2 1 2 1 

MISO wind 3 3 3 2 

Haina wind 1 2 1 3 

AESO wind 4 4 4 4 

Table 10. Reserve margin reduction performance ordering 

of real wind power 

 Predicted Rank Observed Rank 

 NG Load MISO Load AESO Load  

Sandia wind 1 1 1 1 

SRF wind 3 3 3 2 

Weibull wind 2 2 2 3 

FG wind 4 4 4 4 

Table 11. Reserve margin reduction performance ordering of 

simulated wind power 
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ng load miso load aeso load 

Haina 15.00 18.10 5.99 

miso 137.42 86.59 49.74 

aeso 212.84 86.90 69.24 

nrel 26.72 16.70 10.18 

fg 11.49 12.40 6.01 

sandia 0.05 0.05 0.03 

srf 0.85 1.04 0.45 

wbl 0.74 1.01 0.43 

Table 12. Absolute sums of cross 

correlation functions (from 

Figure 29 and Error! Reference source not found.) 
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While cross-correlation of wind power with load does play an important role in 

the determination of the reserve margin reduction profile, the autocorrelation of the load 

or wind does not appear to be a significant predictor of reserve margin performance. This 

is demonstrated by the results of Table 13 and Table 14, which were computed from 

Figure 31 and Figure 32. 

 

Autocorrelation 

absolute sum 

Predicted 

Rank 

Observed 

Rank 

ng 3126.59 2 1 

miso 2552.36 1 2 

aeso 3469.91 3 3 

Table 13. Predicted performance rank of load based 

on autocorrelation compared to observed rank 

 

Autocorrelation 

absolute sum 

Predicted 

Rank 

Observed 

Rank 

Haina 613.01 1 3 

miso 766.83 3 2 

aeso 723.21 2 4 

nrel 959.61 4 1 

Table 14. Predicted performance rank of real wind 

power based on autocorrelation compared to 

observed rank 
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Figure 31. Wind power autocorrelation plots, detailing the lags at which the autocorrelation reaches 

20% and 0% of maximum. 
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Figure 32. Autocorrelation of loads, detailing location of first large correlation trough. 

Effects of energy storage and demand response on RMA 

The fifth hypothesis makes the claim that neither energy storage nor demand 

response have a significant effect at low deployment. This is motivated by the assumption 

that the spectral power at high frequencies is relatively small compared to the low 

frequency components of the wind power signal. The power spectra of the loads and 

wind datasets are shown in Figure 33 and Figure 34, and justify this assumption. The 

simulated wind power spectrum is shown in Figure 35 for completeness, but this thesis 

does not consider the effect of energy storage or demand response on the simulated wind 

power reserve margin reduction. 
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Figure 33. Power spectra of real wind 
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Figure 34. Power Spectra of loads 
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Figure 35. Power spectra of simulated wind 
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Demand Response 

Figure 36, Figure 37, and Figure 38 show the reduction in reserve margin from 

the case with no demand response at mid term, long term, and extreme case maximum 

duration ranges respectively. In accordance with hypothesis five, the demand response 

does not begin to have a significant impact until around 200 hours, corresponding to 

         Hz, which is approximately where the spectral densities of the wind power 

begin to become large. It is also interesting to note that there is very little reserve margin 

reduction in the low wind penetration situations.  

Energy Storage 

Figure 39, Figure 40, and Figure 41 show the reduction in reserve margin from 

the no-storage case at mid, large, and extreme case energy storage capacity respectively. 

The energy storage simulations showed significantly more variation than the demand 

response simulations. However, like the demand response simulations, energy storage did 

not begin to significantly impact reserve margin until it reached a capacity capable of 

mitigating long-term fluctuations. Surprisingly, energy storage tended to require around 

an order of magnitude more capacity (in terms of hours of mean wind) than the “virtual 

storage” represented by the demand response. Thus, the final hypothesis of near one-to-

one correspondence between energy storage capacity and demand response was rejected. 
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CHAPTER 4 - 

CONCLUSION AND FUTURE RESEARCH 

It is our hope that the quantitative results of this thesis will spark additional 

research related to wind energy and the electric grid. This chapter details some particular 

ways in which our conclusions provide a solid contribution to the wind energy 

community and offers suggestions on how the research done in this thesis may be 

extended in the future. 

Data Preprocessing and Wind Simulation 

In addition to providing detailed descriptions of the steps involved in obtaining 

useful real-world wind and load data, the preprocessing analysis of this thesis motivates 

the design of a new wind power model. This model, obtained by filtering of a stationary 

random variable, is similar to other filtered stationary wind models such as [26], but is 

unique in that realistic turbulence characteristics are ignored altogether and only the 

frequency spectrum is considered. Future investigations may compare the behavior of this 

simplistic model with more physically-motivated models in scenarios related to reserve 

margin allocation. Moreover, improvements may be made to the filtered Gaussian wind 

power model so that the long-term probability density characteristics follow a distribution 

which is more physically realistic. 

Reserve Margin Characteristics 

Our research verifies that the rate of reserve margin reduction at very low wind 

penetrations is close to 100% of the additional mean wind. This result indicates that the 
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wind profile at very low wind penetrations may be treated as statistically independent 

from the load – for reserve margin calculation purposes. However, as wind penetration 

increases, the independence assumption quickly becomes invalid and leads to under-

allocation of reserve margin. This analysis may be improved in three particular ways. 

First, this thesis explicitly evaluates reserve margin allocation with time series 

datasets. Future research may compare these time series results with a more detailed 

analysis of long-term statistical descriptions of wind and load profile (such as the 

cumulative distribution function). This long-term analysis, in turn, may lead to a simpler 

framework for predicting reserve margin behavior. 

Second, our research indicates that cross correlation between wind and load 

profile is a good indicator of reserve margin reduction performance. To refine these 

results, a more precise performance metric can be developed that also takes into account 

some measure of “dead time” in the wind profile. Additionally, more research is needed 

to determine the precise role that autocorrelation of wind or load profile has on reserve 

margin reduction behavior. 

Third, there are a number of questions questions related to fundamental reserve 

margin reduction behavior that remain to be answered. The statistical framework of this 

thesis may be used in the future to obtain quantitative answers regarding the effects of 

forecasting and a determination of the optimal wind power curtailment level for 

minimizing reserve margin. Furthermore, the simulation models may be improved by 

adding additional practical constraints. For example, ramp-rate restrictions may be added 

to the reserve generators and/or the energy storage element, and a degree of uncertainty 

may be added to the demand response model. 

Intermittency Mitigation Behavior 

This thesis has shown that, contrary to the common intuitive assumption, demand 

response is decidedly distinct from energy storage in at least one idealized grid 
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realization. In fact, an effective load shifting type demand response implementation 

requires about an order of magnitude less “capacity” (in terms of hours of mean wind 

power) than an ideal energy storage device. The counter-intuitive nature of this result 

merits a more thorough investigation into the exact relationship between demand 

response and energy storage. We suggest approaching this investigation from two angles. 

First, an analysis of the sharp “inflection points” on the reserve margin reduction curves 

of Figure 38 and Figure 41, as compared to the power spectra of Figure 33 and Figure 34 

may explain the differences between energy storage and demand response in terms of 

frequency characteristics. Second, an inquiry into the effects of asymmetry in the wind 

power probability distribution as it is related to the increase in required energy storage 

capacity may explain the differences between energy storage and demand response in 

terms of long-term statistical characteristics. 

Given that residential consumers make up 38% of electricity market [27], it is 

clear that widespread and effective demand response could have a transformative effect 

on the electricity industry. In addition to a more accurate articulation of demand response 

as “virtual storage,” there is also a need for the development and testing of innovative 

demand response models. The statistical framework of this thesis provides an excellent 

mechanism for comparing the quantitative effects of these models on reserve margin 

allocation. 

There is a particular need for a “first principles” demand response model which is 

free from market assumptions and is based directly on the fundamentals of customer 

behavior. To this end we encourage the development of a non-price-based demand 

response model, which estimates the effects of behavioral marketing strategies on the 

energy consumer. The “big picture” motivation for developing a behavioral model for 

demand response is twofold. First, monetary incentives have been proven to 

underestimate true customer response potential [28][29]. Second, there is a need to 

develop sustainable energy marketing strategies that address “value” rather than strict 
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cost. Not only does [30] show that the majority of consumers are unaware of their own 

energy usage, but [31] indicates that electricity accounts for less than 3% of household 

spending. Therefore, even the potential for a 10% decrease in the monthly electric bill 

may not be “valuable” enough to change customer habits. 
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