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Synopsis
We introduce a novel continuous domain compressed sensing (CD-CS) framework for the recovery of MRI data. We formulate the
recovery of the high-resolution continuous domain Fourier coefficients of the image from few of its samples as a structured
low-rank matrix completion problem. We also introduce novel algorithms to solve this matrix completion problem in run-times
that are comparable with discrete CS formulations. The application of this algorithm to (2D+time) dynamic MRI problems is
observed to yield significantly improved reconstructions compared to state of the art CS methods.

Purpose
Compressed sensing (CS) methods that recover a discrete image from its discrete Fourier coefficients have revolutionized MR
image acquisition and reconstruction. Recent continuous domain formulations  which directly recover the continuous signal or
its Fourier coefficients are emerging as very attractive alternatives to discrete CS schemes. In addition to minimizing
discretization errors, these algorithms also enable the exploitation of image structure (e.g. smooth connected edges)  which
discrete compressed sensing strategies fail to fully exploit. The focus of this abstract is to develop a computationally efficient
CD-CS framework and to investigate its utility in the recovery of dynamic MRI data.

Methods
We assume the spatio-temporal volume  to be a piecewise smooth function, whose gradients are non-zero only at locations
specified by  (zero level sets of ). We assume  to be the inverse Fourier transform of a FIR filter 
supported on the cube-shaped support-set . This implies that

An example of such an  and the corresponding  in 2-D are shown in figure (1). Note that the locations where  are
constrained by . A low bandwidth implies that the non-zero locations of  are localized to smooth curves, while a very high 
allows  to be non-zero at arbitrary locations. Taking the Fourier transform of the above equation, we obtain the following
k-space annihilation relation (see bottom row of Fig. 1):

Rather than using the sparsity of the signal, we use the above annihilation relation to fill in the missing entries of  from its
measurements. Specifically, we search for the filter  with the smallest support that satisfies the data consistency. We observe
that there is a one to one correspondence between the sparsity and bandwidth (size of ) in 1-D; current super-resolution
methods may be viewed as special cases of the proposed formulation  The annihilation/convolution relations can be compactly
represented in matrix form as

See figure (2) for an illustration of the matrix construction. The above annihilation relations imply that  is low-rank . We
exploit the low-rank property of the Toeplitz matrix to recover the dynamic MRI data from its undersampled multichannel
measurements as:

where  represents the undersampled measurments,  is a linear operator representing sensitivity weighting, Fourier

1 2 1

1 2

1-5

3,4

f
μ(r) = 0 μ μ c[k]; k ∈ Λ

Λ
∇f (r) ⋅ μ(r) = 0; ∀r

f μ μ = 0
Λ ∇f Λ

∇f

⊗ c = 0.∇f̂

f ̂ 
c

Λ
1,2

c = 0.

⎡

⎣

⎢⎢⎢
H( )f∂x̂

H( )f∂ŷ
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transform, and undersampling.  is the inverse Fourier transform along the temporal dimension. We solve the above 3-D
problem efficiently using the novel GIRAF algorithm . While this framework has similarities to the recent work on structured
low-rank problems in MRI , the computational efficiency and lower memory footprint of the GIRAF algorithm enables us to use
this framework for the first time on 3-D problems.

Results
We demonstrate the algorithm on the recovery of a multi-channel breath-held CINE data of size 224x256x16 from 6% uniform
random and 12 golden angle lines in figure (3) and figure (4) respectively. The dataset was acquired using a SSFP sequence using
a five channel cardiac array with the following scan parameters: TE/TR = 2.0/4.1 ms, flip angle = 45 , FOV = 350 mm . We compare
the proposed method with spatio-temporal TV and temporal Fourier Sparsity regularized reconstruction methods. We observe
that the reconstructions from the proposed approach are sharper and have fewer errors. As the proposed method exploits the
smoothness of the edges, it results in improved reconstructions with fewer errors along the edges. (See captions for more
details)

Conclusion
We introduced a novel continuous domain compressed sensing framework for the recovery of Dynamic MRI data from
undersampled measurements. The matrix completion algorithm problem was solved using a computationally fast and memory
efficient algorithm. Since the proposed approach exploited the edge information, it resulted in more accurate reconstructions
with fewer errors along the edges.
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Figures

figure(1) : Cartoon illustration of a piecewise constant image model in 2-D. The partial derivatives of the signal vanishes on the

zero sets of ; , as illustrated in the top row. This relation translates to the annihilation relations  in
the Fourier domain. The annihilation relation and few known uniform Fourier coefficients of  are sufficient to recover  exactly.
Note that this is a simple illustration. The bandwidth  and the derivative operators can be modified to represent natural signals
with larger complexity.
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figure(2) : Construction of the Toeplitz matrix: The rows of the matrix correspond to the cube shaped region of the Fourier
samples corresponding to the derivative of . The low rank property of the matrix is exploited to fill in the missing entries of the
matrix.

figure(3) : Comparison of the proposed algorithm with temporal Fourier sparsity and spatio-temporal TV regularized recovery
methods on the recovery of breath-held CINE images from 6 percent uniform random measurements: Since the proposed
method exploits the edge information on top of the sparsity, the errors in the constructions are more scattered as opposed to
being concentrated along the edges which is the case with the other methods.

figure(4) :Comparison of the proposed algorithm with temporal Fourier sparsity and spatio-temporal TV regularized recovery
methods on the recovery of breath-held CINE images from 12 golden angle lines: As the proposed method adopts a more
constrained approach, it results in more accurate reconstructions with fewer errors than the competing methods, especially in
the regions marked by the red and yellow arrow.
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