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Calibration-free B0 correction of EPI data using
structured low-rank matrix recovery
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Abstract—We introduce a structured low-rank algorithm for
the calibration-free compensation of field inhomogeneity artifacts
in Echo Planar Images (EPI). We combine the measurements
from two fully-sampled EPI acquisitions to reformulate the field
inhomogeneity compensation problem as a recovery of an image
time series from highly undersampled k-space measurements;
the temporal profile at each pixel is assumed to follow a single
exponential model. We exploit this exponential behavior at every
pixel, along with the spatial smoothness of the exponential
parameters to derive a 3D annihilation relation in the Fourier
domain. This relation translates to a low rank property on a
structured multi-fold Toeplitz matrix, whose entries correspond
to the measured k-space samples. We introduce a fast two-step
algorithm for the completion of the Toeplitz matrix from the
available samples. In the first step, we estimate the null space
vectors of the Toeplitz matrix using only its fully-sampled rows.
The null-space is then used to estimate the signal subspace, which
facilitates the efficient recovery of the time series of images.
We finally demonstrate the proposed approach on spherical MR
phantom data and invivo datasets and show that the artifacts are
significantly reduced. The proposed approach could potentially
be used to compensate for time varying field-map variations in
dynamic applications such as functional MRI.

Index Terms—Toeplitz matrix, regularized recovery, least
squares, structured matrix, structured low rank, matrix com-
pletion, EPI artifacts, annihilation filter

I. INTRODUCTION

Echo Planar Imaging (EPI) is a fast image acquisition
scheme for acquiring Fourier data in a single shot. Its capa-
bility to provide high temporal resolution makes it a popular
choice in many dynamic imaging studies, including imaging
of the BOLD contrast in functional MRI (f-MRI) [1], [2]
and temperature monitoring during ablation therapy [3]. EPI
acquisitions are also widely used to reduce the scan time
in MR imaging applications including diffusion MRI and
parameter mapping [4]. In recent years, there has been a
push towards achieving higher spatial and temporal resolution
in many of these applications. However, the long read-out
associated with EPI makes it particularly susceptible to off-
resonance related geometric distortion artifacts. Magnetic field
(B0) inhomogeneities are inevitable in MRI and arise due
to the imperfections in the magnet, improper shimming of
gradient coils and the difference in magnetic susceptibility
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between air, tissue, and bone; the distortions are primarily
around air-tissue interfaces in the sinus and air canal regions.

Numerous methods have been proposed to reduce the B0
distortions in EPI images [5]–[18]. Broadly, they can be
classified as calibration-based or calibration-free algorithms.
In calibration-based methods, a field map is estimated prior
to the EPI scan [19], which is then used in the recovery of
a distortion-free image. The reconstruction algorithms range
from computationally efficient conjugate phase methods [7]–
[12] to more sophisticated and computationally expensive
model based reconstruction methods [13]–[15]. The main chal-
lenge with calibration based methods is the mismatch between
the estimated and the actual field map, which manifests as dis-
tortions in the EPI images. This discrepancy occurs due to pa-
tient motion, scanner drift and field inhomogeneity differences
due to physiological changes such as respiration. To overcome
these issues, calibration-less methods which jointly estimate
the field map and the distortion-free image from the acquired
data have been proposed [16], [17]. An alternative strategy is
image space correction using registration [20], which can work
with magnitude images acquired with two different sampling
trajectories. The main challenge with the above calibration-
less methods is the non-convex nature of the optimization
algorithms, which translates to high computational complexity
and risk of local minima.

In this paper, we propose a fast calibration-free structured
low-rank framework for the compensation of field inhomo-
geneity artifacts in EPI. We combine the information from two
EPI acquisitions, whose read-outs differ in echo-time (TE) by
a few milli-seconds. We note that such datasets can be acquired
in the interleaved mode in f-MRI applications, which allows
for the compensation of dynamic variations in the fieldmap.
Using the time segmentation approach [9], we transform
the EPI field inhomogeneity compensation problem to the
recovery of an image time series from highly undersampled
measurements. Upon recovery, the distortion-free image just
corresponds to the first image of the series. The temporal
intensity profile of each pixel in the time series is assumed to
decay exponentially with a frequency and damping constant,
which is dependent on the fieldmap and T ∗2 value at that pixel.
We also assume that the exponential parameters vary smoothly
across space, which allows us to exploit the smooth nature
of fieldmap variations. The above assumptions imply that the
k − t space samples of the image time series are annihilated
by convolutions with several finite impulse response filters;
the filter taps are dependent on the exponential parameters.
The convolution between the signal and the filter can be
compactly represented as the product of a multi-fold Toeplitz
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matrix, formed from the Fourier samples, with a vector of
filter coefficients. The annihilation relations imply that the
above Toeplitz matrix has several linearly independent null-
space vectors and hence is low-rank [21], [22]. Note that
several entries of the above matrix are unknown since the
corresponding signal samples are not measured. We propose
to exploit the low rank property of this matrix to complete its
missing entries, and hence recover the image series.

The direct implementation of the structured low-rank matrix
recovery algorithm requires the evaluation and storage of this
large multifold Toeplitz matrix. Since the number of entries
of this matrix is considerably higher than the number of
signal samples, this approach will result in a computationally
expensive algorithm. Instead, we introduce a fast two-step
approach to solve this problem. In the first step, we form
a sub-matrix of the above Toeplitz matrix by selecting the
fully sampled rows, and estimate the null-space from it. Note
that this submatrix is an order of magnitude smaller than
the original Toeplitz matrix, and hence the first step has low
memory demand and is computationally efficient. These null-
space vectors are then used to recover the missing entries of
the original Toeplitz matrix in the second step. Specifically, we
are seeking a matrix that is orthogonal to the estimated null-
space vectors, while satisfying data-consistency. To reduce
the computational complexity of the second subproblem, we
estimate the signal subspace by compactly representing the
signal using an exponential signal model. This facilitates
the easy estimation of the signal from its measurements.
Specifically, this approach reduces the number of effective
unknowns to be solved and results in a very fast and efficient
algorithm. It also eliminates the need to store the entries of
the Toeplitz matrix. We demonstrate the effectiveness of the
proposed approach by performing simulations on a numerical
brain phantom and also applying it on an ACR spherical MR
phantom and two human subject data.

The proposed field inhomogeneity compensation scheme
is an addition to the growing family of structured low-rank
methods for continuous domain compressed sensing [21],
[23]–[27], parallel MRI [28], [29], as well as calibration-free
correction of multishot EPI data [30], correction of Nyquist
ghost artifacts in EPI [31]–[33] and trajectory correction in
radial acquisitions [34]. Despite the conceptual similarities
between the proposed work and [17], there are a few fun-
damental differences. In [17], field map compensation is done
on every column of the image independently using prony’s
method; additional sorting steps are introduced to ensure a
smoothly varying intensity and phase values. This is sub-
optimal, especially when the noise level is high or when the
field map is highly non smooth, in which case additional
interpolation steps are required to replace the intensity values
in the discontinuous regions.

II. PROBLEM SETUP

A. Model of signal acquisition in EPI
We model the acquired EPI signal as [35]:

s(k(t)) =

∫
ρ0(r)e−γ(r)t︸ ︷︷ ︸

ρ(r,t)

e−j2πk(t)·rdr + η(t), (1)

where k(t) is the k-space location sampled at time t and
s(k(t)) is the corresponding measurement. ρ0(r) denotes the
transverse magnetization of the object and η represents zero
mean white Gaussian noise. The term γ(r) is a complex quan-
tity that captures the field inhomogeneity induced distortion:

γ(r) = R∗2(r) + jω(r). (2)

Here R∗2(r) and ω(r) are the relaxation and off-resonance
effects, respectively, at the spatial location r. Note that if
γ(r) = 0, the relation in (1) simplifies to a simple Fourier
transform between the object ρ0(r) and its measurments
s(k(t)).

Since (1) contains the field distortion γ(r), it is no longer
a Fourier integral and cannot be efficiently computed using
the fast Fourier transform (FFT). Hence we adopt the time
segmentation approach which enables the use of FFTs, thus
resulting in reduced computational complexity. Specifically,
we divide the acquisition window into a number of time
segments and assume that the temporal evolution of the field
inhomogeneity is constant in each of the segments. This is a
fairly safe assumption when the duration of each time segment
is short. For simplicity, we assume that the spatial support of
each time segment be of dimension N ×N and each segment
contains only k lines of kspace. Assume that the time taken
to acquire one line of kspace be ∆T and let the time between
two segments be T = k∆T . Using this, the measurements at
tn = nT ;n = 1, 2, . . . Nk , are given by:

bn =

∫
ρ0(r)e−γ(r)nT︸ ︷︷ ︸

ρn(r)

e−j2πk·rdr + ηn

= An(ρn) + ηn

(3)

Here ρn is the image corresponding to the time instant
tn = nT , while bn is its Fourier measurement. The operator
An is a linear acquisition operator corresponding to the nth

segment, which represents a fast Fourier transform, followed
by multiplication by a sampling mask of the nth segment.
See Fig. 1 a) for an illustration of the time segmentation
approach. Since the temporal evolution of e−γ(r)t can be
safely ignored during the duration T , the magnitude of the
images ρn(r) can be assumed to have no geometric distortion.
However, due to relaxation effects the magnitude image ρn(r)
is given by ρ0e

−R∗
2(r)nT ; the first image, ρ1(r), is least

affected by R∗2. Since bn corresponds to only a small fraction
of the k-space measurements of ρn, the direct recovery of
ρn(r);n = 1, 2, . . . Nk from bn is challenging.

B. Reformulation as recovery from undersampled data

We consider the joint estimation of the distortion (field
inhomogeneity and relaxation) map and the distortion-free
image from the given set of Fourier measurements. This
translates to estimating two complex unknowns, corresponding
to ρn(r) and γ(r) at every pixel location. By a simple degrees
of freedom argument, we can deduce that we need atleast two
complex measurements at every location r to estimate all of
the unknown parameters. For this purpose, we acquire two
sets of EPI data such that the readout of the second dataset
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Fig. 1. Illustration of the time segmented approach and the measurement model: (a) The data acquired from the two EPI acquisitions and their corresponding
uncorrected ifft reconstructions are shown. A time segmentation approach is adopted such that the acquisition window of the two datasets is divided into a
number of segments. (b) By combining the time segmented volumes of both the datasets, a k-space volume with many missing entries is formed. Data from
the two EPI acquisitions lie on the yellow and red oblique planes respectively. (c) The operators F and S are defined. The data ρ̂ can be under-sampled
using the operator S to obtain the volume shown in (b).

Fig. 2. Illustration of the construction of the matrices T (ρ̂) and T (ρ̂c)
from the combined k-space volume ρ̂: The 3D convolution between a filter,
with support Λ, and ρ̂ results in a large Toeplitz matrix T (ρ̂) with many
rows filled with zeros; the valid convolutions are defined inside the green
cuboid. The rows of T (ρ̂) correspond to cuboid shaped neighborhoods of
the Fourier samples. A smaller Toeplitz matrix T (ρ̂c) is constructed from
T (ρ̂) by selecting only fully sampled rows.

is delayed by m∆T, m ∈ Z. The Fourier measurements
corresponding to the two EPI acquisitions are shown to lie
on the yellow and red oblique planes respectively in Fig. 1
(a).

Let b
(1)
n and b

(2)
n represent the under-sampled Fourier

measurements corresponding to the two acquisitions. We can
express them using the linear acquisition operator An, defined
in (3), as

b(1)
n = An(ρn); n = 1, 2, . . .

N

k

b
(2)
n−m

k
= An−m

k
(ρn); n =

m

k
+ 1, . . .M

(4)

where M := N
k + m

k . We have assumed that the two EPI
datasets have been time-segmented into N

k segments and each
segment contains exactly k lines. For example, when N =
64 and m, k = 4, the time segmented volume contains 16
segments or frames. When m = k, we can observe that the
phase evolution present in the second segment of b

(1)
n and first

segment of b
(2)
n will be the same, the phase evolution present

in the third segment of b
(1)
n and second segment of b

(2)
n will

be the same and so on. We combine the measurements from
both the acquisitions and express them compactly:

b = A(ρ) + η (5)

where ρ = [ρ1,ρ2, . . .ρM ] is the time series of images, A
is a Fourier under-sampling operator and η represents zero
mean white Gaussian noise. The formation of the combined
k-space volume corresponding to the image series ρ, for the
case m = k, is illustrated in Fig. 1 (b). For an illustration of
the measurement model refer Fig. 1 (c).

From Fig. 1 (b), we also note that all but the first and last
frame of the time-segmented volume consists of two blocks
of kspace data, while only one block is sampled in the first
and the last frame. Hence by recovering the Fourier samples
of the volume, in particular the first frame, we can obtain the
distortion-free image. Thus by adopting the time segmentation
approach, we have been able to transform the inhomogeneity
correction problem into a problem of recovering an image
series from highly under-sampled and structured Fourier mea-
surements. We propose a two step algorithm to recover the
Fourier samples corresponding to the entire volume, and thus
solve the field inhomogeneity compensation problem.

C. Annihilation and structured low-rank properties

We model the signal ρ at every pixel location r as a single
decaying exponential:

ρ[r, n] = α(r)β(r)n (6)

where α(r) ∈ C are the amplitudes and β(r) is a spatially
varying exponential function (exponential parameter) depen-
dent on the underlying physiology. In this work, β(r) =
e−γ(r)T is an exponential parameter dependent on the relax-
ation and off-resonance effects at a spatial location r. T is the
time between two image segments.
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Since the signal in (6) is a single decaying exponential, at
each pixel location it can be annihilated by a two tap FIR filter
[36]:

1∑
l=0

ρ[r, l] d[r, n− l] = 0, ∀r. (7)

where (7) represents a 1-D convolution between the signal
ρ[r, n] and the two tap filter d[r, n]. Here d[r, n] is a FIR filter
whose filter coefficients at every spatial location r are given by
[1,−β(r)] [36] and n is the signal index along the temporal
dimension. In practice, the relaxation and off-resonance effects
due to field inhomogeneity depend on the structure of the
underlying physiology and hence can be assumed to vary
smoothly across the spatial locations. This means that the filter
coefficients, which depend on the exponential parameters, can
be assumed to be smooth functions of the spatial variable r.
Taking the 2D Fourier transform along the spatial dimension
r in (7), we obtain the following 3-D annihilation relation:

ρ̂[k, n]⊗ d̂[k, n] = 0. (8)

where ρ[r, n]
F2D↔ ρ̂[k, n] and d[r, n]

F2D↔ d̂[k, n] are the
2-D Fourier coefficients of ρ[r, n] and d[r, n] respectively,
while ⊗ denotes 3-D convolution. Since the inhomogeneity
map is smooth, we assume d̂[k, n] to be a bandlimited 3-
D FIR filter; its spatial bandwidth controls the smoothness
of the parameters, while its bandwidth along the temporal
dimension is dependent on the number of exponentials in the
signal model, which is two in this case. The single exponential
model considered in this paper is a special case of the model
considered in [21]. When the filter dimensions are over-
estimated, there will be multiple filters d1, .., dP that annihilate
the signal and hence satisfy (8) [21], [23]. Expressing these
annihilation relations in compact matrix notation, we obtain

T (ρ̂)
[
d̂1, . . . , d̂P

]
= 0 (9)

where T is a linear operator that maps a 3-D dataset ρ̂ into a
Toeplitz matrix T (ρ̂) ∈ Cm×s. Here m refers to the number
of valid convolutions between ρ̂[k, n] and d̂[k, n], which is
represented by the green cuboid in Fig. 2, and s = |Λ| is
the product of the dimensions of the filter. Similarly, each d̂i;
i = 1, 2, . . . P , represents the vectorized 3-D filter di[k, n].
From (9), we can see that the Toeplitz matrix T (ρ̂) has a
large null space and hence has a low rank structure.

III. PROPOSED TWO-STEP ALGORITHM

We propose to exploit the low-rank property of the Toeplitz
matrix to recover the signal from highly undersampled mea-
surements. However, the direct implementation of a structured
low-rank matrix recovery algorithm, similar to [23] requires
the evaluation and storage of T (ρ̂). This will be a compu-
tationally expensive operation, especially in the EPI setting
where the kspace volume to be recovered is quite large.
Instead, we propose a fast two step approach to solve the
problem. In the first step, we construct a sub-matrix of the
Toeplitz matrix T (ρ̂) by selecting only the fully sampled rows,
and estimating the null-space from it. Note that this submatrix
is an order of magnitude smaller than the original Toeplitz

matrix, and hence the first step has low memory demand
and is computationally efficient. The estimated null space
vectors are then used to recover the missing entries of the
full matrix in the second step. Specifically, we seek a matrix
that is orthogonal to the estimated null-space vectors, while
satisfying data-consistency. To accelerate the second step, we
adopt a synthesis exponential signal model, which aids in the
realization of a fast and memory efficient algorithm.

A. Step 1: Estimation of the null space

We propose to estimate the null-space of the low-rank
multi-fold Toeplitz matrix T (ρ̂) from the observed samples.
Specifically, we construct a sub-matrix of T (ρ̂), denoted by
T (ρ̂c), by selecting rows that are fully sampled. Since the
rows of T (ρ̂c) are the subset of the set of rows of the larger
Toeplitz matrix T (ρ̂), both the matrices have a common right
null space. This is facilitated by using a small filter, which
is sufficient to represent the smooth field inhomogeneity map.
The estimate of the null-space will be less sensitive to noise,
when the number of rows in T (ρ̂c) is high. When data from
multiple channels are available, Toeplitz matrices correspond-
ing to each coil are formed and they are concatenated vertically
to form the matrix T (ρ̂c). Furthermore, to improve noise
robustness, we consider additional shifts of the filter on the
data lying on the oblique planes, that will provide additional
rows and null space relations. See Fig. (2) for the construction
of the Toeplitz matrices T (ρ̂) and T (ρ̂c).

We adopt an eigen decomposition approach to estimate the
null space of T (ρ̂c). Let the gram matrix be given by R =
[T (ρ̂c)]

∗ [T (ρ̂c)]. The eigen decomposition of R is given by
VΛV∗, where V ∈ CL×L is an orthogonal matrix containing
the eigen vectors v(i) and Λ is a diagonal matrix containing
the eigen values λ(i). We use the matrix V to form the null
space in the following way:

D = VQ (10)

where Q is a diagonal matrix with the ith diagonal entry given
by λ

− q
2

i ; q is a small number between 0 and 0.5. Since the
eigen values are small for null space vectors, more weight is
given to them. Hence this strategy eliminates the need for a
threshold on the eigen values to determine the null space.

B. Step 2: Null space aware recovery of distortion-free image

One the null-space matrix D is estimated from T (ρ̂c), we
use it to recover the entire kspace volume from the under-
sampled Fourier measurements. We formulate the recovery of
k-space volume ρ̂ from the measurements b as the following
constrained least squares problem in the Fourier domain:

min
ρ̂
‖Sρ̂− b‖22 such that T (ρ̂)D = 0 (11)

where T (ρ̂) is a multi-fold Toeplitz matrix formed from the
Fourier samples ρ̂, D is the null space matrix computed in
(10) and S is a sampling matrix.
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IV. ACCELERATING NULLSPACE AWARE RECOVERY USING
SIGNAL SUBSPACE ESTIMATION

We exploit the structure of the nullspace, or equivalently the
columns of D, to realize a fast algorithm to solve (11). Note
that by computing the 2-D inverse Fourier transform of the
columns of D, we obtain spatial filters di[r, n]

F2D↔ d̂i[k, n]
with two taps along time. From (7), we known that the 1-D
convolution between these filters and the x−t signal ρ[r, n] is
zero. Using the coefficients of the filter, we can form a matrix
Ds(r) at a spatial location r in the following way:

Ds(r) =

[
d1[r, 0] . . . dL[r, 0]
d1[r, 1] . . . dL[r, 1]

]
(12)

We observe from (6) that if ρ[r, n] is composed of a single
exponential, it can be annihilated by a unique two-tap filter as
shown in (7). This implies that the columns of the matrix
Ds(r) will be linearly dependent, whenever ρ[r, n] 6= 0.
However, at spatial location r with no signal (i.e, ρ[r, n] = 0),
the matrix Ds(r) will be full rank and there is no unique filter
di[r, n] satisfying (7). Since the 1-D filters di[r, n] differ only
in the background regions with zero signal, we propose to
choose a single filter d̂[k, n] that resides in the null-space of
T (ρ̂) and simplify (11) to

min
ρ̂
‖Sρ̂− b‖22 such that T (ρ̂)d̂ = 0 (13)

where d̂ represents the vectorized 3-D filter d̂[k, n]. This
approach is equivalent to assuming that all spatial locations
(irrespective of background or foreground) satisfy the single
exponential model (6).

Once d̂ is identified, we can estimate the exponential
parameters β(r) from d[r, n] by computing the (zero-padded)
inverse Fourier transform of the the filter coefficients d̂[k, n],
followed by normalization. Expressing mathematically, we
obtain µ(r) = F∗P∗Λd̂, which consists of two frames and
has the form

[
1, − βk

]
; 1 represents a matrix of ones. P∗Λ

represents zero padding operation outside the filter support Λ
and F∗ is the inverse discrete Fourier transform (iDFT) matrix.
Once β is estimated, we can re-express (13) efficiently as

min
ρ
‖A(ρ)− b‖22 such that ρ[r, n] = α(r)β(r)n, (14)

Here, A represents the Fourier under-sampling operator, α(r)
is the inhomogeneity corrected image and β(r) = e−γ(r)T is
the exponential parameter. The problem (14) is equivalent to

α∗ = arg min
α
‖A (α(r)β(r)n)− b‖22 + ε‖α‖22 (15)

when the regularization parameter ε = 0. Note that this
least squares problem can be efficiently solved without the
evaluation and storage of the Toeplitz matrix T (ρ̂). To solve
(15), we just need a few iterations of the CG algorithm. When
data from multiple channels are available, we solve (15) for
each coil independently. The final solution α is obtained from
a square root of sum-of-squares (sos) of each coil solution.

We observe that choosing an arbitrary vector d̂ from the
matrix D can result in noise amplification in the back-ground
regions. Hence, we introduce two strategies with slightly
different assumptions to estimate an appropriate null space

vector for which the noise amplification is minimal. The first
approach aims to find a null space vector, which corresponds to
the smoothest exponential parameter β. The second approach
aims to exploit the low rank property of the Toeplitz matrix
and combines information from all the null space vectors to
estimate the exponential parameter β.

A. Smoothness based estimation of the nullspace vector

We estimate a vector in the nullspace that yields exponential
parameters that are spatially smooth. We formulate the recov-
ery of this vector as the following regularized optimization
problem in the Fourier domain:

min
d̂
‖T (ρ̂c)d̂‖22 + µ0‖Cd̂‖2 (16)

where C is a diagonal matrix with entries
√

(k2
x + k2

y);
(kx, ky) are the kspace coordinates corresponding to the filter
coefficients and µ0 is a regularizing parameter. The regularizer
in (16) has an equivalent form in the image domain:

‖Cd̂‖2 = ‖∇d‖2 (17)

where d[r, n]
F2D↔ d̂[k, n] is the 3-D polynomial corresponding

to the Fourier coefficients d̂[k, n] and ∇ is the gradient
operator. To solve (16), we take its gradient with respect to d̂
and set it to zero. This gives us the following equation:[

[T (ρ̂c)]
∗[T (ρ̂c)] + µ0C

∗C︸ ︷︷ ︸
G

]
d̂ = 0 (18)

The solution to (18) is the eigen vector corresponding to the
minimum eigen value of the matrix G. From the estimated
vector d̂, we can estimate the corresponding 3D function as

µ(r) = F∗P∗Λd̂ (19)

where µ(r) =
[
µ(1)(r),µ(2)(r)

]
. To estimate the inhomo-

geneity map β, we normalize the polynomial µ such that its
frames are given by

[
1, µ̄(2)

]
; the map corresponding to it is

given by:
β(r) = (−µ̄(2)(r))

1
k (20)

where k ∈ Z and k∆T is the delay in the readout of the second
EPI dataset. The main benefit of this scheme is that the vector
d̂ can be estimated using a single eigen decomposition of the
G matrix and hence is computationally efficient.

The above approach provides a single null-space filter,
assuming the field map to be smooth. It is also robust to noise
and other sources of errors. A concern with this approach is its
potential degradation in cases with abrupt field map variations
at the air tissue interfaces. We will now discuss an alternate
approach that does not rely on smoothness assumptions.

B. Null space vector estimation without smoothness assump-
tions (Low rank approach)

When the measurements are corrupted by noise, the es-
timation of the null space vectors and hence β will not
be very accurate. In such cases, we propose to denoise the
measurements prior to the null space estimation step. We
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TABLE I
COMPUTATION TIME OF DIFFERENT METHODS.

Method time (s)
Uncorrected (ifft) 0.0023
Smoothness 0.22
Low rank 41.7

40.9 (denoising) + 0.8
Iterative 5645

formulate the denoising of the k-space data as the following
Schatten-p norm minimization:

ρ̂?c = arg min
ρ̂c

‖ρ̂c − b‖22 + γ0‖T (ρ̂c)‖p (21)

where γ0 is a regularization parameter, T (ρ̂c) is the sub-
matrix formed from the Toeplitz matrix T (ρ̂). ‖X‖p is the
Schatten-p norm, defined as ‖X‖p := 1

pTr[(XHX)
p
2 ] =

1
p

∑
i σ

p
i , where σi are the singular values of X.

We employ the iterative reweighted least-squares (IRLS)
based algorithm recently proposed in [21] to solve (21). The
IRLS based scheme alternates between the solution to the
quadratic subproblem

ρ̂c = arg min
ρ̂c

‖ρ̂c − b‖22 + γ0‖T (ρ̂c)
√

W‖2F , (22)

and the update of the weight matrix W:

W =

[T (ρ̂c)]
∗ [T (ρ̂c)]︸ ︷︷ ︸
R

+ε I


p
2−1

(23)

Here ε is added to stabilize the inverse. Note that (22) seeks
a signal ρ̂c such that the projection of T (ρ̂c) onto its null-
space

√
W is as small as possible. However, the matrix√

W has a similar structure as the null space matrix D,
which is computed in (10). Specifically, the columns of

√
W

correspond to the weighted eigen vectors of the gram matrix
R; the weights being inversely proportional to the eigen values
[21]. This means that more weight is given to the null space
vectors, thus eliminating the need for a threshold on the eigen
values to determine the null space.

Now, we propose to estimate the null space vector from the
matrix

√
W. Recall from Sec. IV that we expect a unique

annihilating filter in the regions where the signal is non-zero.
Once the nullspace matrix

√
W is obtained, we can extract the

spatial filters di[r, n] by computing the zero-padded IFFT of its
columns. At each spatial location r, we can form the matrix
Ds(r) ∈ C2×L as shown in (12) and compute its rank. We
expect the rank of Ds(r) = 1 in foreground regions, which
results in a unique null-space vector. Similarly, the rank of
Ds(r) = 2 in background regions, where the signal is zero.
In the first case, the maximum eigen vector of the matrix
Ds(r) can be chosen, and the exponential parameters can
be estimated from it as described in (20). When the rank of
Ds(r) = 2, there is no unique null space vector and hence we
arbitrarily set it to a small value.

V. EXPERIMENTS AND RESULTS

We validate the proposed approach using simulations per-
formed on a numerical brain phantom, and MRI experiments

Fig. 3. Comparison of the proposed smoothness and low rank approaches
with the iterative reconstruction scheme on the correction of inhomogeneity
artifacts on a numerical brain phantom: The simulated image with artifacts due
to field inhomogeneity is shown in a) and the proposed reconstructions in (c)
and (d) are compared with the reconstruction from the iterative method, which
is shown in (e). We observe some artifacts in the iterative reconstruction,
which are pointed by the red arrows. The estimated maps from the proposed
and iterative approaches are compared with the true maps in the second and
third row. The scales of both the field map and the R∗

2 maps are displayed
in Hz and s−1 respectively.

Fig. 4. Demonstrating the proposed methods on correcting the inhomogeneity
artifacts on spherical MR phantom: In A), the reconstruced slices from the
proposed approaches are displayed inside the blue box. A few reconstructed
slices corresponding to the single and multi-shot ifft reconstructions are
displayed in the first and fourth row respectively. The slices inside the green
box in A) are compared to a high spatial resolution image in B). The proposed
field maps in (vi) and (vii) are also compared to a reference map in (viii) and
the scale is in Hz. We observe that the reconstructions from the proposed
approaches are similar and are able to correct the inhomogeneity artifacts.

performed on phantom and human data. MRI experiments
were performed on a GE 3T scanner with 32-channel head
coil using a gradient-echo EPI (GRE-EPI) acquisition. Data
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Fig. 5. Demonstrating the proposed methods on correcting the inhomogeneity artifacts on two invivo datasets: Corresponding to the invivo datasets 1 and 2,
the reconstruced slices from the proposed approaches are displayed inside the blue box in A) and C). A few reconstructed slices corresponding to the single
and multi-shot ifft reconstructions of both the datasets are displayed in the first and fourth row respectively in A) and C). The slices in the green box in A)
and C) are displayed alongside high spatial resolution structural scans in B) and D) respectively. The field maps from proposed methods are compared to
reference maps in the second row in B) and D). We observe that the proposed approaches perform similarly in correcting the inhomogeneity artifacts in both
the invivo datasets. Specifically, the improvements in the reconstruction offered by the proposed approaches can be clearly appreciated using the red contour.

from the spherical phantom and two healthy volunteers were
acquired using standard shim settings. The scan parameters
used for the phantom and the human experiments were as
follows: FOV = 25.6 mm, matrix size = 64×64, slice thickness
= 3.6 mm, TR = 3100 ms with number of slices = 40 and
the minimum TE = 30 ms. For the above GRE-EPI, the time
taken to acquire one k-space line, ∆T , was 0.636 ms. For each
experiment, we acquired two sets of GRE-EPI data such that
the readout of the second data set was delayed by 4∆T . In
order to compare the proposed reconstructions to a reference
image, we collected a four-shot GRE-EPI data and a high
spatial resolution structural data.

For the MRI experiments and the numerical phantom sim-
ulations, while solving the least squares problem (15) we
formed the time-segmented k-space volume by assuming one
line of k-space per time segment (k = 1). This resulted in a
total of sixty eight time frames (M = 68). The regulariza-
tion parameters for the proposed low rank and smoothness
approaches were chosen empirically. For the phantom and
invivo experiments, we had to denoise the kspace data prior
to the estimation of inhomogeneity map. We noticed that for
the low rank approach, this was able to get rid of some
pixelation artifacts in the final inhomogeneity corrected image.
However, the denoising step did not have much effect on

the estimate of the map and the final reconstruction for the
proposed smoothness approach.

A. Comparison with an iterative based smoothness approach
[16]:

We compare the reconstructions from the proposed smooth-
ness and low rank methods to those obtained from an iterative
approach [16] on a numerical brain phantom. The joint re-
covery of the inhomogeneity corrected image ρ0, field map ω
and R∗2 map can be formulated as the following optimization
problem:

min
ρ0,ω,R∗

2

‖E(ρ0)−b‖2F + λ1‖Hω‖22 + λ2‖HR∗2‖22 + λ3‖ρ0‖22
(24)

where E captures the signal model, H is the finite difference
matrix, which is used to penalize the roughness of the fieldmap
and the R∗2 map respectively and λ1, λ2 and λ3 are the
regularization parameters. The objective function in (24) is
very similar to the one in [16]. In [16], rectangular basis
functions were used to model the object, which resulted
in a different data consistency term. They also ignored the
effects due to R∗2. To solve (24), we employ an alternating
minimization algorithm, which cycles between the updates
of the image ρ0, ω and R∗2. We employ a gradient descent
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algorithm to solve the field map and R∗2 map sub-problems.
Using these updates, we update ρ0 by solving the least squares
problem in (15).

B. Simulation:

We demonstrate the proposed method in correcting the
artifacts due to inhomogeneities on a numerical brain phantom
[37]. For this purpose, we introduced intensity losses and
geometric distortion artifacts on the brain phantom, shown in
Fig. 3 (b), using the fieldmap and R∗2 map shown in Fig. 3 (f)
and 3 (j) respectively. For generating the artifacts, we created
two sets of image series, such that the temporal profile at
every pixel was a single exponential signal. We generated the
Fourier data corresponding to the image series and combined
them to form the kspace volume using equations (4) and (5)
respectively. The readout of the Fourier data corresponding to
the second image series was delayed by 4∆T ; ∆T := 0.636
ms. The kspace volume generated was very similar to the one
shown in Fig.1 (b). One of the distorted (ifft) reconstructions
is shown in Fig. 3 (a).

In Fig. 3, we compare the reconstructions and the maps from
the proposed low rank and smoothness methods with the iter-
ative approach [16]. We used a filter of dimensions 11×11×2
for the proposed methods. For the iterative approach, we set
the number of overall iterations to 1500. To get reasonable
results, we set the number of gradient descent (gd) iterations
to 100 and 200 for the field map and R∗2 sub-problems
respectively. We observe that the geometric distortion artifacts
have been reduced to a great extent in the reconstructions
corresponding to both the proposed and iterative approaches.
From the second and third rows of Fig. 3, we also observe that
the the field maps from the proposed and the iterative methods
closely match the ground truth field map. However the R∗2
map from the iterative approach has a lot more errors than the
ones obtained using the proposed approaches. This results in
some artifacts as pointed by the red arrows in the image. We
compare the computation times of different methods in table
I. We observe that the run times of the proposed smoothness
and low rank approaches are 0.22 s and 41.7 s respectively,
while the iterative approach is extremely slow with a run time
of 5645 s. Note that the increased run time of the low rank
approach is due to the additional IRLS based optimization step
(21) for denoising. The computation times of different methods
were recorded on a high performance computing (hpc) server
with twenty four core Xeon processor.

C. Phantom experiment:

The effect of the magnetic field inhomogeneities leading
to image distortions can be clearly appreciated in the spher-
ical phantom data in Fig. 4. For instance, the lines in the
uncorrected image appear as curves. We compare a few re-
constructed slices of the proposed methods to the uncorrected
single-shot and four-shot data in A) in Fig. 4. These artifacts
are greatly reduced in the reconstructions from the proposed
methods and the image quality is quite close to that of the four
shot reconstructions. In B), we compare the reconstructions
and the field map of the proposed methods, corresponding

to the slice in the green box, to those corresponding to a
high spatial resolution structural scan. We observe that the
performance of the proposed methods are similar and the
reconstructions are closer to the reference than the single shot
ifft reconstruction. For the proposed approaches, a small filter
of dimension 5×5×2 was used to recover this slice.

D. Invivo experiments:

We also validate the proposed algorithms on two invivo
datasets. For both the datasets, we compare a few reconstructed
slices of the proposed approaches to the uncorrected single
and four shot ifft reconstructions in A) and C) in Fig. 5
respectively. We observe that the severity of the artifacts are
quite different for both datasets and the proposed algorithms
are able to correct them effectively. Note that there are some
differences between the proposed and the multi-shot recon-
structions for invivo dataset 2 and this is due to the shorter
echo time of the multi-shot data. In B) and D) of Fig. 5, the
field map and the reconstructions from the proposed methods,
corresponding to the slice in green box, are compared to those
corresponding to a high spatial resolution reference scan. We
observe that the proposed approaches perform similarly and
provide improved reconstructions with minimal artifacts, when
compared to the single-shot ifft reconstruction. In the case of
low rank approach, we used a filter of size 7×7×2 to recover
the slice corresponding to both the datasets, while the filter
size used by the smoothness approach was 5×5×2 for invivo
dataset 1 and 7×7×2 for invivo dataset 2.

VI. DISCUSSION AND CONCLUSION

We introduced a two step structured low-rank algorithm
for the calibration-free compensation of field inhomogeneity
artifacts in Echo Planar Images (EPI). We introduced ap-
proximations which enabled a fast and efficient algorithm.
The validations on spherical MR phantom and the invivo
data demonstrated the potential of the proposed approaches.
Specifically, the inhomogeneity artifacts and intensity losses
were significantly reduced in the reconstructions from the
proposed methods, compared to the uncorrected single-shot
ifft reconstruction. The proposed reconstructions were very
similar to a high resolution structural scan and a four shot
EPI IFFT reconstruction, which were used as references in
our experiments.

The validations on the MR phantom and invivo data also
show that the single null space filter, and hence the expo-
nential parameter, estimated from smoothness and low rank
approaches are very similar, thus resulting in similar recon-
structions. However, we observe that the smoothness based
method is more robust to noise, compared to the low rank
approach and does not require denoising of the measurements
prior to the estimation of the null space. Specifically for the
low rank approach, the denoising step was able to get rid
of some pixelation artifacts in the inhomogeneity corrected
image. The need for low-rank optimization (21) for denoising
makes it more computationally expensive than the smoothness
based approach. Specifically, the run times for the smoothness
and low rank approaches were 0.22 s and 41.7 s respectively.
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The increased run time of the low rank approach was due to
the denoising step which took 40.9 s.

Our numerical simulations on the brain phantom in Fig.
3 show that the proposed schemes can provide similar or
improved reconstructions compared to the iterative approach
[16]. The main benefit of the proposed schemes is the signif-
icantly reduced computation time, which makes it applicable
to practical dynamic imaging problems. The comparisons with
the iterative scheme were omitted for the MR phantom and
invivo experiments due to its long computation time.

The proposed approach relies on two EPI acquisitions,
where the read-out of the second acquisition is delayed by
a few milliseconds. Such acquisitions can be acquired in an
interleaved fashion. Thus, the proposed method can be applied
in dynamic applications such as functional MRI, where it has
the potential to compensate time varying field-map variations.
We plan to investigate such applications in the future.
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