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ABSTRACT

We introduce a self-expressiveness prior to exploit the redun-
dancies between voxel profiles in dynamic MRI. Specifically,
we express the temporal profile of each voxel in the dataset
as a sparse linear combination of temporal profiles of other
voxels. This scheme can be thought of as a direct approach to
exploit the inter-voxel redundancies as opposed to low-rank
and dictionary based schemes, which learn dictionaries from
the data to represent the signal. The proposed representation
may be interpreted as a union of subspaces model or as an
analysis transform. The use of this algorithm is observed to
considerably improve the recovery of myocardial perfusion
MRI data from under sampled measurements.

Index Terms— Self Expressiveness, Analysis Transform,
Union of Subspaces, Dynamic MRI reconstuction, Alternat-
ing minimization.

1. INTRODUCTION

The recovery of MRI data from under sampled measure-
ments is critical to achieving high spatio-temporal resolution
and spatial coverage in a variety of dynamic imaging prob-
lems. Low-rank and dictionary learning methods have been
introduced to exploit the redundancy between the temporal
profiles of the voxels of the dataset to make its recovery
from highly under sampled data well-posed. These schemes
learn the basis sets or dictionaries of temporal basis func-
tions, which are representative of the voxel profiles, from the
under sampled data. Since the estimated basis functions are
considerably more efficient in representing the signal, these
schemes provide significant performance improvement over
methods which use pre-defined dictionaries. Specifically, the
motion patterns and the physiological signal variations of
different organs which are drastically different are captured
by the representation.

The above approach of learning a dictionary and then us-
ing it to exploit the similarity between the voxel intensity
profiles may be seen as an indirect approach. In this pa-
per, we propose to directly exploit the redundancy between
the voxel profiles. Specifically, we propose to express each
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voxel profile as a sparse weighted linear combination of other
voxel profiles in the image. This translates to the constraint
S = QS, where each row of S is the temporal profile of a spe-
cific voxel and Q is the weight matrix. The sparsity penalty
on Q enables the selection of appropriate neighbors which
are ideally suited to represent the specific voxel profile. This
approach is inspired by sparse subspace clustering [1], where
the estimation of the sparse Q is shown to be equivalent to
fitting a union of subspaces model for S. Specifically, ev-
ery data point is represented as a linear combination of data-
points in the same subspace. While the union of subspaces
(UoS) model has similarities to dictionary models [2], it is
known to provide better representations . We term the prop-
erty S = QS as the Self Expressiveness Property (SEP). In
the context of dynamic MRI, we propose to jointly estimate
the data S and the weights Q from the under sampled mea-
surements.

We employ an alternating minimization algorithm to
jointly estimate S and the weights Q from the under sampled
measurements. The dimension of the square weight matrix
Q is equal to the number of voxels in the dataset. The large
dimensionality of the weight matrix results in an algorithm
whose computational complexity is prohibitively high. In
imaging problems, the temporal profile of a specific voxel is
more likely to be well represented in terms of its neighbors.
We exploit this prior knowledge, and constrain Q to have the
aforementioned structure to obtain a computationally feasible
algorithm. Specifically, the temporal profile of each voxel
is expressed as a sparse linear combination of the temporal
profiles of voxels in a p× p neighborhood around the specific
voxel. Similar approaches have been used in non-local reg-
ularization algorithms to keep the computational complexity
of searches tractable [3, 4].

The above approach implies that the matrix Ω = I − Q
annihilates S; i.e., ΩS ≈ 0. Thus, the proposed scheme
may also be viewed as an analysis transform learning scheme
[5]. The optimization scheme learns a sparse analysis dic-
tionary Ω and data S from the undersampled measurements;
the proposed scheme can be viewed as an extension to Blind
Compressed Sensing (BCS) scheme [6] which jointly learns
a synthesis dictionary and its sparse coefficients. Each row
of Ω can be interpreted as a p× p filter which annihilates the
neighborhood of the corresponding voxel. Note that the use of
the sparsity prior attenuates the filter coefficients correspond-



ing to voxels in the neighborhood which are not similar to the
specific voxel; the use of spatially varying filters which are
optimized for each neighborhood is expected to provide con-
siderably improved results over using fixed filters (e.g. gradi-
ent priors).

We determine the utility of the proposed formulation in
the context of recovering myocardial perfusion MRI data
from highly under sampled measurements. We compare the
proposed scheme against the BCS scheme [6]; the compar-
isons show that the proposed scheme is capable of providing
accurate reconstructions and minimizing spatio-temporal
blurring.

2. THEORY

2.1. Problem Formuation

Let S ∈ CM×t = [s1, s2, . . . , st] represent the Dynamic
Magnetic Resonance Images (DMRI), where each si or the
column of S represents an image frame and the rows repre-
sent voxel time profiles. We model the measurements as

bi = Ai si + ηi (1)

Here Ai ∈ CL×M; L ≤M is the linear Fourier Undersam-
pling Operator and ηi is the noise vector corresponding to the
ith measurement. Since equation (1) is under- determined, si
cannot be recovered from the measurements bi.Hence con-
straints are introduced to make the problem well posed.

Since we assume the voxel profiles to lie in a union of
low dimensional subspaces, we can use the self expressive-
ness property (SEP) of the data S as a prior. Mathematically
SEP can be defined as

S = Q S (2)

where Q ∈ CM×M is a weight matrix. In (2), every voxel
time profile could have many representations in terms of other
voxel time profiles and in general the representations are not
unique. In this paper, we look for the sparsest representation,
which ideally expresses every voxel time profile as a sparse
combination of the temporal profiles of the voxels from its
own subspace. We formulate the objective function as a linear
combination of data consistency term and constraints.

{S,Q}∗ = argmin
S,Q
‖A(S)− b‖2F + µ ‖Q‖`1

such that S = QS and diag(Q) = 0 (3)

where µ is a regularizing parameter and diag(Q) = 0 is nec-
essary to avoid the trivial solution of Q = I in (2).

2.2. Constraining the weight matrix

In DMRI, the dimension of each column of S is very high. For
example,when S is 16384×50 the size of Q is 16384×16384.

Such a Q matrix demands a lot of memory for storage and in-
creases the computational complexity of the problem. Thus
the problem becomes intractable for large data sets and equa-
tion (3) becomes very difficult to solve.

We alleviate the problem by imposing a structure on Q.
Specifically, we aim to represent the temporal profile of each
voxel as a sparse combination of the temporal profiles of
neighboring voxels in a window of size p × p around the
specific voxel. This choice is motivated by the prior knowl-
edge that the temporal profiles of nearby voxels are most
likely similar. This choice reduces the number of non-zero
entries in every row of Q to (p2 − 1). Hence, the maximum
number of unknowns to be solved in Q has reduced from M2

to M (p2 − 1), which is computationally tractable.

2.3. Optimization Algorithm

In order to solve equation (3), we introduce an auxiliary vari-
able P and relax the S = QS constraint by adding it in the
objective function. The modified cost function becomes

{S,P,Q}∗ = arg min
S,P,Q

‖A(S)− b‖2F + µ(‖P‖`1+

λ‖S−QS‖2F ) such that Q = P and diag(Q) = 0 (4)

We add the constraint Q = P as a penalty for simplicity and
rewrite (4) as the following optimization program.

{S,P,Q}∗ = arg min
S,P,Q

‖A(S)− b‖2F + µ(‖P‖`1+

λ‖S−QS‖2F +
β

2
‖Q−P‖2F ) such that diag(Q) = 0 (5)

where λ is a regularizing parameter and β is a penalty param-
eter. We employ an alternating minimization scheme to solve
equation (5), where the optimization is done over one vari-
able keeping the other two variables fixed. This results in the
following sub problems.

Pn+1 = argmin
P
‖P‖`1 +

β

2
‖(Qn −P)‖2F (6)

Qn+1 = argmin
Q

λ‖Sn −QSn‖2F+

β

2
‖(Q−Pn+1)‖2F such that diag(Q) = 0

(7)

Sn+1 = argmin
S
‖A(S)− b‖2F + µλ‖S−Qn+1S‖2F (8)

Equation (6) can be solved analytically using an L1

shrinkage on each element of Q as

Pn+1 =
Qn

|Qn|

(
|Qn| −

1

β

)
+

(9)

where ’+’ is the shrinkage operator defined as τ+ = max{0, τ}.



Fig. 1: Comparison of the proposed formulation with BCS
on the PINCAT phantom. 1a, 2a, 3a represent a frame from
ground truth, BCS reconstruction and the proposed scheme
respectively. A sampling mask with 12 lines is shown in
1b. This mask is rotated by the golden angle for each im-
age frame. The scaled (x10) error images for BCS and the
proposed formulation are depicted in 2b and 3b respectively.
The last column represents the image time profile along the
red line shown in 1a. The Signal to Error (SER) of the recon-
structions from BCS and the proposed algorithm are 25.1 dB
and 25.27 dB respectively.

Since Q has (M(p2 − 1)) entries and the location of non-
zero entries in each row are determined based on the window
around the specific voxel, an analytical expression is obtained
for the ith row of equation (7), which is then used to update
the rows of Q. Equation (8) is a quadratic problem; we solve
it using the Conjugate Gradient (CG) algorithm.

We employ a continuation strategy to solve the sub prob-
lems. We have two loops - an inner and and outer loop. We
start with a small value of β in the outer loop and alternate be-
tween the sub problems in the inner loop until the difference
in the cost of (3) over successive inner iterations is below a
threshold. After this, we increment β and alternate between
the sub problems again. The algorithm is terminated once the
cost of (3) over successive outer iterations is below a thresh-
old.

3. RESULTS

We compare the performance of the proposed algorithm
against the BCS scheme [6] in recovering the Physiologically
Improved Non uniform CArdiac Torso (PINCAT) phantom
[7], set to simulate myocardial perfusion imaging data (MPI),

Fig. 2: Comparison of the proposed formulation with BCS
on the Myocardial Perfusion Dataset. 1a, 2a and 3a represent
the frames of the original data set. The frames under b and
c are reconstructed using BCS and the proposed scheme re-
spectively. The last row represents the time profile along the
white line in 1a. The Signal to Error (SER) of the reconstruc-
tions from BCS and the proposed algorithm are 13.58 dB and
14.08 dB respectively.

Fig. 3: (1) and (2): Cost of (3) vs Iteration for the proposed
scheme on PINCAT and Myocardial Perfusion data respec-
tively. A continuation scheme is employed to solve (3), where
we start with a small β value and increment it every few iter-
ations. (a) and (b) are reconstructed frames corresponding to
small and high β values respectively.

as well as experimentally acquired MPI data. In order to
reduce the memory demand of Q, we consider a 7x7 window
around every voxel and express its temporal profile as a sparse



linear combination of the temporal profiles of other voxels
in this window. Hence, the maximum number of non-zero
elements in each row of Q is 48.

3.1. Simulation Results

We consider 50 frames of the PINCAT phantom of spatial
dimension 128x128 for comparing the proposed formulation
with the BCS algorithm. The phantom is undersampled using
a golden angle trajectory interpolated on a Cartesian grid.The
golden angle is equal to 111.25 degrees, which is the angle
between consecutively acquired radial lines of kspace. We
construct each frame of the phantom using 12 lines, which
corresponds to an acceleration factor of 9.7. One frame of the
sampling mask is shown in Fig.1.b.

We compare the proposed formulation with the BCS algo-
rithm on the PINCAT phantom in Fig.1. 1a, 2a and 3a of the
first column correspond to the ground truth frame, images re-
constructed from BCS and the proposed formulation respec-
tively. The reconstructed frame from the BCS algorithm suf-
fers from artifacts, especially in the region pointed by the
red arrow. These artifacts are considerably suppressed in the
frame reconstructed by the proposed scheme.In the presence
of artifacts, the temporal profiles of voxels in the region are
quite dissimilar and hence the use of sparsity prior annihilates
small coefficients of the Q matrix resulting in the suppres-
sion of artifacts.The error images for BCS and the proposed
formulation are shown in 2b and 3b of second column respec-
tively. The image time profiles along the red line in 1a are
shown in the last column.

3.2. Myocardial Perfusion Results

We compare the proposed scheme with the BCS algorithm
on a retrospectively undersampled myocardial perfusion
dataset of dimension 190x190x70 with motion at an ac-
celeration factor of 7.5. The data set was acquired at the
3T Siemens MRI scanner at the University of Utah. The
subject was at rest and a Gd bolus of 0.02 mmol/kg was
administered. The pulse sequence used was a saturation
recovery FLASH sequence with the following parameters
:Slices=3,TR/TE=2.5/1.5 ms,saturation recovery time=100
ms. A uniform radial sampling trajectory with 12 lines was
used for each frame and was randomly rotated for subsequent
frames.

The comparison of the proposed formulation with BCS
is shown in Fig.2. Three frames (1,2,3) are chosen for com-
parison and a, b and c represent the ground truth frame, re-
constructed frames from BCS and the proposed formulations
respectively. We observe that the region bordering the left and
the right ventricle as indicated by the blue arrow, and the pap-
illary muscles indicated by the green arrow, are more faith-
fully captured with the proposed algorithm. Since the voxels
in a small neighborhood have similar temporal profiles, the

proposed formulation expresses the temporal profile of a spe-
cific voxel in the border/edge as a sparse linear combination
of temporal profiles of voxels in close proximity.This results
in the faithful capture of the edges in the reconstruction. The
final cost of (3) vs iterations is shown in Fig.3.

4. CONCLUSION

We introduced a self expressiveness prior for the recovery of
dynamic MRI data from highly under sampled measurements.
The redundancy between voxel profiles is exploited by ex-
pressing the temporal profile of a specific voxel as a sparse
linear combination of temporal profiles of other voxels in a
window of size p × p around the specific voxel . This en-
abled us to use the MRI data as the dictionary. An alternating
minimization algorithm was employed to jointly estimate the
weight matrix and the MRI data. The proposed formulation
was compared with the BCS algorithm on the PINCAT phan-
tom and the MPI data. The results showed that the reconstruc-
tions from the proposed formulation had fewer artifacts and
also efficiently preserved the borders and structural details.
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