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ABSTRACT

We propose a model-based deep learning architecture for the
correction of phase errors in multishot diffusion-weighted
echo-planar MRI images. This work is a generalization of
MUSSELS, which is a structured low-rank algorithm. We
show that an iterative reweighted least-squares implementa-
tion of MUSSELS resembles the model-based deep learning
(MoDL) framework. We propose to replace the self-learned
linear filter bank in MUSSELS with a convolutional neural
network, whose parameters are learned from exemplary data.
The proposed algorithm reduces the computational complex-
ity of MUSSELS by several orders of magnitude, while pro-
viding comparable image quality.

Index Terms— K-space Deep learning, Echo Planar
Imaging, Convolutional Neural Network

1. INTRODUCTION

Diffusion-weighted imaging (DWI) is widely used in neu-
roscience applications to study the microstructural and con-
nectivity changes in the brain. The long readouts in single-
shot echo planar imaging scheme (ssEPI), which is the main
workhorse for DWI, often causes geometric distortions and
blurring artifacts in the presence of magnetic field inhomo-
geneity. Several researchers have hence introduced multi-
shot EPI (msEPI) methods, where the k-space acquisition is
segmented into multiple shots. However, a challenge with
msEPI-based DWI acquisition scheme is the phase inconsis-
tency between the shots. Specifically, subtle physiological
motion (e.g. cardiac pulsation) during the diffusion encod-
ing gradients will result in the phase inconsistencies between
the k-space data of the shots. If uncorrected, these phase er-
rors translate to ghosting artifacts. Approaches to correct for
these phase errors include navigator based methods to mea-
sure and correct for the phase errors, as well as methods such
as MUSE [1] that estimate the phase errors.

We have recently introduced a multi-shot sensitivity-
encoded diffusion data recovery algorithm using structured
low-rank matrix completion (MUSSELS) [2]. This scheme
enables the navigator-free joint recovery of the k-space data
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from all the shots. While this scheme can offer state of the art
results, the challenge is the high computational complexity.
Despite the existence of fast structured low-rank algorithms,
the reconstruction of the high-resolution data from different
directions and slices is challenging due to the large data size
and the need for matrix lifting.

To minimize the computational complexity, we introduce
a novel deep learning framework. The proposed scheme is
motivated by our recent work on model-based deep learning
(MoDL) [3] and related algorithms [4]. The main benefit of
MoDL is the significantly reduced run time during image re-
covery/testing. The use of the conjugate-gradient algorithm
within the network to enforce data consistency in MoDL pro-
vides improved performance for a specified number of iter-
ations. The sharing of network parameters across iterations
enables MoDL to keep the number of learned parameters de-
coupled from the number of iterations, thus providing good
convergence without increasing the number of trainable pa-
rameters; the low number of trainable parameters translate to
significantly reduced training data in data constrained medical
imaging applications.

We first bring MUSSELS to the MoDL setting by using
an iterative reweighted least-squares algorithm (IRLS); this
algorithm alternates between a data-consistency block and a
residual convolutional denoising block. The learning of the
denoising filter coefficients from the data using low-rank min-
imization in MUSSELS is associated with high computational
complexity. To realize a computationally efficient solution,
we propose to replace the linear convolutional denoiser with
a convolutional neural network (CNN); the CNN parameters
are learned in an end-to-end fashion from exemplary data.
While the implementation is similar to MoDL, the main dif-
ference is the extension to multichannel settings and the learn-
ing in the Fourier domain (k-space) motivated by the MUS-
SELS IRLS formulation. Specifically, the k-space formula-
tion allows us to exploit the convolutional annihilation prop-
erties resulting from the phase relations between shots.

The proposed framework has similarities to recent k-space
deep learning strategy [5], which also exploits convolutional
relations in the Fourier domain. However, this approach re-
lies on a direct approach that jointly learns the inverse of
the forward model and the phase relations; it requires a con-
siderably larger network with significantly more parameters,



which translates to higher training data demand. The use of
the forward model within our algorithm allows us to work
with the significantly smaller network, which translates to re-
duced training data demand. In addition, the use of the con-
jugate gradients based data consistency blocks facilitates the
direct recovery of parallel MRI data, which is vital in the mul-
tishot setting.

2. DEEP LEARNED MUSSELS

Let ρ and ρ̂ represent anN shot diffusion weighted image and
its Fourier transform respectively. Then the image acquisition
model in the presence of Gaussian noise n can be represented
as:

y = A(ρ̂) + n (1)

where A = S ◦ F ◦ C ◦ F−1. Here, F , S, and C denotes the
Fourier transform, sampling operation, and weighting with
coil sensitivities, respectively. Note that the sampling indices
of the different shots are complementary; the combination of
the data from the different shots will result in a fully sampled
image in the absence of phase errors. Unfortunately, the shots
are often corrupted by phase errors, resulting from physiolog-
ical motion during the diffusion encoding process. If uncor-
rected, the combination will exhibit severe ghosting artifacts
as seen from Fig. 2(a).

2.1. Brief Review of MUSSELS

MUSSELS capitalizes on the phase relations between the
shots, as well as multichannel measurements, to fill in the
missing data. The multiplicative phase relations translate to
convolutional annihilation relations in Fourier domain (k-
space), which are exploited by posing the joint recovery as a
structured low-rank recovery scheme. Let ρ(r) represents the
complex DW image where r represents the spatial location.
The images corresponding to two different shots denoted
by ρi(r) and ρj(r) differ by phase terms φi(r) and φj(r),
respectively:

ρi(r) = ρ(r)φi(r)

ρj(r) = ρ(r)φj(r).

The key observation is that the above images satisfy an image
domain annihilation relation [6]:

ρi(r)φj(r)− ρj(r)φi(r) = 0 ∀r,

which can be represented in frequency domain as:

ρ̂i[k] ∗ φ̂j [k]− ρ̂j [k] ∗ φ̂i[k] = 0 ∀k.

The above annihilation relation can also be expressed using
the block-Hankel matrix representation as

H(ρ̂i)φ̂j −H(ρ̂j)φ̂i = 0,

where the matrix product H(ρ̂i)φ̂j correspond to 2-D con-
volution between ρ̂i and φ̂j . These relations imply that the
structured matrix T(P̂) =

[
H(ρ̂1) · · · H(ρ̂N )

]
, where

P̂ = [ρ̂1, .., ρ̂N ] is the matrix of multishot images, is low-
rank. MUSSELS recovers the multi-shot images from their
undersampled k-space measurements by solving:

˜̂
P = argmin

P̂

∥∥∥A(P̂)− y
∥∥∥2
2
+ λ

∥∥∥∥T(P̂)∥∥∥∥
∗
, (2)

where ‖ · ‖∗ denotes the nuclear norm. The above problem
can be solved using iterative shrinkage algorithm [2].

2.2. IRLS reformulation of MUSSELS

To bring the MUSSELS framework to the MoDL setting, we
first introduce an iterative reweighted least squares (IRLS) re-
formulation. The IRLS algorithm alternates between the en-
forcement of data consistency and a denoiser, which projects
the k-space data to a constraint set. We note that the unrolled
structure resembles MoDL, with the exception than the filters
are estimated using low-rank matrix completion.

Using an auxiliary variable Z, we rewrite (2) as

argmin
P̂,Z

∥∥∥A(P̂)− y
∥∥∥2
2
+ β‖P̂− Z‖2F + λ‖T(Z)‖∗, (3)

We observe that (3) is equivalent to (2) as β → ∞. An al-
ternating minimization algorithm to solve the above problem
yields the following steps:

P̂n+1 = argmin
P̂

∥∥∥A(P̂)− y
∥∥∥2
2
+ β‖P̂− Zn‖2F (4)

Zn+1 = argmin
Z

‖P̂n+1 − Z‖2F +
λ

β
‖T(Z)‖∗ (5)

We now borrow from [7], where we majorize the nuclear

norm term as
∥∥∥T(P̂)

∥∥∥
∗
≤
∥∥∥T(P̂)Q

∥∥∥2
F

where the weight ma-
trix is specified by

Q =
[
TH(P̂)T(P̂) + εI

]−1/4
(6)

Here, I is the identity matrix. Using the commutativity of
convolution, T (Z)Q = G (Q)Z, where G (Q) is a struc-
tured block Hankel matrix formed from the columns of Q .
The majorization of (5) yields

Zn+1 = argmin
Z

‖P̂n − Z‖2F +
λ

β

∥∥G (Q)Z
∥∥2
F

(7)

Differentiating the above expression and setting it equal

to zero, we get Z =
(
I+ λ

βG (Q)
H
G (Q)

)−1

P̂n+1. Using
matrix inversion lemma and assuming λ << β, we approxi-
mate this step as

Zn+1 ≈
[
I− λ

β
G (Q)

H
G (Q)

]
P̂n+1 (8)



We note that (8) can be thought of as a residual block, which
involves the convolution of the multishot signals P̂n with the
columns of Q, followed by flipped convolutions (deconvolu-
tions in deep learning context), and subtraction from P̂n as
shown in Fig. 1a. One can think of Q as a surrogate the null-
space of T(P̂). Thus, the update (8) can be thought of as
removing the components of P̂n in the null-space, which can
be viewed as a denoising step.

2.3. MoDL- MUSSELS

The MUSSELS scheme described above provides state of the
art results [2]. However, the computational complexity of the
structured low-rank algorithm is high, especially in the con-
text of diffusion-weighted imaging where several directions
need to be estimated for each slice. To minimize the com-
putational complexity, we introduce a deep learning scheme
where the denoising block Dw specified by (8) is replaced
by a residual learning based CNN block; see Fig. 1.(b). The
filter parameters of this non-linear block are learned from ex-
emplary data. Our hypothesis is that the non-linear structure
will facilitate the projection of the data orthogonal to the null
space for an unseen dataset. The network alternates between
the two steps

P̂n+1 = argmin
P̂

∥∥∥A(P̂)− y
∥∥∥2
2
+ β‖P̂− Zn‖2F (9)

Zn+1 = (I −Nw)
(
P̂n+1

)
= Dw

(
P̂n+1

)
(10)

The data consistency step, specified by (9) is imposed as opti-
mization block within the network as shown in Fig. 1c, imple-
mented using conjugate gradient optimization scheme. Note
from Fig. 1 that the structure of both algorithms is the same.
The main difference from MUSSELS is that the self-learned
Q filters are replaced by pre-learned residual deep convolu-
tional block, denoted by Dw. This framework is essentially
a multi-channel extension of our model based deep learning
scheme (MoDL); the main difference is that learning is per-
formed in the Fourier domain instead of the image domain.

We use a N layer deep CNN with each layer having a
convolution operation (conv) followed by batch normaliza-
tion (BN) and a non-linear mapping. We use an exponential
linear unit (ELU) non-linearity, specified by defined as

f(x) =

{
x if x > 0

α(ex − 1) if x ≤ 0 with α > 0

Note that the ReLU block attenuates the negative part of the
input; the use of this non-linearity resulted in dc off-sets in
k-space, which translates to a bright spot in the origin in the
image. We empirically observe that the ELU block was less
vulnerable to those errors. The input to the network is P̂0,
which is the initial estimate of the reconstructed images ob-
tained by solving the SENSE reconstruction.

Conv DeConv
P̂ ẐG(Q) G(Q)H

(a) MUSSELS Denoiser Dw
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BN
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BN
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Fig. 1. (a). The representation of Eq. (8) as a convolution-
deconvolution network. (b) The Learnable denoiser. (c) The
iterative algorithm where denoiser can be (a) for MUSSELS
or (b) for MoDL-MUSSELS.

3. EXPERIMENTS AND RESULTS

In-vivo diffusion data from a healthy volunteer (3T MRI scan-
ner, 32-channel head coil) was used in the study. A dual
spin-echo diffusion imaging sequence was used with a 4-shot
EPI readout. A b-value of 1000 s/mm2 was used and mea-
surements using 60 diffusion gradient were performed with
NEX=2 to improve the SNR. The other imaging parameters
were FOV= 210×210 mm, matrix size = 256×148 with par-
tial Fourier oversampling of 20 lines, slice thickness= 4 mm
and TE = 84 ms.

Data from 3 slices of this acquisition ( 3 × 60 × 2 =
360 datasets) distributed uniformly throughout the brain were
used for training purposes of our experiments and the fourth
slice was used as the testing data. Note that the phase errors
associated with the various slices are very distinct due to the
cardiac, pulsatile and respiratory motion affecting the differ-
ent slices of the brain differently. Hence, the phase errors of
the testing slice can be expected to be very different from the
training slices, thus providing a valid test case for our experi-
ments.

The model was trained with 5-layer CNN having 64 con-
volution filters of size 3× 3 in each layer. The real and imag-
inary components of complex data were considered as chan-
nels in the denoising step whereas the data-consistency block
worked explicitly with complex data. The training was per-
formed for approximately two hours.



(a) Uncorrected (b) MUSE (c) MUSSELS (d) Proposed

Fig. 2. Reconstructions using various methods corresponding
to a given diffusion direction from the testing slice.

Fig. 2 shows a sample DWI reconstructed using various
methods from the testing slice. The uncorrected reconstruc-
tion of the slice shows severe phase artifacts which is cor-
rected to some extent by the MUSE method. The MUSSELS
method provide a better reconstruction compared to MUSE.
The MUSSELS reconstruction corresponding to the training
slices were fed to MoDL-MUSSELS for deep learning. The
resulting learned reconstruction for the testing slice is also
shown in Fig 2. It is noted that the MoDL-MUSSELS recon-
struction for the test slice is comparable to that of the MUS-
SELS reconstruction.

Table 1 shows the time taken by the proposed MoDL-
MUSSELS and MUSSELS algorithm. Note that the compu-
tational complexity of MoDL-MUSSELS is around 450 fold
lower than MUSSELS. The greatly reduced runtime is ex-
pected to facilitate the deployment of the proposed algorithm
on clinical scanners.

To further validate the reconstruction accuracy of all the
DWIs corresponding to the test slice, we performed a tensor
fitting using all the DWIs and compared the resulting frac-
tional anisotropy (FA) maps and the fiber orientation maps.
For this purpose, the DWIs reconstructed using various meth-
ods from the test slice were fed to a tensor fitting routine (FDT
Toolbox, FSL ). FA maps were computed from the fitted ten-
sors and the direction of the primary eigenvectors of the ten-
sors was used to estimate the fiber orientation. The FA maps
generated using the various reconstruction methods are shown
in Fig. 3, which has been color-coded based on the fiber di-
rection. It is noted that these fiber directions reconstructed by
the MUSSELS method and the MoDL-MUSSELS match the
true anatomy known for this brain region from a DTI white
matter atlas.

4. CONCLUSIONS

We introduced a model based deep learning framework for the
compensation of phase errors in multishot diffusion-weighted
MRI data. The proposed scheme alternates between CNN de-
noisers and conjugate gradient optimization algorithm to en-
force data consistency. The CNN parameters are learned from
exemplary data. The preliminary experiments show that the
proposed scheme can yield the state-of-the-art results, while

(a) Uncorrected (b) MUSE (c) MUSSELS (d) Proposed

Fig. 3. The color-coded FA maps corresponding to various
reconstructions from the testing slice. The fiber orientation
along the left-right, anterior-posterior and inferior-superior
directions are color-coded using red, green and blue colors,
respectively. Proposed MoDL-MUSSELS show comparable
recovery of fiber orientations to MUSSELS.

Table 1. Testing time in seconds to reconstruct one average
of a single slice with 60 directions and 4 shots. MUSSELS
was runs on CPUs with parallel processing.

Algorithm: MUSSELS MoDL-MUSSELS

Time (sec): 2700 6

offering several orders of magnitude reduction in run-time.
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