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Abstract

Purpose: To introduce a novel method for the recovery of multi-shot diffusion weighted (MS-DW) im-

ages from echo-planar imaging (EPI) acquisitions.

Methods: Current EPI-based MS-DW reconstruction methods rely on the explicit estimation of the

motion-induced phase maps to recover artifact-free images. In the new formulation, the k-space data of the

artifact-free DWI is recovered using a structured low-rank matrix completion scheme, which does not re-

quire explicit estimation of the phase maps. The structured matrix is obtained as the lifting of the multi-shot

data. The smooth phase-modulations between shots manifest as null-space vectors of this matrix, which

implies that the structured matrix is low-rank. The missing entries of the structured matrix are filled in

using a nuclear-norm minimization algorithm subject to the data-consistency. The formulation enables the

natural introduction of smoothness regularization, thus enabling implicit motion-compensated recovery of

the MS-DW data.

Results: Our experiments on in-vivo data show effective removal of artifacts arising from inter-shot mo-

tion using the proposed method. The method is shown to achieve better reconstruction than the conventional

phase-based methods.

Conclusion: We demonstrate the utility of the proposed method to effectively recover artifact-free im-

ages from Cartesian fully/under-sampled and partial Fourier acquired data without the use of explicit phase

estimates.

Keywords: structured low-rank, annihilating filter, multi-shot diffusion, calibration-less, motion com-

pensation, regularized recovery .
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Introduction
Magnetic resonance diffusion-weighted imaging (DWI) is a unique non-invasive tool used to study the

micro-architecture of tissues by modeling the diffusion of water molecules in the tissue (1, 2). It is widely

used in the clinical diagnosis of acute stroke, tumors and brain abscesses (3–7) and has also become the

primary neuroscience research tool for studying white matter connections (8). Single-shot EPI (ss-EPI) ac-

quisition coupled with parallel imaging is currently the preferred method for DWI acquisition, primarily due

to its immunity to bulk motion and its short acquisition time (9–11). However, the long readouts of the EPI

sequences lead to signal loss and blurring while intrinsically low bandwidth along the phase-encoding di-

rection results in distortions in that direction(12). This is a fundamental limitation, which makes ss-EPI less

preferable for many applications. For example, high resolution diffusion imaging requires long EPI readout

durations and results in considerable geometric distortion and blurring in the resulting images. Another ex-

ample where the long echo-train length of EPI is undesirable is diffusion imaging at ultra-high field strength

(UHFS) where the T2 relaxation times are shortened (13). In such situations, the echo-train length, even for

a moderate imaging resolution, is long enough to cause loss of SNR. This limits the ability of ss-EPI-based

DWI to leverage the advantages of UHFS MR imaging (14–16). Acquisitions with shorter readouts would

therefore significantly enhance DWI especially when applied at UHFS.

Multi-shot diffusion weighted imaging (MS-DWI) holds great potential for enabling high spatial reso-

lution diffusion imaging(7). The technique can also achieve shorter echo times (TE) to enhance studies at

higher field strengths as well as to examine structures that are proximal to inhomogeneous fields or imag-

ing near metal implants. However, MS-DWI has certain limitations. The main problem is the sensitivity

of MS-DWI reconstructions to motion resulting from the use of large diffusion gradients. Subject motion

and other kinds of physiologic motion arising from cardiac pulsations, respiratory motion etc. during the

diffusion encoding gradients result in the image being corrupted by spatially varying motion-induced phase

(17–19). While this phase term does not pose a challenge in single shot imaging, the difference in the phase

distortions between shots of a multi-shot acquisition are manifested as ghosting artifacts in the reconstructed

image. Moreover, the imaging time of MS-DWI increases by a scale factor proportional to the number of

shots.

Special reconstruction schemes have to be employed to eliminate the shot-to-shot ghosting artifacts re-

sulting from bulk and physiological motion for the MS-DWI. Such schemes generally involve a multi-step

process, where the shot-to-shot phase variations are first estimated and then applied during image recon-
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struction. Methods to estimate the phase fall into two categories: (i) methods that rely on navigator scans

(16, 20–22) and (ii) methods that estimates phase from the data itself (19, 23–29). Since phase navigation

methods require additional scan time and do not accurately capture the bulk motion during the diffusion

scans, estimating phase from the data itself is the more attractive option. The data-based techniques work

extremely well for non-Cartesian self-navigated trajectories (e.g. SNAILS, PROPELLER) where a low-

resolution phase map can be obtained from the fully sampled k-space data of each shot (23–25). The same

strategy has been employed for Cartesian MS-DW acquisition, even in the absence of fully sampled center

k-space data(26–30). The estimate of the phase map in this case is obtained by employing highly regularized

reconstructions of the individual shot data.

The aim of this work is to introduce a novel reconstruction for MS-DWI data that does not rely on the

explicit estimation of motion-induced phase estimates to correct the artifacts resulting from inter-shot mo-

tion. This is in contrast to existing methods that depend explicitly on an estimate of motion-induced phase

maps to remove these artifacts. Even though phase estimation in itself is not an expensive step, we show

here that the reconstruction offered by the proposed phase-independent method is much more robust than

those obtained using the phase-based methods. This in-turn lead to better reconstructions of under-sampled

and noisy data using the proposed method. This work exploits the recent advances in multichannel MR

image recovery, which utilizes the annihilation relations between the sensitivity weighted images or their

Fourier samples (31–38). We adopt the above scheme for the recovery of MS-DWI data by constructing a

structured matrix by the lifting of the k-space samples of shots, which is low-rank due to the annihilation

relations. This property enables us to fill in the missing entries using a structured low-rank matrix comple-

tion approach. We also exploit the recent advances in reformulating smoothness regularization as structured

low-rank problem, where a similar lifting strategy is adopted (35–37, 39, 40). We introduce a novel lifting

scheme that combines the above structures, which enables the recovery of the motion compensated images

from noisy and under-sampled MS-DW data.

Theory
k-Space data matrix structure of a MS-DW acquisition

In an Ns-shot EPI-based sensitivity-encoded diffusion acquisition for sampling an N1 ×N2 imaging ma-

trix, the readout is shortened by collecting only N2/Ns phase encoding lines during every acquisition. The

acquisition is repeated Ns times, each time sequentially collecting the next set of N2/Ns phase-encoding

lines (see figure 1(a) for a cartoon of a 4-shot acquisition). In figure 1(b), we represent the 4-shot acquisition
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using four k-space data matrices concatenated along the shot dimension. The acquired k-space samples

are marked using solid circles and the unacquired k-space samples are marked using hollow circles. Note

that if phase differences due to inter-shot motion are absent, then we can fill a single k-space data matrix

with the sampled points occupying the appropriate positions in the data matrix. In fact, this method is often

used in the recovery of the non-diffusion weighted images collected as part of the MS-DWI acquisition.

During a diffusion-weighted acquisition, the diffusion sensitizing gradients add extra phase to the moving

spins and the acquired k-space data for each shot will have a different phase due to the shot-to-shot in-

herent sub-pixel motion of the imaging sample. Hence, the acquired k-space data from the separate shots

cannot be combined directly; instead they are stacked into separate matrices. Our aim is to recover the una-

liased k-space data samples in each of the four k-space data matrices based on the samples that we collected.

Annihilating filter formulation for MS-DW data

Liu et al showed that by using an encoding function that combines the coil sensitivity with the phase in-

formation of the individual shots, the unaliased image could be recovered (41) using an iterative sensitivity

encoded reconstruction algorithm (42). This idea combined with the recent null-space based MR image

reconstruction methods (43–46) suggests the possibility of using composite sensitivities as a null-space

constraint for the recovery of the MS-DWI data. Since null-space methods can be tied to the notion of anni-

hilating filters in the frequency domain (40), it is likely that shift-invariant k-space filters corresponding to

the composite sensitivities or the motion-induced phase maps exist. Utilizing such filters, the above recon-

struction problem can be posed as a structured low-rank matrix completion problem(47).

Structured low-rank property of MS-DW data

In this section, we revisit the relationship between the diffusion weighted data from the different shots by

rewriting them in the frequency domain. Assuming that the motion-induced phase maps are smooth func-

tions, these can be represented in k-space as shift-invariant filters of finite support (33). The annihilation

relations that we obtain based on the k-space filters lead to a low-rank recovery for the MS-DWI data that

do not require motion-induced phase estimates as derived below.

Let the complex DWI of a given diffusion direction be denoted as ρ(x), where x represents spatial co-

ordinates. Then, due to inter-shot motion, the measured DWI from the lth shot (ml(x)) will have a phase
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term (41) that will be different from the measured DWI from the ith shot (mi(x)), leading us to write

ml(x) = ρ(x) φl(x);∀x. [1]

and

mi(x) = ρ(x) φi(x);∀x. [2]

Here, we assume that the phase φ(x) is also a complex quantity such that | φ(x)| = 1;∀x. In the case

of multi-channel images, the notation ml(x) corresponds to the channel-combined DWI for the lth shot.

Multiplying Eq. [1] by φi(x) and Eq. [2] by φl(x), we can write

ml(x)φi(x)−mi(x) φl(x) = 0;∀x, [3]

which leads to annihilation relations in the image domain, similar to those introduced in (31). Taking the

Fourier transform on both sides of [3], we obtain

m̂l[k] ∗ φ̂i[k]− m̂i[k] ∗ φ̂l[k] = 0;∀k, [4]

which leads to annihilation relation in the frequency domain as discussed in (33, 35–38). Here, m̂l[k] and

φ̂l[k] denote the Fourier coefficients of ml(x) and φl(x), respectively for l = 1, ..Ns. Since φ̂l(k); l =

1, ..Ns are support limited in k-space and assuming the support of φ̂l(k) to be r × r, the convolution with

this filter can be implemented as multiplication using block-Hankel matrices:

H(m̂l) · φ̂i −H(m̂i) · φ̂l = 0. [5]

Here, H(m̂l)) is a block-Hankel matrix of size (N1− r+ 1)(N2− r+ 1)× r2 generated from the N1×N2

Fourier samples of m̂l[k]. The rows of H(m̂l) are vectorized versions of the r × r rectangular k-space

neighborhoods of m̂l[k]. φ̂l is a vector of size r2 × 1, which is the vectorized version of the r × r filter φl.

Thus, H(m̂l) · φ̂i provides a vector that corresponds to the convolution m̂l[k] ∗ φ̂i[k] within the rectangular

region (N1−r+1)×(N2−r+1)×r2. Note that this region corresponds to the valid convolutions between

the r×r filter φ̂i and the N1×N2 samples of m̂l[k]. Since, the relation in Eq [5] holds true for all the shots,

we can combine the annihilation relations in the matrix form as:
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[
H(m̂1) H(m̂2) ... H(m̂Ns)

]
︸ ︷︷ ︸

H1(m̂)



φ̂2

−φ̂1

0

0
...

0

0

φ̂3

−φ̂2

0
...

0

· · ·

0

0
...

0

φ̂Ns

−φ̂Ns−1

φ̂3

0

−φ̂1

0
...

0

· · ·


︸ ︷︷ ︸

Φ̂

=
[
0 0 ... 0 0...

]
.

[6]

The above relation can be compactly expressed as H1(m̂) Φ̂ = 0. Here, H1 is block-Hankel structured

matrix with data from shots stacked along the columns of the block-Hankel matrix. Figure 2 shows the

structure of H1(m̂). The same mapping techniques introduced in (32, 34) for the multi-channel MRI recov-

ery can be used for the construction of H1. Our adaptation of this scheme for the multi-shot image recovery

results in a final block-Hankel structure where the data of each shot are channel combined as opposed to

stacking the individual channel images in (32, 34).

As evident from Eq [6], for an Ns-shot acquisition, there will be
(
Ns

2

)
columns in Φ̂, which implies that

the block-Hankel matrix H1(m̂) has a null-space of dimension ≥ Ns, thus establishing the low-rankedness

of H1(m̂) (32–35, 45, 46). It is the above property that enables the recovery of the artifact-free DWI from

the measurements without having to explicitly compute the phase φ(x). Thus, even if we don’t have an

estimate of Φ̂, we can enforce a low-rank penalty on the matrix H1(m̂) to guide image recovery. However,

because of the high structured under-sampling present in the individual shot data, the above constraint alone

will not provide effective recovery of the data. In the next section, we strengthen the reconstruction problem

by using additional information available from the data itself.

MUSSELS: MUlti-Shot Sensitivity Encoded diffusion data recovery using Structured Low rank

matrix completion

In a typical MS-DWI acquisition, the diffusion weighted data are collected as a multi-channel sensitivity-

encoded acquisition. The sensitivity-encoding provides additional constraints to recover the artifact-free

DWIs from a multi-shot acquisition. Two sensitivity-encoded formulations are possible for the recovery of

the MS-DWI data: (i) using a regular SENSE formulation and (ii) using annihilating filter relations derived

from sensitivity encoding. We use the SENSE-based formulation in this work because of the ease of such
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implementations. For the sake of completion, the second formulation is provided in the appendix. We

assume the coil sensitivities to be estimated from the non diffusion-weighted image are collected as part of

the acquisition, which is typically the case. The knowledge of the coil sensitivity information allows us to

formulate the recovery of the multi-shot k-space data as follows:

̂̃m = argmin
m̂

||A (m̂)− ŷ||2`2︸ ︷︷ ︸
data consistency

+λ ||H1(m̂)||∗︸ ︷︷ ︸
regularization

. [7]

Here, ŷ is the measured multi-channel multi-shot k-space data of dimension N1 × N2/Ns × Nc × Ns.

The first term imposes data consistency to the measured k-space data using a regular SENSE formulation.

The operator A represents the concatenation of the following operations: M◦ F ◦ S ◦ F−1 where F and

F−1 represent the Fourier transform and the inverse Fourier transform operations respectively, S represents

multiplication by coil sensitivities, and M represents multiplication by the k-space sampling mask corre-

sponding to each shot. The second term in [7] is the nuclear norm of the block-Hankel matrix of the shots,

which is the convex relaxation for the rank penalty. λ is a regularization parameter. We will refer to [7] as the

MUSSELS recovery scheme, which can recover the multi-shot k-space data corresponding to the motion-

compensated DWI. The magnitude DWI can then be recovered by taking the inverse Fourier transform and

doing a sum-of-squares (SOS) of the multi-shot k-space data.

Ns∑
l=1

|ml(x)|2= |ρ(x)|2
Ns∑
l=1

|φl(x)|2

|ρ(x)|=

√√√√ 1

Ns

Ns∑
l=1

|ml(x)|2
[8]

Smoothness regularized reconstruction

The MUSSELS formulation works well when the data is fully sampled and not noisy. However, the re-

covery may be ill-conditioned when used with under-sampling or when the measurements are noisy, which

is particularly true for the case for DWIs. To improve the conditioning of the reconstruction, additional

smoothness penalties such as total-variation (TV) can be imposed in the reconstruction. We instead rely on

an annihilation formulation for smoothness regularization, introduced in (35, 36, 39, 40). These methods

assume that the partial derivatives of the image vanishes on the zero-crossings of a filter µ band limited to
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p× p; p < r, which translates to the space domain relation

∇m(x) · µ(x) = 0 [9]

in the distributional sense. Here ∇m(x) =
[
∂1m(x) ∂2m(x)

]
is the gradient operator and ∂1 and ∂2 are

the partial derivative operators in x- and y- dimensions. The space domain operation [9] translates to the

Fourier domain annihilation relations

∂̂1m[k] ∗ µ̂[k] = 0 [10]

∂̂2m[k] ∗ µ̂[k] = 0; [11]

Using the derivative property of Fourier transforms, we have ∂̂1m[k] = j2πkx m̂[k] and ∂̂2m[k] =

j2πky m̂[k], where kx and ky are the spatial frequencies. The above convolutions can also be replaced

by multiplications using block-Hankel matrices as described in the previous section, and the resulting anni-

hilation relations can be compactly represented in the matrix form as

H(∂̂1m)

H(∂̂2m)


︸ ︷︷ ︸

G(m̂)

µ̂ = 0. [12]

Here, H(∂̂1m) and H(∂̂2m) are defined the same way as in the previous section and has the same dimen-

sions. Note that the support of µ̂ is p × p, where p < r; one can consider (r − p)2 shifts of µ̂ that are

support limited in the r×r window, all of which will satisfy [12]. This implies that G(m̂) is low-rank. This

property was exploited to recover the signal from under-sampled measurements in (35, 36, 39, 40, 48). We

propose to combine the matrix liftings specified by [6] and [12] to obtain a new structured matrix:

F(m̂) =

H(∂̂1m1) H(∂̂1m2) ... H(∂̂1mNs)

H(∂̂2m1) H(∂̂2m2) ... H(∂̂2mNs)

 . [13]

Figure 3 illustrates the creation of the new lifted matrix F, which is highly low-rank. We propose to recover

the motion-compensated multi-shot data using the consolidated nuclear-norm minimization problem that

incorporates smoothness regularization (SR):

ˆ̃m = argminm̂||A(m̂)− ŷ||2`2 + λ||F(m̂)||∗. [14]
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The above minimization problem, which we will refer to as SR-MUSSELS, can also be solved in the same

framework as that of the unconstrained formulation in Eq. [7].

Augmented Lagrangian optimization algorithm

We propose to solve the reconstruction problems in Eq [7], [14] using an AL scheme (49, 50) employing

variable splitting. The unconstrained minimization problems in Eq [7], [14] are converted to constrained

forms using an auxiliary variable D to get the new cost C1:

C1 = ||Am̂− ŷ||2`2 + λ||D||∗ such that F(m̂) = D [15]

which can be solved by alternatively solving the quadratic subproblem

C2(m̂) = ||Am̂− ŷ||2`2 +
λβ

2
||D− F(m̂)||2`2 +

λ

2
γ̂T (D− F(m̂)), [16]

and a singular value shrinkage subproblem (see Table 1 for more details).

Methods

Datasets for validation

We used in-vivo data collected on a GE 7T 950 MR scanner (maximum gradient amplitude of 50 mT/m

and slew rate of 200 T/m/sec) using a MS-DW acquisition to test the proposed reconstruction. Several sets

of data were collected on four healthy adult volunteers in accordance with the Institutional Review Board

of the University of Iowa. A 32-channel receive coil with either a 2-channel transmit coil in quadrature

mode or 8-channel parallel transmit coil were used for imaging. The 128 x 128 data were collected with a

Stejskal-Tanner diffusion sequence with the following parameters: b-value=800-1000s/mm2; FOV = 220 x

220mm2; slice thickness=1.7mm. Single-shot, 2-shot, 4-shot and 8-shot acquisitions with TE=57-142ms,

one non-diffusion weighted and 6 or 15 DW acquisitions were collected. The 256 x 256 data were collected

with a dual-spin-echo diffusion sequence with b-value = 700s/mm2; FOV = 210 x 210mm;2 slice thick-

ness=2mm;TE=86ms, 25 directions and three averages. A partial Fourier acquisition (pf) was employed

with 20 oversampling ky-lines. To simulate under-sampled multi-shot acquisition, the 4-shot data was ret-

rospectively under-sampled by a factor of 2.
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Figure 4 demonstrates the effect of TE on image quality of the DWIs collected at 7T. Because of the

short T2 relaxation times at UHFS, shorter TEs becomes extremely desirable. 4-shot or higher number of

shots provide good SNR and a significant reduction in TE. As a result, susceptibility related artifacts are

also minimized. The MUSE-based methods (26–29) has been previously shown to be effective in recov-

ering motion-compensated DWIs from a 4-shot acquisition. We compare the performance of the proposed

reconstruction to the POCSMUSE method (27) in achieving the same.

Coil sensitivity information was required for all the reconstruction methods used in this work. The sen-

sitivity maps were estimated from the non-diffusion weighted images by combining the k-space data from

all the shots into a single data matrix, performing an inverse Fourier transform along the channel dimension

and computing the ratio of each individual coil image to the SOS-combined image (26). Note that any

Nyquist ghost artifacts resulting from odd-even shifts of the EPI acquisition needed to be corrected prior to

this step. Residual ghosting present in the sensitivity maps resulted in residual artifacts in the final recon-

struction. The data used in this manuscript were corrected for odd-even EPI shifts before computing the

coil sensitivities using standard reference-scan based methods, which were not fully effective for multi-shot

acquisitions. Thus, some residual ghosting was still visible in the images. In addition to the coil sensitivity

maps, the MUSE-based algorithms required the motion-induced phase maps corresponding to each shot to

reconstruct the DWI, which were obtained using a TV-regularized reconstruction of each k-space shots as

described in (26).

Experiments

In the first experiment, we show the capability of MUSSELS in recovering the motion-compensated DWIs

from a 4-shot acquisition. The measured 4-shot k-space data were channel combined and stacked into the

data matrix as shown in figure 2 and the Hankel matrix was computed using a filter size of 8 x 8. In the sec-

ond experiment, we demonstrate the performance of the proposed method in comparison with phase-based

methods for a set of q-space down-sampled reconstructions. In the third experiment, we demonstrate the

utility of the SR-MUSSELS. We show that SR-MUSSELS can be used for ill-conditioned data reconstruc-

tion problems such as in the cases of under-sampled or noisy MS-DW data reconstruction. A filter size of

12 x 12 was used in this case and the low-rank property was imposed on the taller Hankel matrix shown in

figure (3). Finally, we also show the utility of the proposed reconstruction for recovering partial Fourier data

which are especially suited for high spatial resolution scans.
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We used the AL scheme for the recovery of the data, the pseudo-code for which is provided in Table 1.

The proposed implementation is fast, and the speed is determined by the filter size. For example, a 128x128

matrix size 4-shot 32-channel data with an 8x8 filter took 25 secs to reconstruct the artifact-free image on

an Intel i7-4770, 3.4GHz CPU with 8GB RAM using Matlab. The maximum filter size that we used in our

experiments was 12 x 12; however, an 8 x 8 filter gave comparable results in all the cases.

In all experiments, the parameter for the POCSMUSE reconstruction were chosen to give the best visual

result for the DWIs and the resulting fractional anisotropy images with directionally encoded color (DEC)

maps. The reconstruction might be improved by tuning the parameters for each individual DWI depending

upon the amount of phase distortions. However, this is a hard problem and can produce arbitrary results;

hence, this approach was not employed. The parameters for the MUSSELS-based reconstructions were also

tuned in the same manner.

Results

Motion compensation without phase estimates

The proposed MUSSELS reconstruction of a 4-shot DW acquisition is shown in figure S1 in the supporting

information, with the results from a conventional SENSE reconstruction also included for comparison. The

motion-induced artifacts arising from phase mismatch between shots are evident in SENSE reconstruction

while the MUSSELS reconstruction successfully removed these artifacts.

Comparison to methods that use phase estimates

Next we compare the performance of MUSSELS with the standard method that uses motion-induced phase

estimates to reconstruct artifact-free DWIs. Figure 5 shows 15 DWIs reconstructed using POCSMUSE,

MUSSELS and SR-MUSSELS from a 4-shot 15-direction diffusion data. A careful comparison of the im-

ages reconstructed from these methods show some visual differences in the resulting images, some of which

are marked using arrows in the figure. To further study the differences, figure 6 shows the DEC maps corre-

sponding to the three reconstructions. The top row shows the DEC maps computed using all 15 directions

from the respective reconstructions. They appear to be comparable visually in terms of the directional in-

formation conveyed by the color-coding. To further demonstrate the differences in the reconstructions, the

15-direction data was under-sampled in q-space in two different ways. Two subsets each consisting of 7
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diffusion directions were chosen from the dataset; the two subsets are marked using yellow and red dots in

figure 5. The first subset included all of the DWIs that were marked using arrows that showed visual dif-

ferences between the reconstructions. The second subset consisted of mostly DWIs that did not show much

difference visually. DEC maps were computed from the two subsets and are plotted in figure 6 (b) and (d).

For the purpose of error quantification, the angular error was computed for the under-sampled cases with

the 15 direction data of the respective reconstructions used as the ground truth. The angular error computes

the error in the primary diffusion direction (PDD) as:

error = acos( ~vref · ~vus) ∗ 180/π, [17]

where ~vref and ~vus are the PDD of the reference and under-sampled data. The maps are included in figure

6 (c) and (e), with the average angular error also reported in the images.

When the number of diffusion directions are high, the estimate of the diffusion directions using tensor

fitting and eigen decomposition gives robust results. Hence, the DEC maps computed from the 15-direction

data reconstructed using POCSMUSE appear similar to those reconstructed using MUSSELS. However, the

above q-space downsampling experiments show that there are substantial errors in the DWIs obtained using

MUSE. For the POCSMUSE reconstruction, the DEC maps computed from the two sets of under-sampled

data clearly differ from the DEC map computed using all the 15 DWIs. For the case of MUSSELS recon-

struction, the DEC maps are consistent in all the cases, yet they are noisy. For the case of SR-MUSSELS,

the DEC maps could be reconstructed with less noise compared to the MUSSELS.

Regularized reconstruction for under-sampled MS-DWI

The previous experiments demonstrate the utility of MUSSELS to recover the fully sampled MS-DWI

data. Here we show that the regularized version of MUSSELS can be used to recover under-sampled MS-

DWI data as well. For this purpose the 4-shot MS-DWI data was first under-sampled uniformly by skipping

every other k-space lines from each of the shots. Figure 7 shows the reconstruction of the 4-shot under-

sampled MS-DWI data using POCSMUSE and SR-MUSSELS. The residual aliasing artifacts are evident in

all DWIs reconstructed by POCSMUSE. The regularized MUSSELS has performed reasonably well with

significantly fewer artifacts seen visually in the reconstructed images. The DEC maps generated from all

the 15 DWIs are shown with the angular error map also computed based on the fully-sampled 15-direction
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data. A plot of the normalized-root-mean-squared-error (NRMSE) for all the 15 DWIs reconstructed from

the under-sampled data is also computed (Figure 7f ). Interestingly, if the under-sampling pattern is changed

slightly, the performance of both the methods improve significantly. Figure 8 shows the results of recon-

struction where a non-uniform under-sampling pattern was employed. Specifically, the three center k-space

lines of each of the shots were kept intact. The improvement in the reconstruction results can be appreci-

ated from the DWIs as well as in the DEC maps. This behavior is not surprising and adds evidence to the

fact that reconstructions from a slightly non-uniform under-sampling patterns provides more reliable results

than a strictly uniform under-sampling pattern while using sparsity/low-rank -based reconstructions (34).

For the POCSMUSE reconstruction, aliasing artifacts are still visible in the images. Even in this case, the

voxel-wise tensor fitting recovered the diffusion directions reasonably well as evident from the DEC maps.

The MUSSELS and SR-MUSSELS reconstruction gives artifact-free images. The noisy MUSSELS recon-

structions have been improved by using the smoothness regularization. Note that we used a retrospectively

under-sampled example to illustrate the performance of the reconstruction algorithms. However, this simu-

lated version of non-uniform EPI may have unrealistic features and might be easier to reconstruct than real

prospective data.

Noisy 4-shot data

Another example where the proposed reconstruction performs better compared to the standard phase-

based reconstruction is included in figures S2-S3 in the supporting information. Here, a noisy six-direction

4-shot data is reconstructed using the three methods. POCSMUSE reconstruction shows artifacts in one of

the DWIs which are recovered accurately using MUSSELS and SR-MUSSELS. As expected the images are

noisy for the unregularized case. However, the SR-MUSSELS can recover the MS-DWI data reasonably

well.

Partial Fourier data

The performance of the proposed reconstructions were also tested on a higher resolution diffusion data,

the results of which are provided in figure 9. For this experiment, the data was collected with partial Fourier

acquisition to reduce TE. We observe that the MUSSELS-based reconstruction can recover the pf data with-

out any modifications of the proposed algorithm (51). An alternate approach is to use the structure as

proposed in (34) .
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Discussion

Recently, several authors have shown that annihilating filter-based methods provide a flexible and gen-

eralized framework for reconstruction of MR images exploiting sparsity (33, 35) and image smoothness

(39, 52). These works are also related to finite rate of innovation (FRI) theory (53, 54) and the recovery

of polynomials from Fourier data (55). Learning shift-invariant annihilating filters from a calibration scan

to recover missing k-space data in a local neighborhood is also now well-established in parallel-MRI re-

construction literature(43, 44, 46). Recently this idea was also extended to calibration-less parallel imaging

reconstruction using structured low-rank matrix completion (32, 34, 36, 56). The fundamental performance

guarantees and the sampling requirement of the structured low-rank approach for various FRI models have

also been theoretically addressed (37, 57).

Inspired by the above body of literature, in this work, we modeled the smooth slowly varying phase

of the MS-DWI data using a shift invariant k-space filter. By deriving an annihilation formulation based

on these filters, we derived a reconstruction framework based on structured low-rank recovery that could

learn the filter implicitly to recover the missing k-space data. This led to a new formulation that can recover

motion-compensated DWIs from a multi-shot acquisition. Since the k-space data for each shot is recovered

using matrix completion, the final DWI can be reconstructed without having to know the motion-induced

phase that varies between shots. Thus, the formulation that we introduced here, which we call MUSSELS, is

a ”phase-calibration-free” method since the motion-induced phase is not required to recover the final DWI.

We exploit the known coil sensitivity information to enable the recovery of the uniformly under-sampled

k-space samples of the MS-DW acquisition.

The annihilating filter-based approach in this paper is also theoretically similar to the recent ALOHA-

based approach introduced in (38) and the SENSE-LORAKS method introduced in (56, 58). Specifically,

the referenceless Nyquist ghost correction method (38) uses a similar annihilation filter to compensate for

the phase between the odd and the even lines of an EPI acquisition. Since this method was primarily intended

for data with modest under-sampling (odd/even), it used independent coil-by-coil reconstruction along with

a wavelet-based pyramidal decomposition constraint. Note that, in comparison, our proposed method works

with data with higher under-sampling and greater phase mismatch by making use of the coil sensitivities

and the use of the k-space weighting in both the kx- and ky- direction (as opposed to the kx-only in the
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ALOHA based approach). Additionally, the ALOHA based methods use the structured low-rankness as a

preprocessing step rather than as a penalty as used in the current work. Similarly, recent works from Kim

et al have shown that the use of smooth image phase constraint using LORAKS, along with coil sensitivity

information, is helpful to recover missing k-space data from uniformly under sampled one-sided Fourier

acquisitions (56, 58).

We demonstrate the results of the proposed method on in-vivo data collected on 7 Tesla MRI. Diffusion

studies on 7T MRI are challenging compared to those on 3T (14, 59). The SNR gain offered by the higher

field strength are counterbalanced by the reduced T2 relaxation times at the echo times considered in this

study. In addition, B1 field inhomogeneity and higher susceptibility effects cause local signal dropouts.

Hence, the reduced TE offered by the multi-shot acquisitions can make significant impact on 7T diffusion

studies and are thus more relevant for 7T diffusion data. Provided short-TE acquisitions are enabled, 7T

diffusion studies can offer significant advantages over 3T studies as discussed in (14, 16, 59) with improved

spatial resolution afforded by 7T to study smaller regions being the main advantage. As shown from our

results above, the proposed method can enable direct motion-compensated reconstruction for multi-shot ac-

quisitions which in turn can be used more readily for routine imaging. This method is easily adapted to

non-Cartesain acquisitions as well.

In conclusion, we proposed a fast and robust reconstruction scheme for fully sampled and under-sampled

multi-shot diffusion data recovery that does not rely on motion-induced phase estimates or navigator data.

Acknowledgements

Financial support for this study was provided by NIH grants 1R01EB019961-01A1, ONR-N000141310202

and NIH T32 MH019113-23.

16



Appendix:

We can derive a different set of annihilating filters based on the coil sensitivities similar to that we derived

above using the phase. Writing the DWI for shot l as the multiplication of the object ρ(x) with the coil

sensitivities s(x), we have mil(x) = ρ(x)si(x); i = 1 : Nc. Thus for coils i, j of shot l, we have:

mil(x) = ρ(x)si(x) [18]

mjl(x) = ρ(x)sj(x). [19]

Multiplying [18] by sj(x) and [19] by si(x) and subtracting we get the following:

mil(x)sj(x)−mjl(x)si(x) = 0 ∀i, j. [20]

Equivalently, in Fourier domain (31, 36, 37, 48),

m̂il[k] ∗ ŝj [k]− m̂jl[k] ∗ ŝi[k] = 0 ∀i, j. [21]

Replacing the convolution operations in Eq [21] as multiplication using Toeplitz/Hankel matrices, we get

H(m̂il) · ŝj [k]−H(m̂jl) · ŝi[k] = 0. [22]

Since this is true for all shots l = 1 : Ns, we can derive a set of conditions which can be written in matrix

form as:

ŝ2 −ŝ1 0 ... 0

0 ŝ3 −ŝ2 ... 0
...

ŝ3 0 −ŝ1 ... 0
...

0 0 ... ŝNc −ŝNc−1


︸ ︷︷ ︸

Ŝ(k)



H(m̂11) H(m̂12)... H(m̂1Ns)

H(m̂21) H(m̂22)... H(m̂2Ns)
...

H(m̂Nc1) H(m̂Nc2)... H(m̂NcNs)


︸ ︷︷ ︸

H2(m̂)

= 0⇒ ŜH2(m̂) = 0. [23]

Since we have access to the non-diffusion weighted image for all imaged slices, which are not affected by the

shot-to-shot phase variations, we can compute the coil sensitivity images s(x) using a sum-of-squares (SOS)

method or the k-space filters ŝ[k] with the center k-space lines of the non-diffusion weighted data acting as
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the ACS lines using methods such as ESPIRiT (46). The matrix Ŝ(k) as defined in [23] can have NcC2 rows

which implies that the left null-space of the block-Hankel matrix H2(m̂) has high dimensionality. With

the above filter formulation, we can pose the recovery of the multi-shot k-space data m̃ as the constrained

reconstruction problem:

̂̃m = min rank(H1(m̂)) subject to

ŜH2(m̂) = 0, and

Am̂ = ŷ

[24]

The last term imposes the data consistency to the measured multi-channel multi-shot k-space data, ŷ, of

dimension N1 ×N2 ×Nc ×Ns. The operator A applies the mask corresponding to the different multi-shot

sampling locations. The equivalent unconstrained reconstruction problem can be written as

̂̃m = argmin
m̂

||Am̂− ŷ||2`2 + λ1||H1(m̂)||∗ + λ2||ŜH2(m̂)||2`2 , [25]

where λ1 and λ2 are two regularization parameters. In practice, numerically solving the above reconstruction

problem is highly computation-intensive mainly because of the size of the Hankel matrix H2(m̂), especially

with high number of coils. Hence the SENSE-based method is adopted in this work.
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Legends:

Fig 1: (a) A 4-shot acquisition illustrated. (b) The k-space data matrix of the 4-shot DWI acquisition. The

solid circles and the hollow circles represent the acquired and unacquired k-space samples during each shot

respectively.

Fig 2: Illustration of the matrix lifting: m̂ is the k-space data matrix of a given DWI comprising of

data from the different shots of the DWI. A sliding window of size r × r as marked by the red dotted box

generates the rows of the block-Hankel matrix H(m̂) by vectorizing the elements in the red block.

Fig 3: Illustration of joint matrix lifting for multi-shot data: The Fourier coefficients of the partial deriva-

tives along the x-dimension and y-dimensions are obtained by multiplication using −j2πkx and −j2πkx,

respectively. The block-Hankel matrices of the each partial derivative are generated and and stacked as

shown. .

Fig 4: Effect of long echo times at 7T demonstrated on non-diffusion weighted images collected using

different number of shots for a 128 x 128 acquisition matrix. The loss of SNR due to the long TE are clearly

evident from these images. The SNR computed from the ROIs as a function of the number of shots are

shown in the last column. No parallel imaging acceleration was employed in these acquisitions. However,

with single-shot imaging, it is common to employ parallel imaging acceleration of at least 2, in which case,

the TE becomes comparable to the 2-shot case in column two.

Fig 5: DWIs reconstructed using POCSMUSE, MUSSELS and SR-MUSSELS from a 15-direction

(b=1000s/mm2) 4-shot acquisition. The arrows indicate the regions where MUSE reconstruction show dif-

ference from MUSSELS reconstruction. Two subsets of q-space sub-sampled DWIs are shown using yellow

and red dots.

Fig 6: The three columns correspond to the reconstructions of the dataset in figure 6 using POCSMUSE,

MUSSELS and SR-MUSSELS respectively. (a) shows the DEC maps computed using all the 15 DWIs. (b)

& (d) correspond to the DEC maps computed using the 7 DWIs marked using the yellow dots and red dots

respectively in figure 6. (c) & (e) shows the map of the angular error in (b) and (d) with respect to (a). The

average angular error (AAE) corresponding to each of the reconstructions are reported below the figure.
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Fig 7: Uniformly under-sampled 4 shot MS-DW data. (a) the top row shows the POCSMUSE and sec-

ond row shows SR-MUSSELS reconstruction of the first 5 out of 15 DWIs reconstructed from uniformly

under-sampled data. The corresponding DEC maps and their angular error maps are shown in (b)-(e). The

NRMSE error for each of the DWI are plotted in (f) and the under-sampling pattern used is shown in (g).

Fig 8: (a) the rows show the POCSMUSE, MUSSELS and SR-MUSSELS reconstruction of the first 5

out of 15 DWIs reconstructed from non-uniformly under-sampled data. The corresponding DEC maps (b)

and the angular error maps (c) are shown on the right. Residual aliasing are clearly visible in the POC-

SMUSE reconstructions although this is not evident in its DEC maps. The NRMSE error for each of the

DWI are plotted in (d) and the under-sampling pattern used is shown in (e).

Fig 9: DWIs reconstructed for a high resolution data (voxel size: 0.82x 0.82 x 2.0 mm2 ; b= 700 s/mm2,

25 directions, 3 averages, using partial Fourier with 20 over-sampling ky-lines) using various reconstruc-

tions and the corresponding DEC maps.

Table 1: Augmented Lagrangian algorithm for solving SR-MUSSELS.
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Supporting Information

Additional figures included in the supporting information:

Fig S1: DWIs reconstructed from a 6-direction (b=1000s/mm2) 4-shot acquisition using conventional

SENSE method (top row) and the proposed MUSSELS method (bottom row). Both methods use the coil

sensitivity information only and do not use motion-induced phase estimates in the reconstruction. Conven-

tional SENSE cannot achieve motion compensation while MUSSELS can recover artifact-free DWIs.

Fig S2: Reconstruction of the 6 DWIs from a noisy 4-shot 6-direction acquisition.

Fig S3: The FA maps computed from the noisy 4-shot 6-direction acquisition. The FA maps clearly

show that the SR-MUSSELS offers robust reconstruction of noisy data while POCSMUSE reconstructions

show visible artifacts.
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Figure 1: (a) A 4-shot acquisition illustrated. (b) The k-space data matrix of the 4-shot DWI acquisition.
The solid circles and the hollow circles represent the acquired and unacquired k-space samples during each
shot respectively.
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Figure 2: Illustration of the matrix lifting: m̂ is the k-space data matrix of a given DWI comprising of
data from the different shots of the DWI. A sliding window of size r × r as marked by the red dotted box
generates the rows of the block-Hankel matrix H(m̂) by vectorizing the elements in the red block.
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Figure 3: Illustration of joint matrix lifting for multi-shot data: The Fourier coefficients of the partial deriva-
tives along the x-dimension and y-dimensions are obtained by multiplication using −j2πkx and −j2πkx,
respectively. The block-Hankel matrices of the each partial derivative are generated and and stacked as
shown.
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Figure 4: Effect of long echo times at 7T demonstrated on non-diffusion weighted images collected using
different number of shots for a 128 x 128 acquisition matrix. The loss of SNR due to the long TE are clearly
evident from these images. The SNR computed from the ROIs as a function of the number of shots are
shown in the last column. No parallel imaging acceleration was employed in these acquisitions. However,
with single-shot imaging, it is common to employ parallel imaging acceleration of at least 2, in which case,
the TE becomes comparable to the 2-shot case in column two.
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Figure 5: DWIs reconstructed using POCSMUSE, MUSSELS and SR-MUSSELS from a 15-direction
(b=1000s/mm2) 4-shot acquisition. The arrows indicate the regions where MUSE reconstruction show
difference from MUSSELS reconstruction. Two subsets of q-space sub-sampled DWIs are shown using
yellow and red dots.
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POCSMUSE FA MUSSELS FA SR-MUSSELS FA

(a)

(b)

(c)

20◦

0◦
AAE = 21.38 AAE = 14.01 AAE = 11.82

(d)

(e)

20◦

0◦
AAE = 17.41 AAE = 13.05 AAE = 12.02

Figure 6: The three columns correspond to the reconstructions of the dataset in figure 6 using POCSMUSE,
MUSSELS and SR-MUSSELS respectively. (a) shows the DEC maps computed using all the 15 DWIs. (b)
& (d) correspond to the DEC maps computed using the 7 DWIs marked using the yellow dots and red dots
respectively in figure 6. (c) & (e) shows the map of the angular error in (b) and (d) with respect to (a). The
average angular error (AAE) corresponding to each of the reconstructions are reported below the figure.
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(a)

(b) POCSMUSE FA (c) Angular error map; (f) NRMSE error plot for all the 15 DWIs
AAE = 26.68

30◦

0◦
(d) SR-MUSSELS FA (e)Angular error map; (g) under-sampling pattern

AAE = 17.11

Figure 7: Uniformly under-sampled 4 shot MS-DW data. (a) the top row shows the POCSMUSE and second
row shows SR-MUSSELS reconstruction of the first 5 out of 15 DWIs reconstructed from uniformly under-
sampled data. The corresponding DEC maps and their angular error maps are shown in (b)-(e). The NRMSE
error for each of the DWI are plotted in (f) and the under-sampling pattern used is shown in (g).
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(a) (b)

AAE = 12.9

AAE = 21.5

AAE = 11.9
(c)

0◦

20◦

(d)

(e) Non-uniform under-sampling

Figure 8: (a) the rows show the POCSMUSE, MUSSELS and SR-MUSSELS reconstruction of the first 5 out
of 15 DWIs reconstructed from non-uniformly under-sampled data. The corresponding DEC maps (b) and
the angular error maps (c) are shown on the right. Residual aliasing are clearly visible in the POCSMUSE
reconstructions although this is not evident in its DEC maps. The NRMSE error for each of the DWI are
plotted in (d) and the under-sampling pattern used is shown in (e).
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Figure 9: DWIs reconstructed for a high resolution data (voxel size: 0.82x 0.82 x 2.0 mm2 ; b= 700 s/mm2,
25 directions, 3 averages, using partial Fourier with 20 over-sampling ky-lines) using various reconstructions
and the corresponding DEC maps.
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Table 1: Augmented Lagrangian algorithm for solving SR-MUSSELS
1: Initialize β > 0, γ

2: Initialize the algorithm by channel combining the measured k-space data to form m̂(0) = AHA(ŷ).

3: set n = 0

4: Repeat

5: D(n) = F(m̂(n)) where F is the block-Hankel matrix given in Eq. [13].

Compute the singular value decomposition: UΣV T = SV D(D(n))

Perform singular value shrinkage using the rule Σk = diag{(σi− k)+} where σ are the singular values

along the diagonal of Σ.

6: Update Dn+1 = H∗(UΣkV
T )) whereH∗ is the inverse mapping of the block-Hankel elements into the

multi-shot data matrix.

7: Update m̂(n+1) by solving C2(m̂) given in Eq. [16] using CG

8: Update Lagrange multipliers: γ(n+1) = γ(n) − β(D− F(m̂))

9: set n = n+ 1

10: Until stopping criterion is reached
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