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Accelerated Dynamic MRI Using Patch Regularization
for Implicit Motion Compensation
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Purpose: To introduce a fast algorithm for motion-
compensated accelerated dynamic MRI.

Methods: An efficient patch smoothness regularization
scheme, which implicitly compensates for inter-frame motion,
is introduced to recover dynamic MRI data from highly under-

sampled measurements. The regularization prior is a sum of
distances between each rectangular patch in the dataset with

other patches in the dataset using a saturating distance met-
ric. Unlike current motion estimation and motion compensation
(ME-MC) methods, the proposed scheme does not require ref-

erence frames or complex motion models. The proposed algo-
rithm, which alternates between inter-patch shrinkage step
and conjugate gradient algorithm, is considerably more com-

putationally efficient than ME-MC methods. The reconstruc-
tions obtained using the proposed algorithm is compared

against state-of-the-art methods.
Results: The proposed method is observed to yield reconstruc-
tions with minimal spatiotemporal blurring and motion artifacts.

In comparison to the existing state-of-the-art ME-MC methods,
PRICE provides comparable or even better image quality with

faster reconstruction times (approximately nine times faster).
Conclusion: The presented scheme enables computationally
efficient and effective motion-compensated reconstruction in a

variety of applications with large inter-frame motion and con-
trast changes. This algorithm could be seen as an alternative

over the current state-of-the-art ME-MC schemes that are
computationally expensive. Magn Reson Med 77:1238–1248,
2017. VC 2016 International Society for Magnetic Resonance
in Medicine
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INTRODUCTION

Dynamic magnetic resonance imaging (DMRI) involves
imaging physiological processes that are evolving in time.
DMRI is challenged by the slow MRI encoding process,

and hence often involves tradeoffs amongst the spatial

resolution, temporal resolution, slice coverage, and signal

to noise. Accelerated imaging involving sparse k - t sam-

pling, and constrained reconstruction has demonstrated

great potential to improve DMRI (1–8). Several regu-

larization schemes including sparsity-based penalties

(3,5,9–12), low-rank penalties (13–20) and combination of

sparse and low-rank constraints (16,20,21) were intro-

duced to accelerate imaging. These methods provide supe-

rior reconstructions when the inter-frame motion (e.g in

breath-held and gated acquisitions) is relatively low. How-

ever, the parsimonious assumptions made by these

schemes often break down in the presence of large inter-

frame motion, which restricts the performance of these

methods in free-breathing and/or ungated applications.
To address the above challenge, several motion estima-

tion and compensation (ME-MC) schemes have been devel-

oped; these methods alternate between explicit estimation

of interframe motion, followed by motion-compensated

reconstruction (22–26). For example, the k-t FOCUSS

scheme with ME-MC (22), which was introduced for car-

diac cine MRI, alternates between motion estimation using

block matching and sparsity based regularization of the

residuals. Similarly, regional low-rank constraint, coupled

with deformation estimation, was introduced in (23) to

account for contrast variations in myocardial perfusion

MRI. This approach is similar to the patch-based low-rank

method introduced for breath-held cardiac cine MRI (24).

A generalized deformation compensated compressed sens-

ing (DC-CS) scheme capable to include a variety of penal-

ties (e.g. sparse, low-rank) has also been proposed (27,28).

Other ME-MC schemes include motion-adaptive spatio-

temporal regularization (MASTER) (29) and (25,26) differ

in the type of the motion model as well as the exact regula-

rization penalties. The main challenge with all of these

schemes is the complex motion estimation step, often

involving a computationally expensive deformable image

registration, block matching, or optical flow algorithms

(29–31). In addition, the lack of a unifying cost function

restricts the analysis of the convergence of the joint algo-

rithm to undesirable fixed points. The above mentioned

challenges limit the utility of these scheme in applications.
We propose a computationally efficient, patch smooth-

ness regularization framework to overcome the above-

mentioned drawbacks. The proposed scheme exploits

the similarity of rectangular image subpatches in a frame

with other patches in its spatiotemporal neighborhood

(Fig. 1). The regularization penalty, which involves the

sum of robust interpatch distances between patches in

each others’ neighborhood, is similar to standard penal-

ties in compressed sensing. The interpatch distance met-

ric is chosen to heavily penalize small differences, while
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the metric saturates for large differences (32). By compar-
ing the neighboring patches in both spatial and temporal
directions, the proposed framework implicitly compen-
sates for the local motion of the pixels across time, there-
fore avoiding unnecessary explicit image registration or
computation of the motion vectors (Fig. 1). We use the
majorization of the regularization penalty to simplify the
optimization scheme as an alternating minimization strat-
egy; the algorithm alternates between an analytical inter-
patch shrinkage step, and a quadratic update step that is
efficiently solved by a conjugate gradient (CG) algorithm.
The presence of a common cost function for these two
steps enables us to derive efficient continuation strategies
that encourage the convergence to the global minimum.

The proposed scheme is based on our work on robust

patch-based regularization algorithm (33,34), which was

developed for inverse problems involving static two-

dimensional images. The main focus of this paper is to

generalize this idea to dynamic MRI. This work has signif-

icant distinctions from our early conference work in Ref.

32, which relied on a slower iterative reweighed algo-

rithm. While the algorithm in Ref. 32 was mainly vali-

dated using numerical phantoms and simulations, the

proposed algorithm is validated using in-vivo prospective

studies with multichannel acquisitions. The PRICE

scheme also has conceptual similarities to patch-based

methods that rely on dictionary learning used in several

applications including dynamic MRI (35,36). In contrast

to these schemes, we considerably reduce the search space

by focusing on a smaller search neighborhood; this results

in an algorithm whose computational complexity is com-

parable with classical total variation regularization. The

PRICE scheme also has similarities to Ref. 37 that uses a

combination of 2-D spatial and 1-D temporal non-local

penalties. However, Ref. 37 does not compare a patch to

shifted patches in the neighboring frames; our preliminary

comparisons with this method (32) demonstrated the ben-

efit offered by our earlier framework in terms of free

breathing myocardial perfusion.
The utility of the proposed PRICE scheme is demon-

strated in the context of free-breathing cardiac cine and

myocardial perfusion datasets, using retrospective and

prospective experiments. We compare the algorithm

against a classical compressed sensing scheme that

exploits spatiotemporal finite difference sparsity, a com-

bination of sparse and low-rank (16) as well as state-of-

the-art ME-MC methods MASTER and DC-CS (27,29).

THEORY

Dynamic MRI: Model of the Acquisition Scheme

The multicoil undersampled acquisition of the dynamic

MRI dataset fðx; y; tÞ : Z3 ! C can be modeled as:

biðkx ;ky ;tÞ¼
Z

x;y

fðx;y;tÞ siðx;yÞejðkxxþky yÞdxdyþnðkx;ky ;tÞ:

[1]

Here, b(kx, ky, t) represents the k-space measurements

from all the coils, while f(x, y, t) is the dynamic dataset,

FIG. 1. a: Illustration of the proposed PRICE scheme. The regularization term penalizes the differences between each patch and other
patches in its cube shaped neighborhood. The green squares indicate the location of the patch in the current frame and the ones with
the highest similarity in the neighboring frames. The dashed red box represents the neighborhood where the patches move within. The

ability of the algorithm to exploit the similarity between corresponding patches enables it to provide implicit motion compensated recov-
ery unlike the traditional ME-MC methods which explicitly do that. The distance metric used for the comparison is shown by the dotted

black curve in (b). The metric heavily penalizes the distances between similar patches, while it saturates for large inter-patch distances.
This saturating behavior enables the algorithm to minimize spatiotemporal blurring, resulting from averaging of dissimilar patches. The
colored curves correspond to the different approximations of the distance metric, which enables fast algorithms. c: The shrinkage rule

for the inter-patch differences t � nðjtjÞ using ‘p. We rely on continuation schemes as shown in (b) and (c) starting with low values of b

and gradually increase it to high values, when the approximation is more accurate. d: The algorithm alternates between a simple shrink-

age step to denoise inter-patch differences and image update step, which involves a computationally efficient conjugate gradients
algorithm.
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and si(x, y) denotes the ith coil sensitivity pattern. We

assume n to be a complex zero mean Gaussian distrib-

uted white noise process of a specified standard devia-

tion s. The above relations can be compactly expressed

in the vector form as

b ¼ Af þ n; [2]

where A is termed as the forward model. From now on,

we will consider the dynamic dataset f as a 3-D volume

indexed by the variable r¼ (x, y, t).

Implicit Motion Compensation Using Patch Regularization

We propose to recover the dynamic dataset f from its

undersampled measurements as the patch regularized

optimization problem as:

f̂ ¼ arg min
f
jjðAf � bjj2 þ lGðfÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Cðf Þ

; [3]

The first term in the cost function ensures data fidelity

with the k-space measurements, while l is the regulari-

zation parameter. The regularization penalty GðfÞ is the

sum of robust distances between patches:

GðfÞ ¼
X

r

X
q2N

w jjPrðfÞ � PrþqðfÞjj‘2

� �
: [4]

Here, PrðfÞ is a patch extraction operator, which

extracts a square shaped 2-D image patch of dimension

ðN þ 1Þ � ðN þ 1Þ � 1, centered at the spatial location r
from the dynamic dataset f(r):

PrðfÞ ¼ fðrþ pÞ; p 2 B: [5]

Here, B ¼ ½�N=2; ::N=2� � ½�N=2; ::N=2� � 1 is the set

of indices of the patch. Note from Ref. 3 that we compare

each patch PrðfÞ in the dataset with other patches

PrþqðfÞ in a cube-shaped neighborhood N 2 ½�M=2; ::M=2�
�½�M=2; ::M=2� � ½�M=2; ::M=2� around r (Fig. 1a). Even

though it is fixed in our study, the size of the neighbor-

hood may be chosen depending on the severity of inter-

frame motion. Specifically, the size of the search neigh-

borhood (M) may need to be increased in high-resolution

datasets or datasets with high inter-frame motion such as

dynamic free breathing lung MRI where there is a consid-

erably large amount of cardiorespiratory motion. While

the formulation (Eq. [3]) has similarities to block matching

used in k-t FOCUSS with ME-MC (22), the distinguishing

aspect is a unifying cost function that captures both

motion estimation and compensation.
The comparisons of each patch with its neighbors are

performed using the distance metric w. While convex ‘1
metrics could be chosen, our comparisons show that the

thresholded ‘p, 0<p< 1, metric

wðtÞ ¼
jtjp=p if t < T

Tp=p if t � T :

(
[6]

provides the best reconstruction with 2–4 db gain over

p¼ 1 without thresholding (33). Compared with convex

penalties, the proposed saturating priors (see dotted
curve in Fig. 1b) minimizes the averaging of dissimilar
patches, thus resulting in less blurred reconstructions.
For example, while a patch pair with difference greater
than T will still contribute to a constant term of Tp/p in
the cost, a small shrinkage of these inter-patch distances
will not reduce the cost. This behavior translates to
patch differences above T not being shrunk at each itera-
tion as seen from Eq. [10] (see also Fig. 1c). By contrast,
a non-saturating ‘1 penalty shrinks all patch differences,
irrespective of the size of differences, resulting in
blurring.

Iterative Patch Shrinkage Algorithm

We use the majorization of the patch regularization pen-
alty GðfÞ to develop an iterative patch shrinkage algo-
rithm to solve (3). Approximating the distance metric in
(6) (dotted line in Fig. 1b) by its smoothed Huber-like
versions, we rewrite the cost function with the approxi-
mated penalties as:

CbðfÞ ¼ min
fsr;qg

jjAf � bjj2 þ l
X

r

X
q2N

cbðjjsr;qjjÞ

þ lb

2

X
r;q

jjPrðfÞ � PrþqðfÞ � sr;qjj2:
[7]

Here, sr;q is an auxiliary variable, which can be inter-
preted as a denoised version of the inter-patch difference
ðPrðfÞ � PrþqðfÞÞ. The above simplification is enabled by
the half quadratic majorization of w (38–41):

wðtÞ ¼ min s cbðsÞ þ
b

2
ðs� tÞ2

� �
: [8]

The above majorization rule can be rewritten as:

t2

2
� 1

b
wðtÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

rðtÞ

¼ max
s

s t � 1

b
cbðsÞ þ

s2

2

� �
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

gðsÞ

8>>><
>>>:

9>>>=
>>>; [9]

From the theory in (42), the above relation is satisfied
when g¼ r*, the Legendre-Fenchel dual of r, specified
by r�ðsÞ ¼ max t s t � rðtÞf g. Thus, we obtain cbðsÞ ¼ b

r�ðsÞ � s2=2ð Þ. When r is not convex, we approximate it
by the closest convex function of r; see (33) for details.

It is often difficult to determine an analytical expres-
sion for cb. However, the associated shrinkage rule (Eq.
[11]) can be determined analytically as shown in Ref. 33,
which is sufficient to implement an efficient algorithm.
We use an alternating minimization algorithm to recover
f as well as the denoised inter-patch differences sr;q from
multicoil undersampled k - t measurements. We observe
that the reformulation in (Eq. [7]) is remarkably similar
to variable splitting; the only difference is that cb ¼ w in
the variable splitting formulation. If variable splitting
strategy were used, one would be able to speed up the
algorithm using alternating direction method of multi-
pliers (ADMM). However, a challenge with ADMM
schemes is the lack of monotonic convergence. While it
is acceptable with convex cost functions, it may result in
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issues of convergence to local minima when non-convex

distance metrics such as Eq. [6] are used. The monotonic

convergence guaranteed by majorize-minimize frame-

work is desirable in this setting. We also introduce con-

tinuation strategies to minimize the risk of local minima.

Step 1: Determination of Denoised Interpatch
Differences sr;q

When the variable f is a constant, the determination of

the auxiliary variables sr;q corresponding to different val-

ues of r and q can be decoupled. Specifically, the recov-

ery of a specific patch ŝr;q simplifies to a shrinkage step

similar to soft thresholding:

ŝr;q ¼ PrðfÞ � PrþqðfÞ
	 


n jjPrðfÞ � PrþqðfÞjj
� �

: [10]

The shrinkage rules for a variety of distance metrics

are specified in (33). For example, when w is the thresh-

olded ‘p metric Eq. [6], we have

nðtÞ ¼

0 if jtj < b1=ðp�2Þ

1� 1

b
jtjp�2 if b1=ðp�2Þ � jtj < T

1 else:

8>>><
>>>: [11]

Note from (10) and (11) that the smaller inter-patch

differences are set to zero or shrunk, while the large

inter-patch differences are preserved. The shrinkage rule

is illustrated in Figure 1c.

Step 2: Determination of the Dataset f

If we assume the auxiliary variables sr;q to be fixed, the

minimization of Eq. [7] with respect to f simplifies to a

quadratic subproblem. Combining the terms from adja-

cent patches for computational efficiency (see Appendix

of Ref. 33 for details), we simplify this subproblem as

f̂ ¼ arg min
f
jjAf � bjj2 þ l

b

2

X
q2N
jjDqf � hqjj2: [12]

Here, hqðxÞ is specified by the sum of ŝr;q terms from

the adjacent patches:

hqðxÞ ¼
X
p2B

ŝx�p;qðpÞ; [13]

The operator Dq in (12) is the finite difference operator

ðDqfÞðxÞ ¼ fðxÞ � fðxþ qÞ: [14]

For example, ðDð1;0ÞfÞðrÞ ¼ f ðrÞ � f ðrþ ð1;0;0ÞÞ is the

standard horizontal finite difference operator. Note that

by using Eq. [10] in Eq. [12], the terms with inter-patch

differences greater than T will still contribute to a con-

stant term of Tp/p in the cost. This behavior translates to

patch differences above T not being shrunk at each itera-

tion as seen from (10) (Fig. 1c) while the terms with

smaller inter-patch differences are penalized. We solve

(12) efficiently using conjugate gradient (CG) algorithm.

METHODS

The breath-held CINE dataset considered in this study is

distributed as part of the MASTeR software package (29),

while the free breathing Cartesian dataset was acquired

at New York University (43). The perfusion datasets

were both acquired at the University of Utah. All the

datasets used in this note were acquired under protocols

approved by the Institutional Review Board (IRB) of the

respective institutions.

Experiments Involving Cardiac CINE MRI

We first consider the retrospective undersampling of a

fully sampled ECG-gated Cartesian breath-held dataset,

acquired using a steady-state free precession (SSFP)

sequence using a five channel cardiac array. The scan

parameters were TE/TR¼ 2.0/4.1 ms, flip angle¼45	,
FOV¼ 350 mm2, slice thickness¼ 12 mm, 8 views per

segment, 224 phase-encoding lines, 256 read-out sam-

ples, and 16 temporal frames. This dataset was under-

sampled by keeping a subset of the 224 phase-encoding

lines consisting of a fully sampled low-frequency region

(eight low-frequency lines) and a pseudo-randomly

sampled high-frequency region chosen according to a

Gaussian density; the specific pseudo random subsets

varied from frame to frame.
In the second experiment, we consider the recovery of a

prospectively undersampled free-breathing and prospec-

tively ECG-gated cardiac CINE dataset. The data was

acquired using a steady state free precession (SSFP)

sequence on Siemens 3T scanner with 12 coil elements

total (body and spine coil arrays). The acquisition parame-

ters were FOV: 320 mm2, matrix 128 � 128, TE/TR¼ 1.37/

2.7 ms, BW: 1184 Hz/pixel, and flip angle¼ 40	. The

acquisition lasted for two heart beats, while the subject

was freely breathing, resulting in 16 lines/frame. The sam-

pling pattern varies from frame to frame; some of the

frames are sampled with dense low-frequency region,

while the lines in other frames are sampled randomly in

the low and high-frequency region. See Ref. 43 for more

details about this dataset.

Experiments Involving Myocardial Perfusion Imaging

In the first experiment involving perfusion data, we ret-

rospectively undersampled a fully-sampled Cartesian in

vivo myocardial perfusion dataset. The dataset was

acquired without ECG-gating and the subject breathed

heavily during the scan. The data was acquired using a

saturation recovery FLASH sequence (with TR/TE¼2.5/

1 ms, saturation recovery time¼100 ms, 1 slices, 32 coil

elements total, phase encodes � frequency encodes:

108 � 288, temporal resolution: 
 4 frames/beat, spatial

resolution: 2.5 � 2.5 � 8 mm3); the reader is referred to

(6,44) for more details about this dataset. The dataset

was retrospectively undersampled using a Cartesian sam-

pling pattern with a fully sampled low-frequency region

and a randomly sampled high-frequency region. To make

the computational complexity manageable, we have only

considered 80 temporal frames out of 200. We only used

the data corresponding to six of the 32 channels, which
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best cover the heart; we did not resort to any coil

compression.
In the second perfusion experiment, we consider the

retrospective undersampling of radially sampled free-

breathing stress ECG-gated myocardial perfusion data,

acquired with a saturation recovery FLASH sequence

with TR/TE¼ 2.6/1.2 ms, phase encodes � frequency

encodes: 256 � 256, 3 slices/beat, flip angle¼ 148, voxel

size¼ 2.3 � 2.3 � 8 mm3, FOV: 280 mm2, bandwidth

1002 Hz/pixel. This dataset has 67 temporal frames

which are all considered for recovery. Seventy two radial

spokes per frame, equally spaced over p radians with

256 samples per spoke were acquired. The radial pattern

in successive frames were rotated by a uniform angle of

p/288 radians across frames, which corresponds to a

period of 4 across time. The details of this dataset are

available in Ref. 45. We subsampled the dataset by

retaining a subset of 24 spokes per frame. To obtain inco-

herent sampling, the spokes that are the closest in angles

to a golden angle trajectory were retained; a similar sub-

sampling strategy was used in Ref. 16. The 72 spoke

data, acquired with a four coil cardiac array, was recon-

structed using SENSE-based spatiotemporal TV regulari-

zation; simpler gridding based reconstructions exhibited

considerable streaking artifacts and were found unac-

ceptable for comparisons.
For all the radial acquisitions considered in this paper,

we first gridded the radial data to a Cartesian grid to

avoid the use of non-uniform Fourier transform computa-

tions within the reconstruction algorithms. Our previous

experiments (16) show that the loss in image quality

resulting from this approximation is minimal.

Implementation Details

All the algorithms were implemented in MATLAB 2012

on a Linux Intel Xeon workstation machine with four

cores, 3.2 GHz CPU, and 32 GB RAM.

Metrics Used for Quantitative Comparison

The retrospective reconstructions were quantitatively

compared to reference data using the following metrics.

We evaluate these metrics in a square region of interest

containing the heart.

� Signal to error ratio (SER): This metric gives a mea-

sure of overall accuracy in reproducing the spatio-

temporal dynamics in the heart regions and defined

as:

SER ¼ 20 log 10
jjCorigjj2

jjCorig � Crecjj2

� �
;

where jj � jj2 donates the ‘2 norm, and Corig; Crec denote

the original and the reconstructed images respectively.

� Normalized high frequency error (HFEN): It meas-

ures the quality of fine features, edges, and spatial

blurring in the images and defined as:

HFEN ¼ 20 log 10
jjLoGðCorigÞjj2

jjLoGðCorigÞ � LoGðCrecÞjj2

� �
;

where LoG is a Laplacian of Gaussian filter that capture
edges. We use the same filter specifications as (35): ker-
nel size of 15 � 15 pixels, with a standard deviation of

1.5.

� The Structural SIMilarity index (SSIM): We used the

toolbox introduced by (46), with default contrast val-
ues [0.01 0.03], Gaussian kernel size of 11 � 11 pix-
els with a standard deviation of 1.5 pixels to
compare the reconstructions.

Selection of Parameters

To ensure fair comparisons in retrospective undersam-
pling experiments, all algorithms were run with a range
of parameter values, and the parameter set that resulted
in the best SER was chosen. In the prospective experi-
ment involving free breathing cardiac CINE data, the
parameters of all the methods were tuned manually to

get the best performance. Considering that we compare
algorithms of very different flavors on datasets acquired
at different conditions, we believe that this is a reasona-
ble strategy to ensure fair comparisons. We used the
reconstruction of the total variation regularization as an

initial guess for the DC-CS scheme (27).
We set the neighborhood and patch sizes in PRICE to

5 � 5 � 5 and 3 � 3 � 1 (N¼2; M¼ 4), respectively for
all the experiments. Our experiments (not shown here)
shows that these settings were sufficient to capture the
interframe motion in all the applications considered in
this paper; larger neighborhood sizes did not signifi-

cantly improve the performance, while they resulted in
slower reconstructions. The continuation parameter b

was initialized by 0.01 and was incremented by a factor
of 1.5 in each outer iteration. Similarly, T was set to be
about a half of the image maximum intensity value and
divided by a small fraction in each outer iteration. Our

experiments show that p¼ 0.5 in Eq. [6] gave the best
tradeoff between computational complexity and quality
of the reconstructions. We used 5 inner-iterations and 20
outer-iterations for all the experiments considered in this
paper. These continuation strategies minimized the risk

of convergence to local minimum and also provided fast
convergence; see (33) for more details. The algorithm is
terminated when the relative change in cost falls below
small value e; we have set e as 1e-6 in our scheme.

RESULTS

Cardiac CINE Datasets

The reconstruction of the retrospectively undersampled
cardiac CINE dataset using PRICE, spatiotemporal total
variation based algorithm (TV), k-t SLR (16), and the
state-of-the-art ME-MC methods (27,29) are shown in

Figure 2, along with their error images. The Cartesian
sampling pattern corresponding to an undersampling fac-
tor of 6, was used to subsample the datasets. Two frames
corresponding to peak diastole and systole cardiac
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phases are shown for each scheme; the error images are
scaled by a factor of 7 for better visualization. We
observe that the quality of the PRICE reconstructions is

quite comparable to the DC-CS recovery, which explic-
itly compensates for the motion; the error images show
that the errors associated with PRICE and DC-CS are
more homogeneously distributed in the entire image,
resulting in improved SER. By contrast, the errors associ-
ated with TV and MASTeR methods are more concen-
trated in the edge regions, indicating edge blurring. The
table shows a quantitative comparison of the entire
methods using SER, HFEN and SSIM metrics; all com-
puted on the region of interest shown in first row. The
run time of PRICE, DC-CS and MASTeR were 24.4
minutes, 3.8 hours, 3.3 hours respectively. The run time
for k-t SLR was 25 minutes while TV took approximately
19 minutes.

The experiments involving prospective Cartesian
undersampled free breathing CINE data are shown in
Figure 3. The comparisons show that the proposed
scheme provides reconstructions with lower motion arti-
facts and less blurring compared to DC-CS, k - t SLR,
and TV regularized reconstructions, especially near the
myocardial borders and papillary muscles. The inter-
frame motion in this dataset is relatively high, making it
a challenging example. We found it difficult to optimize
the parameters of MASTeR in the prospective experi-
ments when the ground truth are not available and hence
we have excluded them from the comparisons.

We observe that the spatial resolution of the second
CINE dataset is slightly lower (voxel size of 2.5 �
2.5 mm2), resulting in a slightly higher signal to noise
ratio. The higher SNR might have impacted our results;
the achievable acceleration factors may be lower if
higher spatial resolution was considered. The run time
of PRICE and DC-CS were 7 minutes and 45 minutes
respectively while k-t SLR took 10 minutes and TV
approximately 7 minutes.

Myocardial Perfusion MRI

The results of the retrospectively undersampled ungated
and free-breathing in-vivo myocardial perfusion experi-
ment are shown in Figure 4. We consider the recovery
from three fold undersampled Cartesian trajectory. The
proposed algorithm is compared against DC-CS (27), k - t
SLR, MASTeR (29), and spatiotemporal total variation
regularization algorithm. Four frames corresponding to
peak right ventricular blood enhancement, transition
between right ventricle and left ventricle, peak left ven-
tricular blood enhancement and the case when the
enhanced blood leaves the heart are shown. The ungated
acquisition enables us to acquire diastolic and systolic
frames. This dataset is quite challenging due to quite sig-
nificant cardiac and respiratory motion as well as con-
trast variations resulting from bolus passage. We observe
that the PRICE scheme is able to provide reconstructions
with lower spatial and temporal blurring compared to
the other schemes. The quantitative metrics show about
1- 2.5 dB improvement compared to other reconstruc-
tions. Even though DC-CS results in crisp images, it
exhibits pixelated interpolation artifacts in some frames
due to inaccuracies during correction of the highly non-
rigid cardiac motion between consecutive systole and
diastole phases. Other authors have also reported similar

FIG. 2. Recovery of a retrospectively undersampled CINE dataset
using PRICE (second row; b1 &b2), explicit motion-compensated
algorithms (third and fourth rows), k-t SLR and classical total vari-

ation regularization (fifth and sixth rows). The 256 � 224 � 16
dynamic dataset, which is acquired using �5 coils, is retrospec-

tively undersampled using Cartesian sampling pattern. The
cropped cardiac images of the fully sampled data corresponding
to peak diastole and systole cardiac phases are shown in (a1) and

(a2). These images are cropped versions of the full frame shown
in (a3). The sampling pattern for one frame is shown in (a4). The

cropped reconstructed images are shown in the first two columns,
while their error images scaled by a factor of 7 for better visualiza-
tion are shown in the last two columns. The reconstructions using

the PRICE algorithm is quite comparable to the DC-CS scheme,
which explicitly compensates for the motion; the error images

show that the errors associated with PRICE and DC-CS are more
homogeneously distributed in the entire image, resulting in
improved SER. By contrast, the errors with other methods (e.g.

TV and MASTeR) are more concentrated in the edge regions, indi-
cating edge blurring. The table shows a quantitative comparison
of the entire methods using SER, HFEN and SSIM metrics; all

computed on the region of interest as shown in (a3).
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artifacts when compensating for large motion with

explicit motion compensation algorithms (26). The run

time of MATLAB CPU versions of PRICE, DC-CS and

MASTeR were 18.5 minutes, 1.4 hour, 1.2 hour respec-

tively. The run time for k-t SLR was 38 minutes while

TV took approximately 24 minutes.
The experiments on the free-breathing ECG-gated radial

stress perfusion MRI datasets, acquired from a normal sub-

ject and recovered from 24 rays are shown in Figure 5. The

motion in this dataset is not as challenging as in the previ-

ous case since the acquisition was ECG-gated and the sub-

ject was instructed to breath shallowly. We observe that

most of the motion compensated algorithms provide good

reconstructions in this case. However, PRICE is consider-

ably more computationally efficient than those explicit

ME-MC methods. It is also seen from the error images that

the motion compensated methods (PRICE and DC-CS) pro-

vide reduced edge blurring and better preservation of fine

features, including papillary muscles and around the myo-

cardium wall as shown in the red arrows. The run time of

PRICE and DC-CS were 20.6 minutes and 1.6 hours respec-

tively while k-t SLR took 50 minutes and TV approxi-

mately 33 minutes.

DISCUSSION

We have introduced a patch regularization framework to
recover DMRI from undersampled Fourier measurements.
The proposed method utilizes the redundancy between
patches in nearby frames to achieve implicit motion-
compensated recovery. This makes it a computationally
efficient alternative to ME-MC methods, which often
require detailed motion models, reference frames, and
careful initialization to minimize the convergence to local
minimum. More importantly, the computational complex-
ity of these methods are rather high. By contrast, the
PRICE scheme formulates the motion-estimation and
motion compensation steps into a simple cost-function,
which is similar to classical total variation regularization.

Our experiments show that the performance of PRICE
is comparable or slightly better than explicit motion
compensation schemes. Note that the ME-MC schemes
already provide superior reconstructions compared to
non motion-compensated methods such as total variation
regularization and k-t SLR; PRICE provides a computa-
tionally efficient alternative to the above explicit ME-MC
methods. The experiments also show that PRICE can
provide improved reconstruction of perfusion MRI data,

FIG. 3. Recovery of a prospec-
tively undersampled Cartesian
CINE dataset using PRICE, DC-

CS, k-t SLR, and TV algorithms.
The 128 � 128 � 20 sized data-
set is acquired using 12 coils

and 16 Cartesian lines per
phase. Two frames correspond-

ing to peak diastole and systole
cardiac phases are shown for
each scheme along with their

zoomed versions around the
square box as shown in (b1).

The sampling pattern varies from
frame to frame; the sampling
masks corresponding to two dif-

ferent frames are shown in (a2)
and (a3). We observe that TV

and k�t SLR reconstructions
exhibit temporal blurring while
DC-CS had some motion arti-

facts. PRICE is able to provide
better reconstructions with less

blurred myocardial borders and
papillary muscles.
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which indicates that it is not very sensitive to the con-
trast changes between the frames. Specifically, the robust
nature of the distance function minimizes the averaging
of the patches that differ considerably in contrast/intens-
tity, thus reduces blurring in these regions. Note that the
contrast changes are highly localized in space; the simi-
larity of the patches in other regions can still be
exploited effectively using the proposed PRICE algo-
rithm. While the use of patch-based low-rank methods

such as (23,24) may further improve the results, it is not
clear if these methods can be formulated as a simple and
cost function as in Eq. [3].

The choice of the parameters of PRICE is mainly moti-
vated by the specific datasets we considered in this paper.
These parameter values may have to be adjusted to obtain
good performance on other datasets. Specifically, the size
of the search neighborhood (M) may need to be increased
in high-resolution datasets or datasets with high inter-

FIG. 4. Evaluation of the ME-MC algorithms by retrospectively downsampling ungated and free-breathing myocardial perfusion MRI

data. The images (a1)–(a4) correspond to frames in the time series with different cardiac/respiratory phases and different contrast due
to bolus passage. These images are cropped from a 288 � 108 � 80 dataset acquired with 6 coils; one of these images are shown in
(a5). We undersampled the Cartesian sampled data along the phase encoding direction to obtain a three-fold acceleration. One of the

sampling masks are shown in (a6). The reconstructions and corresponding residuals using PRICE (b1–b4) & (b5–b8), DC-CS (c1–c4)&
(c5–c8), MASTeR (d1–d4)& (d5–d8), k-t SLR (e1–e4)& (e5–e8) and TV (f1–f4)& (f5–f8) are shown. The error images are scaled by a factor

of three for better visualization. The extensive inter-frame motion and contrast variations due to bolus passage makes this dataset very
challenging. We observe that the PRICE scheme provides reconstructions with lower spatial and temporal blurring, compared to the
other algorithms. The table above shows a quantitative comparison of the entire methods using SER, HFEN and SSIM metrics

computed on the region of interest shown in (a5).
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frame motion. The computational complexity of the algo-
rithm grows linearly with the number of patches that are
compared. We observe that ME-MC algorithms involving
block/patch matching will result in the same complexity
tradeoffs. Likewise, the complexity of algorithms involving
deformable models (e.g. DC-CS) also increases significantly
with increased inter-frame motion. Our experiments show
that the quality of the reconstructions are the best when the
patch size is N¼ 2; the assumption of translational motion
will be violated with larger patch sizes, restricting the per-
formance. While ‘p; p< 1 penalties exhibit some saturation
compared to ‘1 priors, we observe improved performance
with perfect saturation. The reader is referred to Figure 2 of
(34) for comparisons of different penalties. The conver-
gence rate of the algorithms is dependent on p, with
smaller p resulting in slower convergence.

The DC-CS algorithm derives a motion compensated
dataset as the byproduct (27), which may be used for
quantification. Since the motion compensation in PRICE
algorithm is implicit, further post-processing steps for
registration are required before quantification. However,
the computational complexity of PRICE is considerably
lower than DC-CS; the combined pipeline (recovery, fol-
lowed by registration) is still expected to be smaller.

The acquisition window for the first fully sampled per-
fusion Cartesian dataset is approximately 225 ms. Since
the heart may not be fully stationary during this win-

dow, the reference reconstructions may be corrupted by

cardiac motion during this window. Since the acquisi-

tion window for the second perfusion dataset is shorter

(187 ms), the effect of cardiac motion in the reference

data may be less significant.
We observe from Figure 3 that the DC-CS scheme pro-

vides higher errors in the Cartesian undersampling set-

ting. This may be attributed to the assymetry of

sampling; the original DC-CS implementation (27) uses

radial patterns that allows symmetric undersampling of

k-space. This problem may be mitigated by using a corre-

sponding assymetric/direction dependent smoothness

regularization of the deformation maps in DC-CS. How-

ever, this modification is beyond the scope of this note.

CONCLUSION

We introduced an iterative patch-based shrinkage algo-

rithm to recover dynamic MRI from highly undersampled

Fourier measurements. The proposed framework alter-

nates between a patch shrinkage step and a quadratic sub-

problem that is solved efficiently using conjugate

gradients algorithm. The comparison of PRICE against

classical TV and k�t SLR schemes demonstrates the bene-

fits of this framework in reducing motion-induced blur-

ring and streaking artifacts. The algorithm is also seen to

provide comparable or improved reconstructions over

FIG. 5. Evaluation of the ME-MC algorithms by radially downsampling 256 � 256 � 67 adenosine free-breathing stress myocardial per-
fusion MRI data acquired from a normal subject. Three frames of the reference data acquired using 72 spokes/frame are shown in (a1)–
(a3). This data is undersampled by retaining a subset of 24 spokes; the sampling trajectory for one of the frames is shown in (a4). The

recovered images and their corresponding residual images using PRICE (b1–b3) and (b4–b6), DC-CS (c1–c3) and (c4–c6), k-t SLR (d1–
d3) and (d4–d6), and TV (e1–e3) and (e4–e6) are shown. The three frames correspond to peak right ventricular blood enhancement, a

transition between the right ventricle and the left ventricle and peak left ventricular blood enhancement respectively. It is seen from the
error images that the motion compensated methods (PRICE and DC-CS) provide reduced edge blurring and better preservation of fine
features, including papillary muscles and around the myocardium wall as shown by the red arrows.
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state-of-the-art ME-MC schemes, while being considerably
more computationally efficient. The existence of a com-
mon cost function for both motion-estimation and motion
compensation steps enable efficient continuation strat-
egies that encourage the convergence to the global mini-
mum. The proposed scheme may be thought of as an
implicit motion-compensated compressed sensing scheme
with computational complexity that is comparable with
classical TV methods.
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