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ABSTRACT

We introduce a regularized optimization algorithm to jointly
recover signals that live on a low dimensional smooth man-
ifold. The regularization penalty is the nuclear norm of the
gradients of the signals on the manifold. We use this al-
gorithm to reconstruct free breathing dynamic cardiac CINE
MRI data. A novel acquisition scheme was used to facili-
tate the estimation of the manifold structure and recover high
quality images. The results show that the method is an effi-
cient alternative to traditional breath-held CINE exams.

Index Terms— free breathing, manifold, low rank, MR
image reconstruction, CINE

1. INTRODUCTION

The recovery of dynamic MRI data from undersampled mea-
surements using low rank priors to exploit the high correla-
tion between image frames has witnessed considerable re-
search. These methods perform well in breath-held applica-
tions, but the performance degrades with respiratory motion
since a model with considerably higher rank is required to
reliably approximate the more complex dynamic variations.

We model the images in a dynamic dataset as points
on a smooth low-dimensional manifold. Each image in a
free breathing dynamic cardiac dataset is a non-linear func-
tion of two parameters: cardiac phase and respiratory phase.
Hence, these images can be modelled as points on a smooth
low-dimensional manifold. Note that the dimension of the
manifold is considerably lower than the ambient dimension
(number of pixels in the image). We had recently intro-
duced a scheme exploiting manifold smoothness to recover
free breathing dynamic datasets [1]. We penalized the sum
of squares of `2 norms of the gradients on the manifold.
Since the neighbours of a particular image on the manifold
may be well separated in time, this approach is equivalent
to non-local smoothing. While this approach gave encour-
aging results, a limitation was the high memory demand of
the algorithm with increasing number of image frames. This
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is clearly a drawback since the accuracy of the results can
considerably improve with larger number of neighbours.

In this work, we propose to combine the manifold smooth-
ness prior with the low-rank structure of the signal. We pe-
nalize the nuclear norm of the gradients of the signals on the
manifold, specified by XQ, where X = [x1,x2, ..xn] is the
Casorati matrix of the data and Q is a gradient operator on the
manifold. This encourages low-rank solutions on a smooth
manifold. Note that the gradient vectors are free of the mean
of the neighbourhoods. Hence this approach may be viewed
as modelling the manifold by a union of affine subspaces.
We show that the proposed convex penalty can be efficiently
solved using a factorization X = UV and an alternating min-
imization strategy. The factorization provides a significant re-
duction in memory and computational demands over our pre-
vious scheme. This enables us increase the number of frames
and obtain significantly improved reconstructions.

We test the proposed algorithm on highly undersampled
free breathing CINE data. The manifold structure was es-
timated from radial navigator signals, acquired using a novel
pulse sequence. This approach gave improved results over our
earlier approach of estimating the manifold structure from the
images (which led to temporal blurring). The results demon-
strate the improvement offered by this scheme over classical
methods such as low-rank regularization. Our approach has
conceptual similarities to [2], where the respiratory and car-
diac phase information are estimated using manifold embed-
ding. The data from end expiration was used to recover a
CINE movie of the heart with few phases. In contrast, we
seek to recover the entire free-breathing dataset without di-
rectly estimating the cardiac and respiratory phases. This ap-
proach can provide valuable information such as variation of
ejection fraction and stroke volume over different heart beats
(rather than obtaining an average measure) which could be
useful in subjects with arrhythmia.

2. PROBLEM FORMULATION

2.1. Background

We considered the joint recovery of signals x1,x2, . . .xk ∈
M ⊆ RN (where M is a smooth m-dimensional manifold,



m << N ), from its under sampled measurements [1]:

bi = Aixi + ηi. (1)

Here, Ai ∈ CM×N ;M < N is the measurement operator
and ηi is the noise vector for the ith frame. The smoothness
of the underlying manifold was exploited by posing the re-
covery as the following discretized Tikhonov regularized re-
construction scheme:

{x∗
i } = argmin

xi

k∑
i=1

‖Aixi − bi‖2F + λTr(XLXH) (2)

where X =
[

x1 x2 . . . xk
]

and L is the Laplacian
of the associated graph. Since the graph Laplacian can be
factorized as L = QQT , the recovery problem (2) can be
rewritten as:

{x∗
i } = argmin

xi

k∑
i=1

‖Aixi − bi‖2F + λ ‖XQ‖2F . (3)

We term Q as the gradient operator on the manifold. For
k = 4, Q is given by :
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Here wij is the (i, j)th element of the weight matrix W of the
associated graph. The method for computation of the weights
is explained in section 2.2.

Our experiments show that increasing the number of
frames of X result in improved recovery. This is not surpris-
ing since having a larger dataset ensures that each frame has
a larger number of neighbours (frames that are similar to it)
which aids recovery. However, the computational complex-
ity and memory demand of the direct minimization of (3) is
prohibitively high for large datasets.

2.2. Estimation of the manifold structure

We introduce a novel acquisition scheme to facilitate the esti-
mation of the manifold structure. Specifically, each frame is
sampled using a combination of two Fourier sampling opera-
tors:

Ai =

[
Φ
Bi

]
(5)

Φ acquires k-space data at identical sampling locations in all
frames. In contrast, Bi samples k-space at different locations
in each frame. The matrices Φ and Bi used in this paper
are described in section 2.4. The data acquired by Φ for a
particular frame is termed the navigator signal for that frame.
The navigator signal for the ith frame is given by:

yi = Φxi (6)

Fig. 1. Two disjoint data clusters are shown lying close to a 1D
manifold (in red). The ambient space is 3D, but the 1-D manifold lies
on the 2D plane shown in blue. Minimization of the nuclear norm
of the manifold gradient XQ brings the points in the cluster closer
to the curve, while constraining it to the subspace. The proposed
scheme is more desirable than simple low rank regularized recovery
(which just restricts the reconstructed data points to the 2D plane)
or manifold smoothness recovery (which restricts the reconstructed
data points to lie near the 1D manifold).

These samples yi can be used to compute the weights wij

using any appropriate localized non-linear function. A com-
monly used function is :

wi,j =

{
e−
‖yi−yj‖

2

σ2 if ‖yi − yj‖22 < t
0 else

(7)

where t is some fixed threshold. A large value of t results
in a densely connected graph with more dissimilar nodes be-
ing connected. A smaller value of σ leads to more localized
or faster decaying weights. The matrix of weights W is fur-
ther denoised using the spectral clustering method by Shi and
Malik [3]. This shrinks smaller weights, thus reducing inter-
cluster interaction, which results in improved recovery.

2.3. New formulation

In this work, we propose to exploit the low-rank structure of
the image gradients on the manifold by considering the fol-
lowing optimization problem:

{X∗} = argmin
X
‖XQ‖∗

s.t. Aixi = bi
(8)

The nuclear norm compactness prior encourages the gradi-
ents on the manifold to be low-rank. Since the gradient vec-
tors are free of the mean of the manifold neighbourhoods, this
approach encourages the approximation of the manifold by a
union of affine subspaces. This is more desirable than the
classical low-rank approximation, as illustrated in Fig 1.

Assuming the data matrix X to be low rank, we factorize
it as:

X = UV (9)



where U ∈ RN×r, V ∈ Rr×k and rank(X) = r. In our
case of the cardiac data time series, this is a valid assumption
since the images are highly correlated. Here U corresponds to
basis images and V corresponds to temporal basis functions.
The ith column of the matrix V is given by vi. It can be
shown (along the lines of [4]) that the following optimization
problem:

{U∗,V∗} = argmin
U,V

1

2
[‖U‖2F + ‖VQε‖2F ]

s.t. AiUvi = bi

(10)

is equivalent to:

{X∗} = argmin
X
‖XQε‖∗

s.t. Aixi = bi
(11)

in the sense that X∗ = U∗V∗ and both the objective func-
tions of (10) and (11) reach the same minimum value subject
to the given constraints. Here, Qε is obtained by replacing
the zero singular values of Q with some infinitesimally small
value ε. If we define Lε = QεQεT , then Lε can be obtained
by replacing the zero singular values of the Laplacian L with
ε2.

In reality, the measurements are corrupted with noise and
our goal is to recover the under-sampled signals xi by solving
the optimization problem:

{U∗,V∗} = argmin
U,V

∑
i

‖AiUvi − bi‖2

+λ(‖U‖2F + ‖VQε‖2F )
(12)

and setting X = U∗V∗.
We assume that the graph associated with L has q con-

nected components and Cp is the set of nodes in the pth

connected component where p = 1, 2, . . . , q. The objective
function in (12) can be rewritten as :

∑
i ‖AiUvi − bi‖2 +

λ(‖U‖2F +‖V1Q
ε
1‖2F +‖V2Q

ε
2‖2F + . . .+‖VqQ

ε
q‖2F ). Here

Vp is a matrix containing the columns of V corresponding
to the indices in Cp. Qε

p can similarly be obtained by choos-
ing the appropriate rows of Qε. This can be interpreted as
promoting similarity between the temporal profiles of images
within the same cluster. Similar temporal profiles within a
cluster enforces similarity between images in that cluster thus
leading to a low rank of the manifold gradient as desired by
(11). This gives some intuition regarding the equivalence be-
tween (12) and (11), and our choice of objective function.

Problem (12) is solved by alternating between minimiza-
tion with respect to U and V. This requires an initial guess
for the temporal basis matrix V. For this purpose, we use the
samples yi from (6) following the ideas in [5]. The initial
guess is obtained by performing a singular value decomposi-
tion on the matrix Y and retaining the first n right subspace
vectors obtained. Here Y =

[
y1 y2 . . . yk

]
and n is

some chosen number such that n > r.

Fig. 2. K-space sampling masks. Blue: Sampling mask
for navigator signals (same sampling locations every frame).
Green: Sampling mask corresponding to a continuous radial
Golden angle acquisition (different sampling locations every
frame). Red: Locations of k-space that are not sampled.

Recovery and storage of only U and V is more memory
efficient than the recovery and storage of X. In the former
case we have to store two matrices of size N × n and n × k
respectively, whereas in the latter case we have to store one
matrix of sizeN×k. TypicallyN is large (say 5122) and n is
small (say 50). A large value of k implies a long acquisition
time, but a better recovery. For N = 5122, n = 50 and k =
1000, the low rank decomposition reduces memory usage by
almost a factor of 20.
2.4. Application to free breathing cardiac CINE MRI

We developed a novel sampling scheme as described in (5)
to facilitate the estimation of the manifold structure and re-
construction, using a modified golden angle radial sampling
strategy (Fig 2). In the classical golden angle radial sam-
pling strategy, the angle between consecutively acquired ra-
dial lines of k-space is approximately 111.25◦. For our mod-
ified scheme each image frame is to be reconstructed from
p lines of k-space out of which s lines are navigator lines.
These s radial lines of k-space are acquired at fixed angles
of i×180◦

s every frame where i = 0, 1, 2 . . . , s − 1. The rest
of the lines (p − s per frame) are acquired continuously by a
classical golden angle trajectory. If p = 5 and s = 2, the lines
numbered 3, 4, 5, 8, 9, 10, 13, 14, 15 . . . are consecutive lines
of a classical golden angle acquisition.

The sequence was implemented on a 3T Siemens Trio
scanner. The data was acquired using a SSFP sequence with
an 18 channel coil array, with TR/TE 4.2/2.1 ms, matrix size
512 × 512, FOV 300mm×300mm and slice thickness 5mm.
In this paper, we used 10 radial lines of k-space to recon-
struct each image frame, 4 of which were navigator lines.
This translated to a temporal resolution of 42 ms. For fac-
torization according to (9), we considered n = 50 > r. The
acquisition time was 42 s corresponding to 1000 frames.

3. RESULTS

3.1. Numerical simulations

A short axis view of the PINCAT phantom [6] torso (with both
cardiac and respiratory motion) was used to study the effect
of the number of common lines on the weight computation.
This is illustrated in Fig 3. The matrix size of this dataset was
128 × 128 and we used a time series containing 500 frames.



Fig. 3. (a) A single frame of the PINCAT phantom. (b) Plot show-
ing error in computation of weights (according to (7) followed by
denoising using spectral clustering) with respect to number of com-
mon kspace lines measured.

This corresponds to around 29 cardiac cycles and 6 respiration
cycles. A frame of the phantom is shown in Fig 3(a). In Fig
3(b) error in weight computation is plotted against the number
of navigator lines per frame. It is observed that around 2%
error is incurred when 10 navigator lines are used. Note that
for our dataset acquired on the MR scanner, we have an 18
channel coil array, each acquiring 4 navigator lines per frame.
This translates to using 18×4 = 72 navigator lines per frame
to estimate the weights.

3.2. Experimental data

The acquired MRI data was reconstructed using the proposed
scheme and several state of the art methods. The compar-
isons are shown in Fig 4. The rows correspond to the re-
constructions using (a) nuclear norm minimization, (b) PSF
recovery [5], where V is computed using the SVD of the ma-
trix of common lines Y and U is computed using the least
squares minimization, (c) PSF recovery with spatial total vari-
ation regularization of U, and (d) the proposed algorithm
(12). It is observed that images in (a) exhibit considerable
spatial blurring. The PSF scheme in (b), which corresponds
to hard thresholding of singular values, provides sharper re-
sults. However, there are considerable streaking artifacts. The
use of spatial TV regularization in PSF model (c) is observed
to blur the features of most images without fully removing
the streaking artifacts. The image in column 2 shows sharper
features on the application of spatial TV. In (d) the streaking
artifacts are eliminated, without considerable edge blurring.

4. CONCLUSION

An algorithm was proposed to recover undersampled data
which has a low rank structure and lies on a low dimensional
smooth manifold. This algorithm was used to recover a free-
breathing cardiac image series from its kspace samples. A
novel acquisition scheme was designed to estimate the man-
ifold structure from the kspace data. Good quality and high
temporal resolution images were obtained, making the pro-
posed method a simple and efficient alternative to traditional
breath-held CINE. The method performs significantly better
than low rank methods with and without total variation priors.
The quality of the reconstructions may further be improved
using spatial total variation regularization.

Fig. 4. Reconstructions of free breathing CINE data using differ-
ent algorithms: The rows correspond to reconstructions obtained us-
ing (a) Nuclear Norm minimization recovery (b) Low rank recovery
with V obtained by SVD of Y (matrix of common kspace lines) and
U recovered using a least squares minimization (c) Similar approach
as (b) with addition of spatial TV regularization on U (d) Recovery
using the new algorithm given by (12). The first five columns are
representative images from the time series (cropped to include only
the myocardium), while the last column shows the temporal intensity
profile of the reconstructions along a vertical line.
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