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ABSTRACT
We propose a matrix completion algorithm for matrices where
the columns appear in clusters. The algorithm estimates the
similarity between every pair of points using partial distances,
computed from the entries of their commonly observed in-
dices. It is shown that the similarity matrix can be reliably
estimated from partial distances, and used to aid the recov-
ery process. It is observed that the proposed algorithm with
the estimated similarity matrix performs very well for well-
separated clusters where the coherence of the difference be-
tween columns from different clusters is low. The method is
also successful in reconstructing images from under-sampled
Fourier data.

Index Terms— Clustering, Missing Data, Image Recon-
struction, Matrix Completion.

1. INTRODUCTION

Clustering aims at finding groups within a collection of ob-
jects, based on similarity in their features. It is an important
and well-studied problem in data analysis, as is evident from
the vast amount of literature dedicated to it. Some traditional
clustering techniques are K-means [1] and spectral clustering
[2]. Recently, convex clustering methods [3] have been pro-
posed which address many of the shortcomings of these tra-
ditional methods, such as sensitivity to initialization and prior
knowledge of the number of clusters.

Most clustering algorithms assume full knowledge of all
the features of each object. Relatively less work has been
done on reconstructing clustered data when incomplete fea-
ture information is available about some (or all) the objects.
There are several applications where reconstruction algo-
rithms have to deal with missing data that appear in clusters.
In Magnetic Resonance Imaging, data corresponding to dif-
ferent image frames is collected in the Fourier domain. Since
the imaging process is slow, only a few Fourier samples can
be collected in each frame. Similar images appearing at
different time points may be clustered to aid the image recon-
struction [5]. Recommender systems also need to solve the
matrix completion problem for the special case of clustered
columns.

This work is supported by

We propose a convex clustering algorithm for data with
missing entries matrix completion algorithm for clustered
data. The similarity between a pair of points is estimated
using their partial distance, computed using the samples at
commonly observed locations. This estimate is shown to be
accurate, if there are a sufficient number of such commonly
observed locations. The similarity matrix is then used to clus-
ter the data using a convex algorithm. We obtain the solution
using the ground-truth similarity matrix, and then compare
it to the case where the similarity matrix is estimated from
the partial distances. It is assumed that the clusters are well-
separated and the difference between pairs of points from
different clusters have low coherence. Under these assump-
tions, it is shown experimentally that using the ground-truth
similarity matrix in the proposed algorithm results in good
cluster centre estimates. It is also observed that using an
estimated similarity matrix does not result in very significant
errors, and the performance improves with increase in the
number of observed samples. The technique is also used
to reconstruct an image series from under-sampled Fourier
measurements.

2. BACKGROUND

2.1. Notations

We consider the matrix X 2 Rn⇥N , where each column is
an observation (xi 2 Rn) with n features. Each observation
belongs to 1 out of k clusters. The i

th cluster contains Ni

points, and therefore
Pk

i=1 Ni = N . The cluster to which xj

belongs is denoted by C(j). Each element of the matrix X is
known with probability p0. The rectangular sampling matrix
corresponding to xi is denoted by Si. Let U 2 Rn⇥N be the
matrix of cluster centres, such that the i

th column ui 2 Rn

represents the centre of cluster C(i). xi and ui are related as:

xi = ui + ⌘i (1)

Our goal is to recover the cluster centres {ui}, given incom-
plete observations {Sixi}.



2.2. Convex Clustering of fully sampled data

Convex clustering methods have been proposed for the case
of fully observed data (i.e. Si = I, 8i) by solving the opti-
mization problem:

{u⇤
i } = argmin

ui

X

i

kui � xik2 + �

X

i

X

j

wijkui � ujk2

(2)
Here, the weights wij represent the similarity between points
xi and xj , computed using a non-linear function such as:

wij = e

�
d2ij

�2 (3)

where dij = kxi � xjk22. This algorithm overcomes some
shortcomings of spectral clustering and k-means clustering
such as the prior knowledge of the desired number of clus-
ters and sensitivity to initialization. In the convex clustering
algorithm, the number of clusters change continuously with
the regularization parameter �. This allows for an observa-
tion of the ”clustering path”, by varying � over a large range.

3. THEORY

3.1. Recovery of Clustered Data with missing entries

We propose to extend the convex clustering algorithm to ac-
count for missing data by solving the optimization problem:

{u⇤
i } = argmin

ui

X

i

kSi(ui � xi)k2

+�

X

i

X

j

wijkui � ujk2
(4)

The weights wij cannot be estimated in this case using (3),
since only a few entries of xi are known, and the rest are
missing. We first analyze the algorithm performance as-
suming perfect knowledge of the ground-truth weight matrix
W

(gt). We compare this to the algorithm performance using
weights estimated from the partially observed data, denoted
by W

(est). We note that the solution for each row is inde-
pendent of other rows. Hence, for simplicity, we analyze the
solution for only the 1

st row of U. The 1

st rows of X and
U are denoted by x and u respectively. xj and uj are the j

th

elements of x and u. The solution of (4) using the weight
matrices W(gt) and W

(est) are u

(gt) and u

(est) respectively.
We also have the following assumptions on the data:

A1 The maximum spread of any cluster is: � = maxi k⌘ik.

A2 The minimum distance between any 2 cluster centres is:
✏ = minC(i) 6=C(j) kui � ujk.

A3 There exists a constant K > 2 such that ✏ = K�. A large
value of K implies well-separated clusters.

A4 For any vector x 2 Rn, the coherence is defined as
nkxk2

1
kxk2

2
. The coherence of the difference between

each pair of columns from different clusters is up-
per bounded by µ. The intuition is to avoid situations
where points belonging to different clusters differ only
at a few sampling locations.

We derive an expression for u⇤(gt). We observe that u⇤(gt)

is very close to the ground-truth cluster centres and the dif-
ference reduces with increase in sampling probability p0. We
also derive an estimate for �u

⇤
= (u

⇤(gt) � u

⇤(est)
). Our

experiments result in small values of �u

⇤ when K is large
and µ is small. We observe that for relatively higher p0, the
estimate for �u

⇤ is quite accurate.

3.2. Performance using Ground-truth Weights

We define the ground-truth weight matrix W

(gt) entries as:

w

(gt)
ij =

(
1 , if xi and xj belong to the same cluster.
0 , otherwise.

(5)

We find an expression for the solution of (4) using W

(gt).
The following definitions will be used to state the result:

• sj = 1 if xj has been observed and 0 otherwise.

• ⇢C(j) is the fraction of samples belonging to cluster
C(j) that have been observed in x.

Theorem 1. The solution of the clustering algorithm (4) us-

ing the weight matrix W

(gt)
is:

u

⇤(gt)
j =

1

sj + �NC(j)
[sjxj +

�

⇢C(j)

X

m:xm2C(j)

smxm] (6)

Corollary 1.1. When there is zero intra-cluster variance (i.e.

K ! 1), then with a probability � 1 � (1 � p0)
NC(j)

, the

solution to (4) using the weight matrix W

(gt)
is:

u

⇤(gt)
j = xj (7)

The probability in Corollary 1.1 is associated with the as-
sumption that there is at least 1 known entry in x belonging to
the cluster C(j). If this assumption is satisfied, then we have
perfect recovery of the centre of cluster C(j).

3.3. Weight Estimation from Incomplete Data

Since W

(gt) is not available in practice, we estimate the
weight matrix W

(est) from the partially observed data. Sim-
ilar to [10], we will use the concept of partial distances. We
denote the set of indices that are observed in both xi and xj

by ⌦ij . We represent the vector of entries of xi at locations



in the set ⌦ by x

⌦
i . Let |⌦ij | = q. The, the partial distance

between xi and xj is defined as:

d

⌦ij

ij =

r
n

q

kx⌦ij

i � x

⌦ij

j k2 (8)

Using ideas from [10], we can conclude that if a pair of points
has a sufficiently large number of commonly observed loca-
tions, then the partial distance between them is close to the
actual distance between them with a high probability. The
idea is formalized in the next theorem.

Theorem 2. For any 0 < �0, �1 < 1 and q � q0 =

2µ2

�21
log

2
�0

, we have with probability � (1� �0):

(1� �1)d
2
ij  (d

⌦ij

ij )

2  (1 + �1)d
2
ij (9)

Thus, for pairs of points having a sufficient number of
commonly observed locations, the weight wij can be esti-
mated reliably from the partial distances with high probabil-
ity. Motivated by (3), we compute the weight matrix W

(est)

from partial distances as:

w

(est)
ij =

8
<

:
e

�
(d

⌦ij
ij )2

�2
, if |⌦ij | � q0 and (d

⌦ij

ij )

2
< t.

0 , otherwise.
(10)

Corollary 2.1. The weight w

(est)
ij is computed for a pair of

points xi and xj , where |⌦ij | � q0 and t = (1 + �1)�
2
.

• If C(i) 6= C(j), then wij = 0 with probability � (1 �
�0e

�(K�2)4

2 ).

• If C(i) = C(j), then wij > e

� (1+�1)�2

�2
with probability

� (1� �0
2 ).

3.4. Performance using Estimated Weights

We perform some preliminary analysis on the performance
of algorithm (4) using an estimated weight matrix. A more
thorough analysis will be the subject of future work. For sim-
plicity, we study the performance of the clustering algorithm
(4) when we have the following weight matrix:

w

(th)
ij =

8
>>>>><

>>>>>:

1 , if C(i) = C(j).

e

�
(d

⌦ij
ij )2

�2
, if C(i) 6= C(j), |⌦ij | � q0,

(d

⌦ij

ij )

2
< t.

0 , otherwise.

(11)

The matrices W

(est) and W

(th) differ only in the definition
of the intra-cluster weights. We note from our simulations
that under favourable conditions such as high sampling prob-
ability, low intra-cluster variance and high inter-cluster dis-
tance, the effect of W(est) and W

(th) on the clustering algo-
rithm are comparable. The difference in the solutions u⇤(th)

and u

⇤(gt) (using W

(th) and W

(gt) respectively) is due to the
presence of non-zero inter-cluster weights.

We introduce the term ”1st order interaction” to refer
to the effect of wij (where C(i) 6= C(j)) on u

⇤
m where

m 2 C(i), or m 2 C(j). Higher order interactions refer
to the effect of wij (where C(i) 6= C(j)) on u

⇤
m where

m /2 C(i), C(j). We denote the difference (u

⇤(gt)
j � u

⇤(th)
j )

by �u

⇤
j , and approximate it as the sum of all 1

st order
interactions. Before stating the next result, which gives a
closed-form approximation for �u

⇤
j , we define the following:

• L

(gt) and L

(th) are the Laplacian matrices correspond-
ing to W

(gt) and W

(th) respectively.

• S is the square diagonal sampling matrix for x.

Theorem 3. The difference between u

⇤(th)
j and u

⇤(gt)
j , ap-

proximated as the sum of all 1

st
order interaction errors is:

�u

⇤
j ⇡ �[(S+ �L

(gt)
)

�1
(L

(gt) � L

(th)
)u

⇤(gt)
]j (12)

This approximation ignores all higher order inter-class inter-
actions. We expect that under favourable conditions such as
well-estimated weights, well-separated clusters and low intra-
cluster variance, this approximation should be accurate.

Corollary 3.1. If we assume zero intra-cluster variance (i.e.

K ! 1) and set t = 0, then W

(th)
= W

(gt)
with prob-

ability ⇡ 1. In this case, using either of the weight matrices

W

(est)
or W

(th)
in the algorithm (4) results in �u

⇤
j = 0 with

probability � (1� (1� p0)
NC(j)

).

4. RESULTS

4.1. Validation on simulated data

We applied the proposed algorithm to a simulated matrix X 2
R20⇥500 with well-separated convex clusters (k = 5, Ni =

100). Columns 1� 100 of X were assigned to the 1st cluster,
101� 200 were assigned to the 2

nd cluster and so on.
Fig 1 compares the results u⇤(gt) and u

⇤(est) to the actual
cluster-centres u. The results are reported for � = 10

�6,
p0 = 0.8, 0.5, 0.3 and K = 1, 10, 3.5. The error �u

⇤
=

u

⇤(gt) � u

⇤(est) is shown in Fig 2 for the same parameters.
This is compared to the 1

st order error approximation given
by (12). It is observed that the approximation is quite accurate
for high values of K.

4.2. Application to MR image reconstruction

Image reconstruction from a few Fourier samples is a com-
mon problem in Magnetic Resonance Imaging. We used the
proposed algorithm to reconstruct a time series of cardiac
PINCAT [11] images, from under-sampled Fourier data. The
images were generated in the breath-held, short-axis mode.
There are N = 200 image frames, each of size 128⇥128 and



Fig. 1. Clustering performance: The 1

st row of the matrix
of cluster centres is shown here, obtained from (1) Ground-
truth data (green) (2) Proposed algorithm using W

(gt) (red)
(3) Proposed algorithm using W

(est) (blue). The results are
shown for 3 values of p0 and K, and � was fixed at 10�6.

Fig. 2. Clustering error due to imperfect weights: We show
the difference between the 1

st row of estimated cluster cen-
tres when computed using W

(gt) and W

(est). The experi-
mentally obtained error is shown in blue. The theoretically
obtained 1

st order error approximation is shown in red. The
results are shown for the same parameters as in Fig 1.

k = 20 cardiac cycles, each consisting of Ni = 10 frames.
The Fourier domain data corresponding to each image frame
can be reshaped into a vector of size 128

2 ⇥ 1 and arranged
as a column of the matrix X 2 C1282⇥200. In the original
dataset, we have K ! 1. We add zero-mean Gaussian ran-
dom noise in the image domain, resulting in K = 3.25. The
Fourier data corresponding to the noisy images was under-
sampled using a variable density random sampling mask, as

Fig. 3. Image reconstruction from under-sampled Fourier
data: Cardiac PINCAT phantom images were under-sampled
in the Fourier domain. The images were clustered and recon-
structed from 10% and 40% of the Fourier samples, using the
proposed algorithm. The under-sampling masks and recon-
structed images are shown here along with the ground-truth.

shown in Fig 3. Reconstructions are shown from 10% and
40% of the Fourier samples. It can be seen that the recon-
structed images are very similar to the ground-truth.

5. CONCLUSION

A method for convex clustering and reconstruction of data
with missing entries is proposed. The algorithm uses a weight
matrix which depends on the similarity between every pair
of points. An expression is derived for the solution using a
ground-truth weight matrix. It is then shown that the weight
matrix can also be estimated from the data itself. An esti-
mate is obtained for the difference in the solutions using the
two weight matrices. The results obtained at 50% and 80%

missing samples on a simulated dataset are quite promising.
If the ratio between minimum inter-cluster distance and max-
imum intra-cluster distance is kept high, then good results are
also obtained at 30% missing entries. The algorithm is shown
to be successful in clustering and reconstructing cardiac im-
ages from highly under-sampled (90% missing) Fourier data.
Cluster size and number of clusters are other factors whose ef-
fects are to be studied in future work. Further research needs
to be performed to explore the utility of the algorithm in var-
ious other image processing and reconstruction applications.
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