Model-Based Image Reconstruction using Deep Learned Priors (MoDL)

Hemant K. Aggarwal, Merry P. Mani, and Mathews Jacob

April 6, 2018

Inverse Problems & Classical Solutions

Model-Based Problem Formulation

Given
$$y = Ax + n$$
, $A \in \mathbb{C}^{M \times N}$, $x \in \mathbb{C}^N$
 $\hat{x} = \arg \min_{x} ||y - Ax||_2^2 + \lambda \mathcal{R}(x)$

 $\mathcal{R}(x)$: regularization priors

- Total Variation
- Wavelet-based sparsity
- Plug and Play denoisers
 - BM3D, non-local means

¹ Venkatakrishnan et al. Plug-and-Play priors for model based reconstruction GlobalSIP, 2013

Alternative: black-box deep learning approaches

Joint Learning of Image manifold & Inverse: Challenges

- Large network: lots of training data
- Sensitive to acquisition setting: image matrix, undersampling pattern
 - Need several trained networks

 1 Lee et al. Deep artifact learning for compressed sensing and parallel MRI arXiv, 1703.01120 2 Jin et al. Deep Convolutional Neural Network for Inverse Problems in Imaging MRI IEEE TIP, 2017

Aggarwal, Mani, and Jacob

MoDL: Model Based Deep Learning

MoDL: model based recovery with DL priors

Denoising using noise predictor $\mathcal{N}_{\mathbf{w}}$

Denoiser

$$\mathcal{D}_{\mathbf{w}}(\mathbf{x}) = \left(\mathcal{I} - \mathcal{N}_{\mathrm{w}}
ight)(\mathbf{x}) = \mathbf{x} - \mathcal{N}_{\mathbf{w}}(\mathbf{x}).$$

Aggarwal, Mani, and Jacob

Alternating minimization

Problem Formulation

$$\mathbf{x} = \arg\min_{\mathbf{x}} \|\mathbf{A}\,\mathbf{x} - \mathbf{b}\|_2^2 + \lambda \|\mathbf{x} - \mathcal{D}_{\mathbf{w}}(\mathbf{x})\|_2^2$$

Algorithm

$$\begin{aligned} \mathbf{z}_{k} &= \mathcal{D}_{\mathbf{w}}\left(\mathbf{x}_{k}\right) \\ \mathbf{x}_{k+1} &= \left(\mathbf{A}^{H}\mathbf{A} + \lambda \mathbf{I}\right)^{-1}\left(\mathbf{A}^{H}\mathbf{b} + \lambda \mathbf{z}_{k}\right) \end{aligned}$$

Recursive MoDL Architecture

$$\mathbf{z}_{k} = \mathcal{D}_{\mathbf{w}} (\mathbf{x}_{k})$$
$$\mathbf{x}_{k+1} = \left(\mathbf{A}^{H}\mathbf{A} + \lambda \mathbf{I}\right)^{-1} \left(\mathbf{A}^{H}\mathbf{b} + \lambda \mathbf{z}_{k}\right)$$

Training: unroll the recursive network

Shared weights: chain rule for gradients

Joint training is better than pre-trained denoisers

¹ Chang et al. One N/w to Solve Them All: Solving Linear Inverse Prob. using Deep Projection Models, ICCV, 2017

Differences with current iterative approaches

Challenges

- Different networks at each iteration: not consistent with model based framework
 - Large capacity: Require significantly more training data
- More training data available: increase complexity of networks at each iteration
- ³ Mardani et al. Recurrent GAN for Proximal Learning and Automated Compressive Image Recovery CVPR, 2018
 ⁴ Schlemper et al. A Deep Cascade of CNN for Dynamic MR Image ReconstructionTMI, 2018
- ⁵ Hammernik et al. Learning a Variational Network for Reconstruction of Accelerated MRI Data MRM, 2017

Aggarwal, Mani, and Jacob

MoDL: Can be trained with less training data

MoDL: Weight sharing vs without weight sharing

Original slice $A^{H}B$ at 6x, 24.97 dB w/o sharing, 32.93 dB with sharing, 38.67 dB

MoDL: Insensitivity to acquisition conditions

6-Fold, 39.43 dB 8-Fold, 38.47 dB 10-Fold, 37.75 dB 12-Fold, 36.42 dB 14-Fold, 35.87 dB

Aggarwal, Mani, and Jacob

Parallel MRI: $(A^{H}A + \lambda I)$ not analytically invertible

Current approaches: Gradient descent (ISTA)

Alternating minimization

$$egin{aligned} \mathbf{z}_k &= \mathcal{D}_{\mathbf{w}}\left(\mathbf{x}_k
ight) \ \mathbf{x}_{k+1} &= rgmin_x \|Ax - b\|_2^2 + \lambda \|x - z_k\|_2^2 \end{aligned}$$

Gradient Descent to minimize DC subproblem⁵

$$\mathbf{x}_{k+1} = x_k - 2(A^H A + \lambda I)x_k + 2A^H b + 2\lambda z_k$$

Shrinkage is cheap in CS setting: fast convergenceEach DC block is in-expensive

⁶ Hammernik et al. Learning a Variational Network for Reconstruction of Accelerated MRI Data. MRM, 2017
 ⁶ Wang et al. Deep Networks for Image Super-Resolution with Sparse Prior. ICCV, 2015

Aggarwal, Mani, and Jacob

MoDL: Model Based Deep Learning

Training difficulties with large unrolled network

Large number of iterations

- Large network with unrolling
 - Does not fit on GPUs
- Hammernik et al: does not use weight sharing

³ Hammernik et al. Learning a Variational Network for Reconstruction of Accelerated MRI Data MRM, 2017

Aggarwal, Mani, and Jacob

MoDL: Model Based Deep Learning

Solution: Numerical Optimization within DL Network

Sub-Problems

$$\begin{aligned} z_k &= \mathcal{D}_{\mathbf{w}} \left(\mathbf{x}_k \right) \\ \mathbf{x}_{k+1} &= \arg \min_x \|Ax - b\|_2^2 + \lambda \|x - z_k\|_2^2 \end{aligned}$$

CG within network

- Faster convergence than ISTA
- Need fewer iterations: use larger network on GPU

Backpropagation through CG Layer

Aggarwal, Mani, and Jacob

CG within network: improved performance

Parallel Imaging with DL (6x)

Original Image

A^HB, 22.93 dB

Tikhonov, 34.16 dB

CSTV, 35.20 dB $\,$

Grad.Desc., 38.29 dB MoDL, 40.33 dB

Aggarwal, Mani, and Jacob

MoDL: Model Based Deep Learning

Parallel Imaging with DL (6x)

Parallel Imaging with DL (8x)

Original Image

A^HB, 23.82 dB

Tikhonov, 32.05 dB

CSTV, 34.43 dB

Grad.Desc., 35.22 dB MoDL, 37.95 dB

Aggarwal, Mani, and Jacob

MoDL: Model Based Deep Learning

Parallel Imaging with DL (8x)

MoDL-SToRM: Use patient-specific image priors

¹ Biswas et al. Model-based Free Breathing Cardiac MRI Recon. using Deep Learned & SToRM priors ICASSP, 2018

MoDL-SToRM: Use patient-specific image priors

¹ Biswas et al. Model-based Free Breathing Cardiac MRI Recon. using Deep Learned & SToRM priors ICASSP, 2018

Dynamic image recovery using MoDL-SToRM

SToRM recon from 45s of acquisition

SToRM recon from 5s of acquisition

MoDL recon from 5s of acquisition

• Integrating DL priors with model based reconstruction: systematic approach

- Weight sharing: reduced training data
- ▶ More training data: better performance with iterating shared layers
- Relatively insensitive to acquisition settings
- Exploit fast algorithms for forward model evaluation
- Numerical optimization blocks within deep network
 - Complex forward model: parallel MRI
 - Faster convergence compared to LISTA
 - Add additional priors: (e.g. subject specific priors)
- Model based deep learning image recovery
 - Fast image recovery
 - Improved image quality

• Integrating DL priors with model based reconstruction: systematic approach

- Weight sharing: reduced training data
- More training data: better performance with iterating shared layers
- Decouple inversion of forward model from image manifold learning
 - Relatively insensitive to acquisition settings
 - Exploit fast algorithms for forward model evaluation

Faster convergence compared to LISTA

- Add additional priors: (e.g. subject specific priors)
- Model based deep learning image recovery

• Integrating DL priors with model based reconstruction: systematic approach

- Weight sharing: reduced training data
- More training data: better performance with iterating shared layers
- Decouple inversion of forward model from image manifold learning
 - Relatively insensitive to acquisition settings
 - Exploit fast algorithms for forward model evaluation
- Numerical optimization blocks within deep network
 - Complex forward model: parallel MRI
 - Faster convergence compared to LISTA
 - Add additional priors: (e.g. subject specific priors)

• Integrating DL priors with model based reconstruction: systematic approach

- Weight sharing: reduced training data
- More training data: better performance with iterating shared layers
- Decouple inversion of forward model from image manifold learning
 - Relatively insensitive to acquisition settings
 - Exploit fast algorithms for forward model evaluation
- Numerical optimization blocks within deep network
 - Complex forward model: parallel MRI
 - Faster convergence compared to LISTA
 - Add additional priors: (e.g. subject specific priors)
- Model based deep learning image recovery
 - Fast image recovery
 - Improved image quality

Thank You

Full paper: https://arxiv.org/abs/1712.02862

Computational Biomedical Imaging Group Laboratory http://research.engineering.uiowa.edu/cbig/