MRI & manifolds

Mathews Jacob

Declaration of Financial Interests or Relationships

Speaker Name: Mathews Jacob

I have no financial interests or relationships to disclose with regard to the subject matter of this presentation.

What are manifolds ?

Topological space: locally resembles Euclidean space

n: dimension of the manifold N: intrinsic dimension

Non-linear one to one mapping

Current manifold models in MRI

Matrix decomposition

Low rank and sparse models [Liang et al, Lingala & Jacob,]

Dictionary learning methods [Ravishankar et al, Lingala & Jacob,.....]

THE UNIVERSITY

Structured low-rank matrix completion

Correlation in Fourier space [Ongie & Jacob, Haldar et al, Ye et al]

Smooth manifold models

Patch manifold: motion compensation [Yang & Jacob, Mohsin et al,

Image manifold: motion resolution [Poddar & Jacob, Nakarmi & Ying]

Matrix decomposition

Low rank and sparse models [Liang et al, Lingala et al,]

Dictionary learning methods [Ravishankar et al, Lingala et al,....]

THE UNIVERSITY

Structured low-rank matrix completion

Correlation in Fourier space [Ongie & Jacob, Haldar et al, Ye et al]

Smooth manifold models

Patch manifold: motion resolution [Yang & Jacob, Mohsin et al,]

Image manifold: motion resolution [Poddar & Jacob, Nakarmi & Ying]

Smooth manifolds: examples

- Patches in cartoon images Non-linear function of
 - Orientation
 - Distance from origin

Patch matrix

Rows: NL functions of Orientation Distance from origin High rank matrix Non-smooth manifold

Gabriel Peyre, CVIU

Patch manifolds in natural images THE UNIVERSITY

Awate et al, UINTA, TPAMI 2006

Image manifolds: FB CINE

High rank Casorati matrix

THE UNIVERSITY

Low-rank priors not efficient

Respiratory motion

 $\frown \lor \lor \lor \lor \frown \land$

Cardiac motion Images: smooth NL functions of cardiac time series

Low-rank approximation

Global linear model: inefficient in capturing manifold

Current methods with manifolds

Model local neighborhoods using linear models

Dictionary learning/BCS

Mixture of PCA/ factor analysis

Non-local smoothing

Unweighted sum of distances between patches

 $\begin{array}{c|c} P_{\mathbf{y}_1} \\ f(\mathbf{y}_1) \\ P_{\mathbf{x}} \\ f(\mathbf{x}) \\ P_{\mathbf{y}_2} \\ f(\mathbf{y}_2) \\ f(\mathbf{y}_3) \\ \end{array}$

$$f_{\text{denoised}} = \frac{\sum_{\mathbf{y} \in \mathcal{N}_x} w(\mathbf{x}, \mathbf{y}) f(\mathbf{y})}{\sum_{\mathbf{y} \in \mathcal{N}_x} w(\mathbf{x}, \mathbf{y})}$$
$$w_{\mathbf{x}, \mathbf{y}} = \exp\left(-\frac{\|\mathcal{P}_{\mathbf{x}}(f) - \mathcal{P}_{\mathbf{y}}(f)\|^2}{\sigma^2}\right)$$

THE UNIVERSITY

Clusters patches to groups & average [BM3D]

Variational approach

THE UNIVERSITY

Regularized formulation for deblurring [Zhang et al, Lou et al]

$$f^* = \arg\min_{f} \|\mathcal{A}(f) - \mathbf{b}\|^2 + \lambda J_{\mathrm{NL}}(f)$$
$$J_{\mathrm{NL}}(f) = \sum_{\mathbf{r},\mathbf{s}} w [\mathbf{r},\mathbf{s}] \|f(\mathbf{r}) - f(\mathbf{s})\|^2$$

Weights estimated from blurred/noisy images

Works well for denoising/deblurring

CS applications

IFFT weights result in poor estimates

Robust NL regularization

Energy does not depend on weights

Applicable to general inverse problems

Yang & Jacob., IEEE TIP 2013

Why does this work?

Smoothing of point clouds

Surface area of the mesh

Area
$$\approx \sum_{\mathbf{x}} \sum_{\mathbf{y} \in N(\mathbf{x})} \psi(\|\mathbf{x} - \mathbf{y}\|)$$

Saturating distance: select neighborhood

Area minimization: curvature flow

Denoising of point clouds

Similarity to current methods

Majorization by a quadratic

 $\varphi\left(\left\|P_{\mathbf{r}}(f) - P_{\mathbf{s}}(f)\right\|\right) \leq w_{f}(\mathbf{r}, \mathbf{s}) \left\|P_{\mathbf{r}}(f) - P_{\mathbf{s}}(f)\right\|^{2} + c$

THE UNIVERSITY

Peyre: 0

Weights depend on patch differences

THE UNIVERSITY

Alternate between manifold estimation and smoothing

Better performance @ runtime of TV

(f) Original image

(a) Local TV, SNR=23.87 dB

(d) NL-TV metric, SNR=28.09 dB

THE UNIVERSITY

Yang & Jacob., IEEE TIP 2013

Iterative shrinkage algorithm

$$f^* = \arg\min_{f} \|\mathcal{A}(f) - \mathbf{b}\|^2 + \lambda J_{\mathrm{NL}}(f)$$
$$J_{\mathrm{NL}}(f) = \sum_{\mathbf{x}, \mathbf{y}} \varphi \left(\|\mathbf{P}_r(f) - \mathbf{P}_s(f)\|\right)$$

Significantly faster convergence

THE UNIVERSITY

Mohsin & Jacob., IEEE TMI 2015

Non-convex metrics: continuation

Non-convex metrics Convergence to local minima

Continuation strategy

Start with convex metrics

Gradually evolve to desired metric

THE UNIVERSITY

Original

Initial Guess

NLTV: without continuation

NLTV: with continuation

Comparison with state of the art

Mohsin & Jacob., IEEE TMI 2015

Implicit motion compensation

Minimize averaging of dissimilar patches

Complexity comparable to TV

Cartesian CINE

Mohsin, Lingala, Dibella & Jacob., MRM 16

Cartesian CINE

Mohsin, Lingala, Dibella & Jacob., MRM 16

THE UNIVERSITY

Mohsin, Lingala, Dibella & Jacob., MRM 16

(1) Zoomed version of i

(n) Zoomed version of k

Mohsin, Lingala, Dibella & Jacob., MRM 16

Mohsin, Lingala, Dibella & Jacob., MRM 16

Mohsin, Lingala, Dibella & Jacob., MRM 16

THE UNIVERSITY

Free breathing & ungated CINE

Images: function of cardiac & respiratory phase

Manifold recovery: implicit motion resolved recon.

Single step reconstruction

Manifold smoothing of the image

$$\{\mathbf{X}^*\} = \arg\min_{\mathbf{X}} \|\mathcal{A}(\mathbf{X}) - \mathbf{B}\|_F^2 + \lambda \sum_{i} \sum_{j} \left(\sqrt{w_{ij}} \|\mathbf{x}_i - \mathbf{x}_j\|_p \right)^p$$

Manifold structure from navigators

Navigators: each frame is collected by same pattern

$$\mathbf{y}_i = \left[egin{array}{c} \mathbf{z}_i \ \mathbf{q}_i \end{array}
ight] = \left[egin{array}{c} \mathbf{\Phi} \ \mathbf{B}_i \end{array}
ight] \mathbf{x}_i$$

$$w_{ij} = \begin{cases} e^{-\frac{\|\mathbf{z}_i - \mathbf{z}_j\|^2}{\sigma'^2}} & \text{if } \|\mathbf{z}_i - \mathbf{z}_j\| < \epsilon' \\ 0 & \text{else} \end{cases}$$

Manifold smoothness regularization THE UNIVERSITY

Solved using conjugate gradients algorithm

Manifold embedding theory

Random ortho-projection of manifold vectors

Preserves distances with high probability

$$(1-\epsilon) \|\mathbf{x}_i - \mathbf{x}_j\|_2 \le \|\mathbf{\Phi}\mathbf{x}_i - \mathbf{\Phi}\mathbf{x}_j\|_2 \le (1+\epsilon) \|\mathbf{x}_i - \mathbf{x}_j\|_2$$

Similar to RIP property in CS

Wakin et al, 2007

Implicit motion resolved recon.

FB & UG CINE: FLASH acquisition with navigators

Aera scanner TR=4.6ms Temporal res=50ms

Implicit motion resolved recon.

FB & UG CINE: FLASH acquisition with navigators

Aera scanner TR=4.6ms Temporal res=50ms

Comparison with other methods

View sharing

Total variation

PSF recovery

I2 manifold smoothness

I1 manifold smoothness

Tim Trio 3T scanner TR=4.6ms

THE UNIVERSITY

Comparison with other methods

Total variation

PSF recovery

Manifold Reg

Comparison with BH acquisition

Poddar and Jacob, TMI 16

Dynamically varying contrast

May not have sufficient neighbors

Estimate gradient matrix using sparse optimization

Graph weights: based on image similarity

$$w_{ij} = \begin{cases} \mathbf{e}^{-\frac{\|\mathbf{z}_i - \mathbf{z}_j\|^2}{\sigma'^2}} & \text{if } \|\mathbf{z}_i - \mathbf{z}_j\| < \epsilon' \\ 0 & \text{else} \end{cases}$$

Not suited for flat manifold regions

Gradient using sparse optimization LTHE UNIVERSITY

Estimate gradient matrix using sparse optimization

$$\mathbf{Q}^* = \arg\min_{\mathbf{Q}} \|\mathbf{Z}\mathbf{Q}\|^2 + \lambda \|\mathbf{Q}\|_{\ell_1} \quad \operatorname{diag}(\mathbf{Q}) = 1; \mathbf{Q} \ \mathbf{1} = 0$$
$$\mathbf{y}_i = \begin{bmatrix} \mathbf{z}_i \\ \mathbf{q}_i \end{bmatrix} = \begin{bmatrix} \Phi \\ \mathbf{B}_i \end{bmatrix} \mathbf{x}_i$$

Sparse subspace clustering [Elhamifar& Vidal]

Sparsity of Q

Represents each vector by vectors in same subspace

Myocardial perfusion MRI data

TV regularization on manifold

$\{\mathbf{X}^*\} = \arg\min_{\mathbf{X}} \|\mathcal{A}(\mathbf{X}) - \mathbf{B}\|_F^2 + 2\lambda \|\mathbf{X}\mathbf{Q}\|_{\ell_1}$

72 lines/frame

Manifold: 24 lines/frame PSF: 24 lines/frame

Balachandrasekharan & Jacob, ISBI 15

Myocardial perfusion MRI data

72 lines/ frame

Manifold: 24 lines/ frame PSF: 24 lines/ frame

Towards self-gated acquisition

Poddar et al, e-Poster No 3865, Tuesday,: 08:15 - 10:15 AM

THE UNIVERSITY OF IOWA

Towards self-gated acquisition

Without navigators

With navigators

Poddar et al, e-Poster No 3865, Tuesday,: 08:15 - 10:15 AM

THE UNIVERSITY OF IOWA Towards self-gated acquisition

With navigators

Without navigators

Poddar et al, e-Poster No 3865, Tuesday,: 08:15 - 10:15 AM

Smooth manifold models: outlook

Patch manifold: implicit motion compensation

 $f(\mathbf{x})$

Image manifold: implicit motion resolved reconstruction

W=1

Challenges: computational complexity & memory demand

 $f(\mathbf{y}_1)$

image time series

Kernel PCA

Kernel PCA: PCA on nonlinear features

Image denoising

Linear PCA

Mika et al, NIPS 99

Application to MRI

Few basis functions in non-linear space

Nakarmi & Ying, 2015

Schmidt et al, 2016

Relation to Kernel PCA

Manifold smoothness regularization

$$\{\mathbf{X}^*\} = \arg\min_{\mathbf{X}} \|\mathcal{A}(\mathbf{X}) - \mathbf{B}\|_F^2 + \lambda \sum_{i} \sum_{j} \left(\sqrt{w_{ij}} \|\mathbf{x}_i - \mathbf{x}_j\|_p\right)^p$$
$$\mathbf{V}$$
$$\mathbf{X}^* = \arg\min_{\mathbf{X}} \|\mathcal{A}(\mathbf{X}) - \mathbf{B}\|_F^2 + 2\lambda \operatorname{trace}(\mathbf{X}\mathbf{L}\mathbf{X}^H),$$

Graph Laplacian

Manifold smoothing & KPCA

Eigen decomposition: Fourier transform on graphs

THE UNIVERSITY OF IOWA

 $\left[\mathbf{L} = \mathbf{V} \mathbf{\Sigma} \mathbf{V}^H
ight]$

V: orthogonal basis (graph Fourier exponentials)

Relation to k-t PCA/PSF methods

$$\mathbf{X}^* = \arg\min_{\mathbf{X}} \|\mathcal{A}(\mathbf{X}) - \mathbf{B}\|_F^2 + 2\lambda \operatorname{trace}(\mathbf{X}\mathbf{L}\mathbf{X}^H),$$
$$\mathbf{V}^* = \arg\min_{\mathbf{X}} \|\mathcal{A}(\mathbf{X}) - \mathbf{B}\|_F^2 + 2\lambda \sum_i \sigma_i \|\mathbf{U}_i^H \mathbf{X}\|_F^2$$

Relation to Kernel PCA

KPCA: Minimum energy representation on manifold

Smoothness regularization: smooth manifold

Summary

THE UNIVERSITY OF IOWA

Signals on smooth manifold High rank matrix

Patch manifold: robust distance minimization

First iteration similar to non-local means

Dynamic MRI: implicit motion compensation

Image manifold: robust distance minimization Dynamic MRI: implicit motion resolved reconstruction

Software available

https://research.engineering.uiowa.edu/cbig

Computational Biomedical Imaging Group

Home	Research	Publications	People	Software	News	CBIG pictures	Wiki	Positions	

Home

Software

MATLAB software

- 1. k-t SLR: Accelerated dynamic MRI using low rank and sparse penalties
- 2. HDTV: Higher degree total variation regularization
- 3. Generalized HDTV : Fast implementation of HDTV regularization for 3D inverse problems
- 4. Optimized NUFFT: Non-uniform fast Fourier transfor for nonCartesian MRI
- 5. BCS/Blind CS: Blind compressed sensing dynamic MRI
- 6. GOOSE: GlObally Optimal Surface Estimation for fat water decomposition
- 7. (DC-CS): Deformation corrected compressed sensing dynamic MRI
- 8. PatchReg: Iterative Shrinkage Algorithm for Patch-Smoothness MRI
- 9. PRICE: Patch Regularization for Implicit motion CompEnsation

