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What are manifolds ?

Topological space: locally resembles Euclidean space

1-D manifold2-D manifold 2-D manifold

n:  dimension of the manifold 
N: intrinsic dimension

n=2; N=3 n=2; N=3 n=1; N=2



Non-linear one to one mapping

N: intrinsic dimension

n: dimensional space

x

�(x)

one to one non-linear  
mapping



Current manifold models in MRI

Compressed sensing

2k dimensional manifold

Low-rank models

Grassman manifold 
    r(m+n-2r) dimensional 

Points on manifold 
Satisfying data consistency

Recovery as a structured low-rank matrix completion

Project

Toeplitz1-D Example:

Structured low-rank models



Manifold models in MRI

 Low rank and sparse models [Liang et al, Lingala & Jacob, ..…]

 Dictionary learning methods [Ravishankar et al, Lingala & Jacob,..…]

Matrix decomposition

 Correlation in Fourier space [Ongie & Jacob, Haldar et al, Ye et al]

Structured low-rank matrix completion

Smooth manifold models

 Image manifold: motion resolution [Poddar & Jacob, Nakarmi & Ying ]

 Patch manifold: motion compensation [Yang & Jacob, Mohsin et al, ..… ]
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Smooth manifolds: examples

Image f Surface c̃f
Fig. 3. Manifold of smooth images.

contains sharp variations along regular curves that makes wavelets sub-optimal be-
cause of their square support [15].

A simple model of binary images is defined as

Θ =
{

1B ∗ h(x) \ B ⊂ [0, 1]2 with ∂B regular
}

.

where h is a regular kernel. The compact set B represents the object of interest in
the scene. It is supposed to be connected with ∂B of bounded curvature. This model
can be extended to multiple objects as long as their boundaries are separated by a
distance larger than τ .

Locally a patch of f is well approximated by a single straight edge

px(f)(t) ≈ P(θ(x),δ(x))(t) where P(θ,δ)(t) = P
(

Rθ(t− (δ, 0))
)

,

where Rθ is the planar rotation of angle θ. The step is P = h ∗ P̃ where P̃ (t) = 0
if t1 < 0 and P̃ (t) = 1 otherwise. Figure 4 shows some examples of typical edge
patches.
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Fig. 4. Left: an example of cartoon image. Right: parameterization of the manifold of edge
patches and some examples.

This leads to the following 2D parameterization of the manifold of binary edge
patches

ϕ :

⎧

⎪

⎨

⎪

⎩

S1 × R+ −→ M

(θ, δ) '−→ P(θ,δ).
(9)
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Patches in cartoon images Patch matrix

Non-smooth manifold

Rows: NL functions of
Orientation 
Distance from origin

High rank matrix

  Non-linear function of
Orientation 

Distance from origin



Patch manifolds in natural images

Awate et al, UINTA, TPAMI 2006

High rank patch matrix



Image manifolds: FB CINE

Images: smooth NL functions of cardiac time series
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Fig. 7: Comparison between proposed free-breathing (FB) reconstruction and breath-held (BH) reconstruction. The BH dataset
was reconstructed using CG-SENSE. The FB dataset was recovered using `

2

-SToRM. Two matching slices from both datasets
are shown. The rows represent different slices. (a) Images in different cardiac phases from the BH dataset. The voxel profiles
along the yellow dotted line are also shown. (b) Image frames from a particular cardiac cycle of the FB dataset. The voxel
profiles for a few cardiac cycles of the FB dataset are also shown (along the same cut as the BH dataset).

and temporal intensity profile along a vertical cut (same cut
as the breath-held dataset). Note that the breath-held dataset
has a few cardiac phases averaged over many cardiac cycles,
while the free-breathing dataset consists of several cardiac
cycles. Images from the cardiac cycle of the free-breathing
reconstructions which best matched the breath-held images
are shown here. We observe that the dataset reconstructed
using SToRM is of comparable quality to the breath-held cine
datasets.

VI. DISCUSSION

The proposed dynamic imaging scheme estimates the prox-
imity of the images on the manifold using navigator signals,
followed by a manifold aware recovery of the images from
highly undersampled measurements. The reconstructed image
quality was observed to be superior to that achieved by other
state-of-the-art ungated reconstruction methods. Moreover, the
experiment on the speech dataset demonstrated that SToRM
can recover images in case of repeating frames, irrespective of
whether the repetitions are periodic. In fact, the method does
not distinguish between periodic and aperiodic changes. The
quality of our reconstructed images is quite dependent on the
degrees of freedom of the underlying physiological process.
If the degrees of freedom is low, then every frame will have
a sufficient number of neighbours very similar to it with high
probability (provided that our acquisition time is long enough).
If the degrees of freedom is high, then many frames may not
have any other frames very similar to it, and the recovered
frames will be of poor quality. However, in such situations,
other model-based reconstruction schemes should also perform
poorly due to lack of redundancy in the data.

While the original stable embedding theory deals with
random ortho-projectors [14], our empirical comparisons in
section V show that the radial k-space sampling scheme
can estimate the neighbourhood of each image frame quite
accurately. Moreover, our experiments also show that approx-
imate estimates of the weight matrix (using one radial line
of k-space) are often sufficient to ensure good recovery of
images. Our experiments also reveal that spiral navigators
are more efficient than radial navigators. We used the radial
acquisition scheme for ease of implementation on the scanner.
We will investigate the utility of spiral navigators in the
future, which may translate to improved temporal resolution
or reconstruction quality.

The proposed scheme has a few free parameters: (1) �
(2) the number of neighbours (3) �. The optimal � value is
dependent on the k-space trajectory as well as the number of
points. However, we observed that the reconstruction quality
is not very sensitive to the exact value of �. Specifically,
changing � by a factor of 10 does not significantly affect the
reconstruction quality. The number of neighbours is a data
dependent parameter determined by the degree of redundancy
in the dataset. If a sufficient number of similar frames is
available for each frame, then a small increase in the number
of neighbours will not affect the image quality. However, if
the number of neighbours is made very high, then all the
neighbours of a particular frame will not be very similar to it,
and the resulting reconstructed image will have motion blur.
If the number of neighbours is made very low, then we will
have aliasing artefacts. Similarly, the regularization parameter
� is also data dependent.

We show that `
2

-SToRM has similarities to the k-t PCA
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High rank Casorati matrix

Low-rank priors not efficient



Global linear model: inefficient in capturing manifold

Low-rank approximation



Dictionary learning/BCS

Model local neighborhoods using linear models

Mixture of PCA/ factor analysis

Current methods with manifolds



Non-local smoothing

Clusters patches to groups & average [BM3D]

 Unweighted sum of distances between patches

f
denoised

=

P
y2N

x

w(x,y)f(y)
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y2N
x

w(x,y)
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x,y = exp
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f⇤ = argmin
f

kA (f)� bk2 + � JNL(f)

JNL(f) =
X

r,s

w [r, s] kf(r)� f(s)k2

Variational approach
Regularized formulation for deblurring [Zhang et al, Lou et al] 

CS applications 

IFFT weights result in poor estimates

Weights estimated from blurred/noisy images 

Works well for denoising/deblurring



Robust NL regularization
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JNL(f) =
X

x,y

' (kPr(f)� Ps(f)k)

Applicable to general inverse problems

 Energy does not depend on weights

 Yang & Jacob., IEEE TIP 2013



Why does this work ?

Smoothing of point clouds

Area minimization: curvature flow
Denoising of manifolds

Denoising of point clouds

Surface area of the mesh

Area ⇡
X

x

X

y2N(x)

 (kx� yk)

Saturating distance: select neighborhood
Reconstruction and Representation of 3D Objects with Radial Basis

Functions
J. C. Carr R. K. Beatson J. B. Cherrie T. J. Mitchell W. R. Fright B. C. McCallum

T. R. Evans

Applied Research Associates NZ Ltd
University of Canterbury

(a) (b)

Figure 1: (a) Fitting a Radial Basis Function (RBF) to a 438,000 point-cloud. (b) Automatic mesh repair using the biharmonic RBF.

Abstract
We use polyharmonic Radial Basis Functions (RBFs) to reconstruct
smooth, manifold surfaces from point-cloud data and to repair in-
complete meshes. An object’s surface is defined implicitly as the
zero set of an RBF fitted to the given surface data. Fast methods for
fitting and evaluating RBFs allow us to model large data sets, con-
sisting of millions of surface points, by a single RBF — previously
an impossible task. A greedy algorithm in the fitting process re-
duces the number of RBF centers required to represent a surface and
results in significant compression and further computational advan-
tages. The energy-minimisation characterisation of polyharmonic
splines result in a “smoothest” interpolant. This scale-independent
characterisation is well-suited to reconstructing surfaces from non-
uniformly sampled data. Holes are smoothly filled and surfaces
smoothly extrapolated. We use a non-interpolating approximation
when the data is noisy. The functional representation is in effect a
solid model, which means that gradients and surface normals can
be determined analytically. This helps generate uniform meshes
and we show that the RBF representation has advantages for mesh
simplification and remeshing applications. Results are presented
for real-world rangefinder data.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Curve, surface, solid, and object
representations;

Keywords: Variational implicit surfaces, Radial Basis Function,
RBF, mesh repair, point-cloud surfacing, surface reconstruction,
geometry compression, solid modeling.

Applied Research Associates NZ Ltd, PO Box 3894, Christchurch,
New Zealand. Email: [j.carr,j.cherrie,r.fright,b.mccallum]@aranz.com
Web: www.aranz.com

Dept. Mathematics and Statistics, University of Canterbury,
Christchurch, New Zealand, Email: r.beatson@math.canterbury.ac.nz

1 Introduction
Interpolating incomplete meshes (hole-filling) and reconstructing
surfaces from point-clouds derived from 3D range scanners are
ubiquitous problems in computer graphics and Computer Aided
Design (CAD). Smoothly blending between surfaces and ensuring
surfaces are manifold, and therefore manufacturable, are related
problems in CAD. Similarly, smoothing and remeshing existing
noisy surfaces are important problems in both CAD and computer
graphics. These problems have mostly been considered indepen-
dent from one another and received much attention in the litera-
ture (see [8] and the references therein). In this paper we propose
that the implicit representation of object surfaces with Radial Basis
Functions (RBFs) simplifies many of these problems and offers a
unified framework that is simple and elegant. An RBF offers a com-
pact functional description of a set of surface data. Interpolation
and extrapolation are inherent in the functional representation. The
RBF associated with a surface can be evaluated anywhere to pro-
duce a mesh at the desired resolution. Gradients and higher deriva-
tives are determined analytically and are continuous and smooth,
depending on the choice of basic function. Surface normals are
therefore reliably calculated and iso-surfaces extracted from the im-
plicit RBF model are manifold (i.e., they do not self-intersect).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

ACM SIGGRAPH 2001, 12-17 August 2001, Los Angeles, CA, USA
© 2001 ACM 1-58113-374-X/01/08...$5.00
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Similarity to current methods

' (kPr(f)� Ps(f)k)  wf (r, s) kPr(f)� Ps(f)k2 + c

Majorization by a quadratic 
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4) Convex nonlocal regularization: All of the above distance metrics are non-convex. Hence, the corresponding algorithms
are not guaranteed to converge to the global minimum. The distance function can be chosen as a convex function to overcome
this problem [17]:

�(x) =
|x|
�

. (25)

The use of such convex cost functions result in blurring at high acceleration factors, compared to the non-convex choices
considered above. It is seen from Fig. 2 that the non-convex metrics saturate as the Euclidean inter-patch distance increase,
while the convex metrics do not. Since the non-convex metrics do not penalize the distances between dissimilar patches as
heavily as convex metrics, they result in reduced blurring. Note that this case is very different from convex local smoothness
regularization, where the penalty only involves distances a pixel and its immediate neighbors. Since the NL penalty involves
the distances between each patch and several other patches, this penalty can result in significant blurring if the functional does
not saturate with the Euclidean distance.

TABLE I
REINTERPRETATION OF CURRENT NONLOCAL SCHEMES

Current methods Re-interpretation

Reference Current algorithm Penalty function Weight function

J
w

(f) and w(x,y) �(x)  (x)

H
1

[12], [15] (6) and (2)
�
1� exp

�
�x2/2�2

��
exp

�
�x2/2�2

�

Peyre et al., [16] (8) and (9)
�
1� e�x/�

�
exp(�x/�)

2�x

nonlocal TV [12], [13] (7) and (2) erf

�
x

�

�
exp

(

�x

2
/�

2
)p

⇡� x

nonlocal L1 [17] x

�

1

2�x
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Fig. 2. Comparison of the distance metrics � and corresponding weight functions  : The different distance metrics and the weight functions are plotted in
(a) and (b), respectively. Note that the convex distance functions, shown by the blue and black curves, do not saturate with the Euclidean inter-patch distances.
In contrast, the distance functions corresponding to the current nonlocal schemes saturate as the patches become dissimilar. This ensures that the distances
between dissimilar patches are not penalized, thus minimizing the blurring compared to the convex choices. This is also observed by the weights in the sum
in (6). Note that the weights associated with the current schemes decay to zero for large distances. The slow decay of the weights associated with the convex
metrics can result in blurred reconstructions.

We compare the distance metrics, whose majorizations are similar to current NL schemes, in Table 1. We also plot the �
functions and the corresponding  functions that are used to estimate the weights in Fig. 2(a). It is seen that setting �(x) = |x|2
encourages the averaging of all patches in the neighborhood; this metric is clearly not desirable as it will result in excessive
smoothing. In contrast, the current nonlocal schemes (H

1

, TV, and Peyre’s scheme) rely on non-convex distance metrics, which
saturate with increasing inter-patch distance. The saturation of the distance function discourages the averaging of dissimilar
patches, thus minimizing the blurring, compared to quadratic schemes that encourage uniform smoothing.

We have thus shown that the combination of the surrogate functional Gw(f) and the non-linear function  , resemble the
current NL implementations. In the context of denoising, current NL schemes often estimate the weights from the noisy image
(i.e., f = g). In this case, the first iteration of the majorize minimize algorithm based on penalty majorization (introduced in
next section) to solve (12) is thus very similar to the denoising using the respective NL algorithms.

Weights depend on patch differences
wf (r, s) =  (kPr(f)� Ps(f)k2)

 (x) =
'

0 (x)

2 x

Non-local denoising methods
Majorization of the robust penalty



Iterative reweighted minimization

wn+1[r, s] =  
�
kPr(fn)� Ps(fn)k2

�
Manifold estimation

Manifold smoothing

fn+1 = argmin
f

kA (f)� bk2 + �
X

r,s

wn+1[r, s] kf(r)� f(s)k2

 Alternate between manifold estimation and smoothing 



Better performance @ runtime of TV

 Yang & Jacob., IEEE TIP 2013
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(a) Local TV, SNR=23.87 dB (b) NL-L1 metric,SNR=22.49 dB (c) NL-H1 metric, SNR=27.93 dB

(d) NL-TV metric, SNR=28.09 dB (e) NL-Peyre’s metric, SNR=28.11 dB (f) Original image

Fig. 8. Comparison of the proposed algorithm with different metrics against classical schemes: We reconstruct the 256 ⇥ 256 MRI brain image from its
sparse Fourier samples. We consider an under sampling factor of 4. We choose the standard deviation of the complex noise that is added to the measurements
such that the SNR of the measurements is 40dB. We observe that the proposed schemes that use non-convex distance metrics provide the best SNR, which
is around 4.22 dB better than local TV. The use of convex distance metrics can only provide reconstructions than are comparable or even worse than local
TV. The arrows indicate the details preserved by the non-convex schemes, but missed by local TV and convex non-local algorithm.
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[12] L.D. Cohen, S. Bougleux, and G. Peyré, “Non-local regularization of inverse problems,” in European Conference on Computer Vision (ECCV’08), 2008.
[13] G. Gilboa, J. Darbon, S. Osher, and T. Chan, “Nonlocal convex functionals for image regularization,” UCLA CAM Report, pp. 06–57, 2006.
[14] Y. Lou, X. Zhang, S. Osher, and A. Bertozzi, “Image recovery via nonlocal operators,” Journal of Scientific Computing, vol. 42, no. 2, pp. 185–197,

2010.
[15] X. Zhang, M. Burger, X. Bresson, and S. Osher, “Bregmanized nonlocal regularization for deconvolution and sparse reconstruction,” SIAM Journal on

Imaging Sciences, vol. 3, pp. 253, 2010.
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Fig. 1: Distances functions �(t) that are relevant in non-local regularization (first row) and the associated shrinkage rules
t · ⌫(|t|) (second row); see Appendix B for the corresponding formulas that relies on a convex hull approximation (see Fig.
2) of the original penalty. Here we illustrate the shrinkage rules in 1-D for the parameter choices � = 2, p = 0.5, T = 1, and
� = 0.5. The approach introduced in the paper enables evaluating the shrinkage rules for a much larger class of penalties,
generalizing the results in [18] for `p penalties shown in the first column.
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From the theory in [34], the above relation is satisfied when
r(t) is a convex function, in which case g = r⇤, the Legendre-
Fenchel dual (or convex conjugate) of r:

r⇤(s) = max

t

{< (hs, ti)� r(t)} . (16)

However, the function r is not convex for most penalties ' that
we are interested in, especially for small values of �. When
r is not convex, we propose to approximate r by a convex
function r̂ so that relation (15) is satisfied. We choose r̂ such
that the epigraph of r̂ is the convex hull of the epigraph of r;
r̂ is thus the closest convex function to r (see Fig. 2.b). For '
functions of the form (3), we have r(t) = q(ktk), where the
function q : R+ ! R+ is specified by q(t) = t2/2� �(t)/�.
In all the cases we consider in this paper (see Appendix B),
we can obtain the convex hull approximation of r as

r̂(t) =

⇢
q(ktk) if q0(ktk) > 0

c else , (17)

where c is an appropriately chosen constant to ensure conti-
nuity of r̂; see Fig. (2 b) for an example.

The convex hull approximation of r(t) is equivalent to
approximating the original penalty '(t) as:

'̂(t) := �

✓
ktk2

2

� r̂(t)

◆
;

0
0

1

2

t

(a) '(t)

0

t

(b) r(t) and r̂(t)

0
0

1

2

t

(c) '̂(t)

−1 0 1
0

1

2

t

 

 

β = 16

β = 8

β = 4

β = 2

(d) '̂(t) for various �

−1 0 1

−1

0

1

t

 

 

β = 16

β = 8

β = 4

β = 2

(e) t · ⌫(|t|)

Fig. 2: Approximation of the potential function: (a) shows
the original potential function '(t) in 1-D, which is the
truncated `p; p = 0.5 penalty, T = 1. (b) indicates the
corresponding r(t) = t2/2� 1

�'(t) function with � = 2,
shown in black. Note that this function is non-convex. Hence,
we approximate this function by r̂(t) shown in blue, which
is the best convex approximation of r(t). The corresponding
modified potential function is shown in blue in (c). (d)
indicates the approximations for different values of �. Note
that the approximations converge uniformly to '. (e) shows
the corresponding shrinkage rules. The potential functions and
shrinkage rules for different penalties are shown in Fig. 1.

see Fig. (2 c). For the potentials considered in this paper, this
“Huber-like” approximation:

'̂(t) =

(
�ktk2

2

� c if ktk < L

�(ktk) else
, (18)
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Fig. 3: Comparison of the convergence rate of the iterative
reweighted (IRW) algorithm and the proposed iterative non-local
shrinkage (NLS) algorithm. The plots indicate the evolution of the
cost function in (1) as functions of (a) the CPU time and (b) number
of inner iterations in NLS and CG steps in IRW. Both NLS and IRW
algorithms converged in around 225 inner iterations. However, the
IRW scheme needed around 9 CG steps/inner iteration on average,
requiring a total of 2200 (see Algorithms IV.1 and IV.2). Since each
inner iteration in NLS is considerably faster than the corresponding
one in [11], we obtain a speedup of approximately ten fold.

45, respectively. The maximum number of CG iterations to
solve each quadratic subproblem in IRW scheme was set to
10. The tolerance values for all loops in both algorithms were
set to 1e-8.

The convergence plots of the two algorithms as functions of
computation time and number of iterations are shown in Fig. 3.
We observe that both algorithms converge to almost the same
final cost. However, the non-local shrinkage (NLS) algorithm
is around ten times faster than the iterative reweighted (IRW)
scheme in terms of computation time; the NLS scheme took
around 17 seconds, while the IRW required 172 seconds to
converge. All the weight updates in IRW together took a total
of 9.4 seconds, while the shrinkage steps in NLS took a total of
12.0 seconds. The main difference in complexity between the
algorithms can be attributed to the analytical solution of f in
the NLS scheme, which took only 0.4 seconds for all 225 inner
iterations. At the same time, solving the quadratic subproblems
in IRW using CG took around 163 seconds for all 225
inner iterations. We observe that the condition number of the
quadratic subproblem in iterative reweighting [11] grows with
iterations, resulting in slow convergence of the CG algorithms
especially in later iterations. The speedup offered by using
an additive half-quadratic majorization specified by (7) is
consistent with using this method in non-patch regularization
schemes [33].

B. Impact of the Distance Metric

The proposed scheme can be adapted to most non-local
distance metrics by simply changing the shrinkage rule. The
shrinkage rules for different non-local penalties are shown in
Fig. 1. In Table I we compare the different metrics in the
context of recovering three MR images from five fold ran-
domly undersampled data. Here we quantify the reconstruction
quality by the signal-to-noise ratio (SNR), defined as

SNR = 20 log
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||F
||�
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orig

||F

◆
,

Image `
1

H
1

NLTV `
1

-T `p-T

Brain1 19.8 22.8 23.0 21.4 23.4
Brain2 18.0 20.2 21.1 19.5 22.9
Head 19.1 19.2 19.5 19.3 19.9

TABLE I: (SNR in dB) Impact of the distance metric on the
reconstructions. We compare the reconstructions obtained using the
non-local shrinkage algorithm using `

1

, H
1

, NLTV, thresholded `
1

and thresholded `p; p = 0.5 metrics. All the metrics, except the
convex `

1

scheme are saturating priors. We observe that saturation
is key to good performance of non-local algorithms. Among the
different metrics, the thresholded `p penalty is observed to provide
the best results in all the examples.

where �

orig

is the original image, �
rec

is the recovered image,
and || · ||F is the Frobenius norm. The parameters of all the
algorithms are optimized to provide the best possible SNR.
The first column corresponds to the convex `

1

differences
between patches. The second and third columns correspond
to alternating H1 and NLTV penalties [11], respectively.

All of the penalties saturate with inter-patch distances except
the `

1

distance function. This explains the poor performance
of the convex `

1

penalty compared to the non-convex coun-
terparts. Unlike local total variation, which only compares a
particular pixel with a few other pixels, several pixel com-
parisons are involved in non-local regularization. Saturating
priors are needed to avoid the averaging of dissimilar patches,
which may result in blurring. Since the saturating `p metric
provides the best overall reconstructions, we use this prior for
remaining comparisons.

C. Comparisons With State-of-the-Art Algorithms

We compare the proposed scheme with local total variation
regularization (TV) and the dictionary learning MRI (DLMRI)
scheme [26] using retrospectively undersampled MRI data.
Specifically, the Fourier samples of the images on the specified
sampling mask are used for reconstruction using different
algorithms. These reconstructions are compared to the original
image. We relied on the MATLAB implementation of DLMRI
available from the authors webpage, which was adapted to ac-
count for complex MR images. The regularization parameters
of all the algorithms have been optimized to yield the best
SNR. The comparison of the above methods in the context
of random sampling with 5 fold undersampled data in the
absence of noise is shown in Fig. 4. This fully sampled
128⇥128 MR brain image was acquired using a Turbo spin
echo (TSE) sequence, FOV=22x22 cm2, slice thickness=5.0
mm. The under sampling pattern in (e) was generated using
a Monte-Carlo algorithm [2], which may be realized in 3D
imaging by choosing the readout to be orthogonal to the
image plane. We observe that the proposed non-local algorithm
provides better preservation of edge details. The quantitative
comparisons of different methods on the retrospective under
sampling of more MR images in the absence of noise and
five fold random undersampling are reported in Table II. We
observe that NLS provides a consistent 1-4 dB improvement
over other methods.
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Fig. 1: Distances functions �(t) that are relevant in non-local regularization (first row) and the associated shrinkage rules
t · ⌫(|t|) (second row); see Appendix B for the corresponding formulas that relies on a convex hull approximation (see Fig.
2) of the original penalty. Here we illustrate the shrinkage rules in 1-D for the parameter choices � = 2, p = 0.5, T = 1, and
� = 0.5. The approach introduced in the paper enables evaluating the shrinkage rules for a much larger class of penalties,
generalizing the results in [18] for `p penalties shown in the first column.

We rewrite (7) as:

'(t) = min

s

⇢
 (s) +

�

2

✓
ksk2 � 2< (hs, ti) + ktk2

◆�
,

where <(x) is the real part of x . The above equation is further
rearranged as:

ktk2

2

� 1

�
'(t)

| {z }
r(t)

= max

s

8
>>><

>>>:
< (hs, ti)�

✓
1

�
 (s) +

ksk2

2

◆

| {z }
g(s)

9
>>>=

>>>;

(15)
From the theory in [34], the above relation is satisfied when
r(t) is a convex function, in which case g = r⇤, the Legendre-
Fenchel dual (or convex conjugate) of r:

r⇤(s) = max

t

{< (hs, ti)� r(t)} . (16)

However, the function r is not convex for most penalties ' that
we are interested in, especially for small values of �. When
r is not convex, we propose to approximate r by a convex
function r̂ so that relation (15) is satisfied. We choose r̂ such
that the epigraph of r̂ is the convex hull of the epigraph of r;
r̂ is thus the closest convex function to r (see Fig. 2.b). For '
functions of the form (3), we have r(t) = q(ktk), where the
function q : R+ ! R+ is specified by q(t) = t2/2� �(t)/�.
In all the cases we consider in this paper (see Appendix B),
we can obtain the convex hull approximation of r as

r̂(t) =

⇢
q(ktk) if q0(ktk) > 0

c else , (17)

where c is an appropriately chosen constant to ensure conti-
nuity of r̂; see Fig. (2 b) for an example.

The convex hull approximation of r(t) is equivalent to
approximating the original penalty '(t) as:
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Fig. 2: Approximation of the potential function: (a) shows
the original potential function '(t) in 1-D, which is the
truncated `p; p = 0.5 penalty, T = 1. (b) indicates the
corresponding r(t) = t2/2� 1

�'(t) function with � = 2,
shown in black. Note that this function is non-convex. Hence,
we approximate this function by r̂(t) shown in blue, which
is the best convex approximation of r(t). The corresponding
modified potential function is shown in blue in (c). (d)
indicates the approximations for different values of �. Note
that the approximations converge uniformly to '. (e) shows
the corresponding shrinkage rules. The potential functions and
shrinkage rules for different penalties are shown in Fig. 1.

see Fig. (2 c). For the potentials considered in this paper, this
“Huber-like” approximation:

'̂(t) =
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(a) Original image (b) NLS, SNR=23.3dB (c) TV, SNR=19.2dB (d) DLMRI, SNR=16.6dB

(e) Sampling pattern (f) NLS error (g) TV error (h) DLMRI error

Fig. 4: Comparison of the algorithms in the absence of noise. We consider the recovery of a 128⇥128 MR brain image from 5 fold
undersampled Fourier samples, acquired using a random sampling pattern shown in (e) using non-local shrinkage scheme (NLS), DLMRI
and local TV. The reconstructions are shown in (b)-(d). The corresponding error images, scaled by a factor of 5 for better visualization, are
shown in the bottom row. The reconstructions show that the NLS scheme is capable of better preserving the edges and details, resulting
in less blurred reconstructions. Note that this example was used as an illustration; the proposed 2-D under sampling pattern on the dataset
acquired using a 3-D sequence is not very realistic. We also used a high acceleration factor to demonstrate differences between the methods;
thus the resulting images may not be of diagnostic quality.

D. Performance with noise

We study the performance of the proposed algorithm in
the context of recovering MR images from their retrospec-
tively undersampled measurements using different sampling
trajectories in the presence of noise. The reconstructions
of 512⇥512 MR head complex image from its three-fold
Cartesian retrospectively undersampled Fourier data, corrupted
with zero mean complex Gaussian noise are shown in Fig. 5.
The SNR of the noisy measurements was 25.0 dB. This is a
really challenging case since the 1-D downsampling pattern
is considerably less efficient than 2-D random sampling. We
observe that the non-local algorithm provides better recon-
structions than the other schemes. Specifically, the TV scheme
results in patchy artifacts and are over-smoothed. The DLMRI
results in blurring and loss of details. By contrast to the
classical algorithms, the degradation in performance of the
non-local algorithm is comparatively small. The quantitative
comparisons of the algorithms on this setting using different

Image DLMRI TV NLS
Brain 16.6 19.3 23.4

Brain2 17.5 21.0 22.9
Thigh 16.3 22.0 24.0
Calf 19.1 21.2 22.5
Head 18.6 19.6 19.9

TABLE II: (SNR in dB) Quantitative comparison of the proposed
iterative non-local shrinkage (NLS) algorithm using the saturating
`p; p = 0.5 penalty with dictionary learning MRI (DLMRI) [26] and
local total variation regularization (TV) schemes in the absence of
noise. We considered five-fold random undersampling.

MR images are shown in the top section of Table III.
We also consider the recovery of five various MR im-

ages from their pseudo-radial samples acquired with 70
spokes/frame, which approximately corresponds to an accel-
eration factor of 4.2. The radial samples are approximated by
the nearest Cartesian samples. The quantitative results in this
setting for those MR images are shown in the bottom section
of Table III. The Fourier measurements are corrupted with
zero mean complex Gaussian noise of a specific variance. The
SNR of the corresponding k-space measurements is reported
in the second column. All methods are observed to result in
loss of subtle image features since the acceleration factor and
the noise level are high. But we also observe that the NLS
scheme provides better recovery than the competing methods.
The SNR improvement offered by NLS over the other methods
in this experiment is not as high as in the previous cases,
mainly due to the considerable noise in the data and the high
acceleration. All of the above experiments were conducted
at high acceleration factors to demonstrate the performance
improvement offered by the proposed scheme. We show in
Fig. 6 the recovery of three MR images from Fourier samples
corresponding to low accelerations, contaminated with zero
mean complex Gaussian noise. These experiments show that
the NLS scheme can be used to obtain good quality recon-
structions at moderate acceleration factors and noise levels.

E. Validation using non-Cartesian MRI data

We consider the recovery of multichannel multi-shot spiral
MRI data using the proposed scheme and TV regularization
in this subsection. These datasets were acquired using a spin-
echo variable density multi shot spiral acquisition with 22
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(a) Original (b) PRICE, 27.97dB (c) DC-CS, 27.62dB (d) TV, 24.56dB (e) MASTeR, 24.22dB

(f) Sampling pattern (g) PRICE error (h) DC-CS error (i) TV error (j) MASTeR error

(k) Original (l) PRICE, 27.97dB (m) DC-CS, 27.62dB (n) TV, 24.56dB (o) MASTeR, 24.22dB

(p) PRICE error (q) DC-CS error (r) TV error (s) MASTeR error

Figure 3: Recovery of a retrospectively undersampled CINE dataset using the proposed implicit scheme (second
column), explicit motion-compensated algorithms (third and fifth columns) and classical total variation regularization
(fourth column). The 256⇥224⇥16 dynamic dataset shown in (a), which is acquired using ⇥5 coils, is retrospectively
undersampled using golden-angle radial sampling patterns with 26 lines/phase as shown in (f) (around 10.5 fold
acceleration). Frames 1 and 13 of the dataset, corresponding to peak diastole and systole cardiac phases are shown in
the first and third rows for comparison. The corresponding error images, scaled by a factor of 7 for better visualization,
are shown in the second and fourth rows. The motion compensation schemes are observed to minimize blurring over
the classical total variation regularization scheme, resulting in better depiction of myocardial borders and papillary
muscles as shown by the red arrows. The proposed scheme was also seen to reduce reconstruction errors compared to
the computationally demanding ME-MC schemes, resulting in improved SER.
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Figure 2: Recovery of a retrospectively undersampled CINE dataset using the proposed implicit scheme (second
column), explicit motion-compensated algorithms (third and fifth columns) and classical total variation regularization
(fourth column). The 256⇥224⇥16 dynamic dataset shown in (a), which is acquired using ⇥5 coils, is retrospectively
undersampled using golden-angle radial sampling patterns with 26 lines/phase as shown in (f) (around 10.5 fold
acceleration). Frames 1 and 13 of the dataset, corresponding to peak diastole and systole cardiac phases are shown in
the first and third rows for comparison. The corresponding error images, scaled by a factor of 7 for better visualization,
are shown in the second and fourth rows. The motion compensation schemes are observed to minimize blurring over
the classical total variation regularization scheme, resulting in better depiction of myocardial borders and papillary
muscles as shown by the red arrows. The proposed scheme was also seen to reduce reconstruction errors compared to
the computationally demanding ME-MC schemes, resulting in improved SER.
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(a) IFFT (b) PRICE, diastole (c) DC-CS, diastole (d) TV, diastole

(e) Sampling Mask (f) Zoomed version of (b) (g) Zoomed version of (c) (h) Zoomed version of (d)

(i) PRICE, systole (j) DC-CS, systole (k) TV, systole

(l) Zoomed version of i (m) Zoomed version of j (n) Zoomed version of k

Figure 4: Recovery of a prospectively undersampled Cartesian CINE dataset using PRICE (second column), DC-CS
(third column), and TV algorithm (last column). The first row shows the reconstructions of the diastole phase, while
the third row corresponds to the systolic phase. The second and fourth rows are the zoomed versions of the first and
third rows, respectively. The 128⇥128⇥20 sized dataset is acquired using 12 coils and 16 cartesian lines per phase
(around 8 fold acceleration). We observe that TV and DC-CS reconstructions exhibit motion artifacts and temporal
blurring, while PRICE is able to provide better reconstructions with less blurred myocardial borders and papillary
muscles as shown in the red arrows.
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Free breathing & ungated CINE

…
Time series of images

Similar images are close 
on a manifold but may be 

far apart in time

Images: function of cardiac & respiratory phase
Smooth and low dimensional manifold

Non-linear model
Manifold recovery: implicit motion resolved recon.



Manifold structure from navigators

Estimation of manifold structure from navigators

Manifold smoothing of the image

{X⇤} = argmin
X

kA(X)�Bk2F + �
X

i

X

j

�p
wij kxi � xjkp

�p

Single step reconstruction 

wij =

(
e�

kzi�zjk
2

�02 if kzi � zjk < ✏0

0 else



Navigators: each frame is collected by same pattern

yi =


zi

qi

�
=


�

Bi

�
xi

wij =

(
e�

kzi�zjk
2

�02 if kzi � zjk < ✏0

0 else

Weights computed from navigator data

Manifold structure from navigators



Manifold smoothness regularization

Data consistency Manifold smoothness

{X⇤} = argmin
X

kA(X)�Bk2F + �
X

i

X

j

�p
wij kxi � xjkp

�p

w=1

w ~ 0

…
image time series

Solved using conjugate gradients algorithm



Manifold embedding theory

Random ortho-projection of manifold vectors

zi = �xi

Preserves distances with high probability

Similar to RIP property in CS

(1� ✏)kxi � xjk2  k�xi ��xjk2  (1 + ✏)kxi � xjk2

Wakin et al, 2007



Implicit motion resolved recon.

Aera scanner
TR=4.6ms
Temporal res=50ms

FB & UG CINE: FLASH acquisition with navigators



FB & UG CINE: FLASH acquisition with navigators

Implicit motion resolved recon.

Aera scanner
TR=4.6ms
Temporal res=50ms
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Fig. 3: Reconstruction of the speech dataset. Selected im-
age frames and temporal intensity profiles along a vertical
cut(yellow dotted line in b) are shown. (a)Ground-truth im-
ages. The images were reconstructed from under-sampled k-
space data using (b)SENSE[], (c)temporal TV[], (d)PSF[],
(e)proposed scheme with `2 formulation (f)proposed scheme
with `1 formulation

from our experiments that even a rough approximation of the
weight matrix (using 1 radial line of k-space) is sufficient to
recover the images. However, 1 spiral shot (taking the same
acquisition time as 1 radial line) estimates the weights and
images more accurately. Hence we will use spiral navigators
in future work. In our in vivo experiments, we acquired 10
radial lines of k-space per frame out of which 4 were navigator
lines. We could instead acquire 1 spiral shot as a navigator and
9 radial lines of k-space per frame, and maintain the same
temporal resolution. This leads to more incoherence between
sampling patterns in different frames and should improve
image reconstruction quality considerably. We also observed
that using only the centre of k-space as a navigator signal leads
to significant artifacts in image reconstruction. The theoretical
problem of choosing an optimal navigator signal which results
in stable embedding of the manifold structure is an interesting
problem that will be studied in future work. The number of
measurements required for a stable embedding would depend
on the dimension of the underlying manifold which in turn
depends on the complexity of the physiological process being
imaged. This is an important problem to address since we want
to acquire only a few navigator samples and spend more time
acquiring k-space incoherently to aid image recovery.

VII. CONCLUSION
We introduced a novel acquisition scheme and reconstruc-

tion algorithm to enable non-contrast enhanced dynamic MR
imaging with good spatio-temporal resolution and high slice

Fig. 4: Reconstruction of the free-breathing cardiac dataset.
Selected image frames and temporal intensity profiles along
a vertical cut(red dotted line in a) are shown. The images
were reconstructed from under-sampled k-space data using
(a)SENSE[], (b)temporal TV[], (c)PSF[], (d)proposed scheme
with `2 formulation (e)proposed scheme with `1 formulation.

Fig. 5: Comparison between proposed free-breathing re-
construction and breath-held reconstruction. The breath-held
dataset was reconstructed using SENSE[]. The free-breathing
dataset was reconstructed using the `2 formulation of our
proposed approach. 3 matching slices from both datasets are
shown. The different rows represent different slices. (a) Images
in different cardiac phases from the breath-held dataset. (b)
Voxel profiles along a vertical cut (yellow dotted line in (a))
for the breath-held dataset. (c) Voxel intensity profiles for a
few cardiac cycles of the free-breathing dataset. (d) Image
frames from a particular cardiac cycle of the free-breathing
dataset.

coverage while ensuring patient comfort and reducing scan

View sharing

Total variation

PSF recovery

l2 manifold  
smoothness

l1 manifold  
smoothness

Tim Trio 3T scanner
TR=4.6ms
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problem that will be studied in future work. The number of
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on the dimension of the underlying manifold which in turn
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were reconstructed from under-sampled k-space data using
(a)SENSE[], (b)temporal TV[], (c)PSF[], (d)proposed scheme
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Fig. 5: Comparison between proposed free-breathing re-
construction and breath-held reconstruction. The breath-held
dataset was reconstructed using SENSE[]. The free-breathing
dataset was reconstructed using the `2 formulation of our
proposed approach. 3 matching slices from both datasets are
shown. The different rows represent different slices. (a) Images
in different cardiac phases from the breath-held dataset. (b)
Voxel profiles along a vertical cut (yellow dotted line in (a))
for the breath-held dataset. (c) Voxel intensity profiles for a
few cardiac cycles of the free-breathing dataset. (d) Image
frames from a particular cardiac cycle of the free-breathing
dataset.
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space data using (b)SENSE[], (c)temporal TV[], (d)PSF[],
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from our experiments that even a rough approximation of the
weight matrix (using 1 radial line of k-space) is sufficient to
recover the images. However, 1 spiral shot (taking the same
acquisition time as 1 radial line) estimates the weights and
images more accurately. Hence we will use spiral navigators
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radial lines of k-space per frame out of which 4 were navigator
lines. We could instead acquire 1 spiral shot as a navigator and
9 radial lines of k-space per frame, and maintain the same
temporal resolution. This leads to more incoherence between
sampling patterns in different frames and should improve
image reconstruction quality considerably. We also observed
that using only the centre of k-space as a navigator signal leads
to significant artifacts in image reconstruction. The theoretical
problem of choosing an optimal navigator signal which results
in stable embedding of the manifold structure is an interesting
problem that will be studied in future work. The number of
measurements required for a stable embedding would depend
on the dimension of the underlying manifold which in turn
depends on the complexity of the physiological process being
imaged. This is an important problem to address since we want
to acquire only a few navigator samples and spend more time
acquiring k-space incoherently to aid image recovery.
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tion algorithm to enable non-contrast enhanced dynamic MR
imaging with good spatio-temporal resolution and high slice
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Selected image frames and temporal intensity profiles along
a vertical cut(red dotted line in a) are shown. The images
were reconstructed from under-sampled k-space data using
(a)SENSE[], (b)temporal TV[], (c)PSF[], (d)proposed scheme
with `2 formulation (e)proposed scheme with `1 formulation.

Fig. 5: Comparison between proposed free-breathing re-
construction and breath-held reconstruction. The breath-held
dataset was reconstructed using SENSE[]. The free-breathing
dataset was reconstructed using the `2 formulation of our
proposed approach. 3 matching slices from both datasets are
shown. The different rows represent different slices. (a) Images
in different cardiac phases from the breath-held dataset. (b)
Voxel profiles along a vertical cut (yellow dotted line in (a))
for the breath-held dataset. (c) Voxel intensity profiles for a
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Fig. 7: Comparison between proposed free-breathing (FB) reconstruction and breath-held (BH) reconstruction. The BH dataset
was reconstructed using CG-SENSE. The FB dataset was recovered using `

2

-SToRM. Two matching slices from both datasets
are shown. The rows represent different slices. (a) Images in different cardiac phases from the BH dataset. The voxel profiles
along the yellow dotted line are also shown. (b) Image frames from a particular cardiac cycle of the FB dataset. The voxel
profiles for a few cardiac cycles of the FB dataset are also shown (along the same cut as the BH dataset).

and temporal intensity profile along a vertical cut (same cut
as the breath-held dataset). Note that the breath-held dataset
has a few cardiac phases averaged over many cardiac cycles,
while the free-breathing dataset consists of several cardiac
cycles. Images from the cardiac cycle of the free-breathing
reconstructions which best matched the breath-held images
are shown here. We observe that the dataset reconstructed
using SToRM is of comparable quality to the breath-held cine
datasets.

VI. DISCUSSION

The proposed dynamic imaging scheme estimates the prox-
imity of the images on the manifold using navigator signals,
followed by a manifold aware recovery of the images from
highly undersampled measurements. The reconstructed image
quality was observed to be superior to that achieved by other
state-of-the-art ungated reconstruction methods. Moreover, the
experiment on the speech dataset demonstrated that SToRM
can recover images in case of repeating frames, irrespective of
whether the repetitions are periodic. In fact, the method does
not distinguish between periodic and aperiodic changes. The
quality of our reconstructed images is quite dependent on the
degrees of freedom of the underlying physiological process.
If the degrees of freedom is low, then every frame will have
a sufficient number of neighbours very similar to it with high
probability (provided that our acquisition time is long enough).
If the degrees of freedom is high, then many frames may not
have any other frames very similar to it, and the recovered
frames will be of poor quality. However, in such situations,
other model-based reconstruction schemes should also perform
poorly due to lack of redundancy in the data.

While the original stable embedding theory deals with
random ortho-projectors [14], our empirical comparisons in
section V show that the radial k-space sampling scheme
can estimate the neighbourhood of each image frame quite
accurately. Moreover, our experiments also show that approx-
imate estimates of the weight matrix (using one radial line
of k-space) are often sufficient to ensure good recovery of
images. Our experiments also reveal that spiral navigators
are more efficient than radial navigators. We used the radial
acquisition scheme for ease of implementation on the scanner.
We will investigate the utility of spiral navigators in the
future, which may translate to improved temporal resolution
or reconstruction quality.

The proposed scheme has a few free parameters: (1) �
(2) the number of neighbours (3) �. The optimal � value is
dependent on the k-space trajectory as well as the number of
points. However, we observed that the reconstruction quality
is not very sensitive to the exact value of �. Specifically,
changing � by a factor of 10 does not significantly affect the
reconstruction quality. The number of neighbours is a data
dependent parameter determined by the degree of redundancy
in the dataset. If a sufficient number of similar frames is
available for each frame, then a small increase in the number
of neighbours will not affect the image quality. However, if
the number of neighbours is made very high, then all the
neighbours of a particular frame will not be very similar to it,
and the resulting reconstructed image will have motion blur.
If the number of neighbours is made very low, then we will
have aliasing artefacts. Similarly, the regularization parameter
� is also data dependent.

We show that `
2

-SToRM has similarities to the k-t PCA

Comparison with BH acquisition



Highlights
• A Self Expressiveness Prior – exploit  redundancies 

between voxel time profiles introduced. 
• Demonstration - The utility of the prior as a regularizer in 

MR image recovery. 
• Comparison - The proposed reconstruction scheme 

compared with Low rank [1] and BCS methods [2].

Current constraint methods in 
DMRI

The dynamic MRI signal is arranged in a matrix as [3]

=  
𝑖=1

𝑅

𝑢𝑖 𝑥
Spatial
Weights

 𝑣𝑖 𝑡
temporal
basis

functions

Non-Sparse Sparse
Pre-defined
dictionary

Adaptive
dictionaryMethod

CS
BCS

9 9

9 9

9 9

Problems

• No sparsity constraint 
on spatial weights 

• Model order 
selection required.

Low Rank

• Cannot exploit joint 
sparsity of spatial weights.

• UOS model - max 
dimension of each 
subspace required [4].

Γ𝑀×𝑁 =
𝛾(𝑥1, 𝑡1) ⋯ 𝛾(𝑥1, 𝑡𝑁)
⋮ ⋱ ⋮

𝛾(𝑥𝑀, 𝑡1) ⋯ 𝛾(𝑥𝑀, 𝑡𝑁)

BCSLow Rank 

Indirect methods 

• learns/uses dictionary of basis functions to represent 
voxel time profiles 

• Uses the dictionary to recover Dynamic MR images.

Estimating sparse 𝑄

Conclusions

Self Expressiveness Prior : Exploits redundancies in 
Dynamic MRI data.
• Can be modified to exploit redundancies in patches, 

images etc.
Results: 
• Comparison with BCS and Low Rank Methods.
• Show  fewer artifacts, preserved borders and 

structural details.
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Introduction
Dynamic MRI (DMRI)
• Useful clinical tool for detecting diseased heart tissues 

(CAD), study tracer kinetics etc.

Challenges of DMRI
• Slow Imaging 

Modality

Accelerate the acquisition process

High Spatial 
Resolution

High 
Temporal 

Resolution

Good Slice 
Coverage

• Simultaneously 
difficult to 
achieve

• Under sample k-space data

Constraints needed for recovery

Solve 𝑆∗, 𝑄∗ = argmin
𝑆,𝑄
𝐴𝑆 − 𝑏 𝐹2

Data Consistency
+ 𝛼1 𝑄 1
Sparsity Prior

S = QS ; 𝑄 ∈ Λ

The Objective Function

𝑏 - Acquired
𝑘 − 𝑡
measurements

𝐴 – Fourier Under
sampling operator

𝑆 – Images to
be recovered

such that

𝑄 - sparse

Reducing memory demand and 
Computation complexity

In DMRI applications, the order-𝑀 of 𝑄 is very large

Such a 𝑄
• has a large memory demand
• increases the computational complexity

Impose a structure on Q

• Temporal profiles of neighboring voxels - more likely to
be similar.

Gains from imposing the structure

• No of non-zero entries in every row of 𝑄 is 𝑝2 − 1
• No of unknowns to be solved in Q reduced from

𝑀2 → 𝑀(𝑝2 − 1)

Results : In vivo Myocardial Perfusion (MP) Cartesian Data 

Retrospectively down sample
the MP Cartesian data.
Acceleration factor = 7.5

𝑁𝑓𝑒 × 𝑁𝑝𝑒 × 𝑡 = 190 × 90 × 70

Radial Sampling Mask – 12 lines
a cb

ACCELERATED DYNAMIC MRI USING SELF EXPRESSIVENESS PRIOR
Arvind Balachandrasekaran, Mathews Jacob, The University of Iowa, Iowa City, Iowa, USA

Algorithm
Alternate between 𝑄 and 𝑆 sub-problems 

𝑄 sub-problem
Quadratic 𝑆 sub-problem

argmin
𝑆
𝐴𝑆 − 𝑏 𝐹2 + 𝛼2 𝑆 − 𝑄𝑆 𝐹2

Solve using CG

argmin
𝑃,𝑄
𝛼1 𝑃 1 +

𝛽
2
𝑄 − 𝑃 𝐹2 + 𝛼2 𝑆 − 𝑄𝑆 𝐹2

argmin
𝑃
𝛼1 𝑃 1 +

𝛽
2
𝑄 − 𝑃 𝐹2

𝑠. 𝑡 𝑄 ∈ Λ

argmin
𝑄
𝛽
2
𝑄 − 𝑃 𝐹2 + 𝛼2 𝑆 − 𝑄𝑆 𝐹2 𝑠. 𝑡 𝑄 ∈ Λ

𝐿1- Shrinkage

Solve using  CG

Every row of 𝑃 and 𝑄 are solved concurrently 

CostSNR

SN
R

Iterations Iterations

Co
st

Plots - PINCAT phantom

𝑝 × 𝑝 window defined
around a voxel.

Interpretation : Learned Annihilation 
Filters 

SEP in Matrix form again,

𝑆 = 𝑄𝑆 ⇒ (𝐼 − 𝑄
Ω
)𝑆 ≈ 0 Rows of Ω → annihilating

filters

Every row of Ω : 𝑝2 − 1 non zero entries

• percieved as 𝑝 × 𝑝 filter
• Annihilates a specific region

Learned filters

Spatially varying filters
• Provide improved results over fixed filters such as

gradient priors.

Fixed filter
(e.g : Laplacian)

Versus

Results: PINCAT 
• Acceleration factor=9.7
• Sampling Mask – Golden Angle

Ground Truth

SEP
SER – 25.2 dB

BCS
SER – 25.1 dB

Kt-Low Rank
(p=0.1)

SER – 23.01 dB

TV
SER – 17.40 dB

Proposed Scheme - Direct Approach

• Every voxel time profile - expressed as a sparse 
weighted linear combination of other voxel time 
profiles.

Mathematically, 𝑠𝑖(𝑡) =  
𝑗
 𝑞𝑖𝑗

sparse
weights

 𝑠𝑗 𝑡

temporal profile 
of the 𝑗𝑡ℎ voxel

In Matrix form, 𝑆 = 𝑄𝑆
SEP

Direct approach – Dynamic MRI data itself used as a 
dictionary. 

𝑠𝑖(𝑡)

=

𝑠1(𝑡)

𝑞1
∗

+ 𝑞2
∗ 𝑠2(t)

+ ⋯

• Points from same subspace in the representation.
• fitting UOAS model for 𝑆 [5]

Assumption:
• Voxel time profiles lie in a

Union of Affine Subspaces
(UOAS)

• Dimension of Subspace < No
of points in subspace.subspace

Estimating Sparse 𝑄

Graph weights: based on image similarity

Not suited for flat manifold regions

wij =

(
e�

kzi�zjk
2

�02 if kzi � zjk < ✏0

0 else

Dynamic contrast changes

Dynamically varying contrast
May not have sufficient neighbors

Estimate gradient matrix using sparse optimization



Gradient using sparse optimization

Estimate gradient matrix using sparse optimization

yi =


zi

qi

�
=


�

Bi

�
xi

Q⇤ = argmin
Q

kZQk2 + �kQk`1 diag(Q) = 1;Q 1 = 0

Sparsity of Q

Represents each vector by vectors in same subspace 

Sparse subspace clustering  [Elhamifar& Vidal]



Myocardial perfusion MRI data

72 lines/frame Manifold: 24 lines/frame PSF: 24 lines/frame

Balachandrasekharan & Jacob, ISBI 15

{X⇤} = argmin
X

kA(X)�Bk2F + 2 � kXQk`1

TV regularization on manifold



72 lines/
frame

Manifold: 
24 lines/
frame

PSF: 24 lines/
frame

Myocardial perfusion MRI data



Compute weight 
matrices for 
each group

Combine 
weight 

matrices

Eliminate navigator lines: golden angle acquisition
Incoherent acquisition

Poddar et al, e-Poster No 3865,Tuesday,: 08:15 - 10:15 AM 

Towards self-gated acquisition
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Towards self-gated acquisition

Self navigated With navigator

With navigators Without navigators
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Towards self-gated acquisition
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Patch manifold: implicit motion  
compensation

Image manifold: implicit motion  
resolved reconstruction

Smooth manifold models: outlook

w=1

w ~ 0

image time series

Combine the two: implicit motion compensated & motion
 resolved 4-D FB & UG dynamic MRI

Challenges: computational complexity & memory demand



Kernel PCA

y

x

2 + y

2 = 1

x

y

y2

x

2

Nonlinear 

mapping

Kernel PCA: PCA on non-
linear features

Image denoising

Gaussian noise ‘speckle’ noise
orig.

noisy

Figure 4: De-Noising of USPS data (see text). The left half shows: top: the first occurrence
of each digit in the test set, second row: the upper digit with additive Gaussian noise (

), following five rows: the reconstruction for linear PCA using
components, and, last five rows: the results of our approach using the same number of
components. In the right half we show the same but for ‘speckle’ noise with probability

.

some understanding of kernel methods which have recently attracted increasing attention.
Open questions include (i) what kind of results kernels other than Gaussians will provide,
(ii) whether there is a more efficient way to solve either (6) or (8), and (iii) the comparison
(and connection) to alternative nonlinear de-noising methods (cf. [5]).
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feature space where the rank has to be specified, while our 

method enforces a sparsity constraint in the feature space 

with a learned dictionary. The rest of the paper is structured 

as follows. In section 2, we present our proposed method and 

elaborate various steps involved. Section 3 provides the 

simulation results for muscle arterial spin labeled (ASL) 

perfusion data and comparison with conventional linear CS-

PCA method, and finally section 4 concludes the paper. 

 

2. THEORY AND METHODS 
 

The key idea in the proposed method is based on the argument 

that we can characterize the underlying nonlinear structures 

of dynamic MR images by low dimensional embedding in the 

higher dimensional feature space.  The fundamental induction 

from this argument is that, dynamic images can be 

represented more sparsely using nonlinear dictionary such 

that the sparsity constrained CS reconstruction is more 

accurate. Given the undersampled k-space data �, the 

reconstruction problem can be formulated as: 

 ��
�
�� P �=��88� O -7�5�7�,  (1) 

where �K is undersampling Fourier operator, � is the desired 

dynamic image, 5 is the sparse coefficients with nonlinear 

dictionary and -7 is regularization parameter. The nonlinear 

dictionary is formed using training data and projection into 

the feature space. The optimization problem in Eq. (1) is 

solved using a pre-image formulation and the iterative soft 

thresholding method. The process involved in the proposed 

method can be described in following 3 distinct steps: (I) non-

linear dictionary learning, (II) sparsity enforcement, and (III) 

data consistency enforcement. The schematic of proposed 

method is illustrated in the Fig. 1.  
 

2.1. Non-Linear Dictionary Learning 

The non-linear dictionary is learned from the training data 

obtained from low-resolution dynamic images using kernel 

principal component analysis (KPCA) [13]. Low-resolution 

dynamic images are obtained from a few central k-space 

lines. A set of # training signals �J , ) R 
� �� � # are formed 

from the low-resolution dynamic images. Each of the training 

signal �J corresponds to the temporal variation of a particular 

spatial location as shown in step 1 of the Fig. 1. To find the 

corresponding nonlinear dictionary from these training 

signals, they are projected from the original input space to the 

high dimensional feature space.  A principal component (PC) 

in a feature space serves as a dictionary element and can be 

represented as, V=� *J0A
J;7  [�J\, where 0[�J\ R 0[�J\ P

� 0[�J\A
J;7 	# represents the mapping of centered training 

data in the feature space, 0� / � ! is the nonlinear map from 

the low dimensional input space / to a high dimensional 

feature space�!, and *J is the representation coefficient. 

However, since the mapping function�0 is not known 

explicitly, we use KPCA to compute the representation 

dictionary. A # Q # kernel matrix �I is formed using the 

training data as:  

�I R V
([�7� �7\���([�7� �8\ � ([�7� �<\
([�8� �7\���([�8� �8\ � ([�8� �<\

� � �
([�<� �7\��([�<� �8\ � ([�<� �<\

W , (2) 

where ([� � � \ is a kernel function. In particular, we use 

polynomial kernel function defined by (X�E� �FY R

X��E� �F� O $Y
C

, where c is a constant and d is the order of 

polynomial. The centered kernel matrix of Eq. (2) is         

��IB R �I P 6A�I P �I6A O 6A�I6A, where 6A is a # Q #  

matrix with all its elements equal to 
	# . The linear PCA is 

then performed in the feature space by solving the following 

eigenvalue problem 

                            ������@��B 3 R .�3 ,                           (3) 

where �. is the length of PC and 2 R _*7�*8 �*A`A are the 

representation coefficients.  

 

2.2. Sparsity Enforcement 

Similarly as in step 1 for training signals, the test signal 

vectors for each spatial location are formed using the images 

obtained from the undersampled  k-space data as shown in 

step 2 of Fig. 1. Each test signal represents the temporal 

variation of the image at a particular spatial location. Letting 

such test signal denoted by �, for each test signal, a kernel 

vector is calculated using  

    �����LI R _([�7� �\�([�8� �\� ([�A� �\`A ,           (4) 

and the elements of the centered kernel vector is calculated 

using �LIB [)\ R �LI[)\ P 7
A � �@[)� '\ P 7

A � �LI['\ OA
E;7

A
E;7

7
AN � � �I[(� '\A

E;7
A
G;7 . For a test signal �� the projection of 

0�[�\ on to the (JD PC is computed using  + R X�LIB Y
A3G. 

Fig. 1. Schematic of the proposed method 
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Manifold smoothness regularization
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Manifold smoothing & KPCA
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V: orthogonal basis (graph Fourier exponentials)
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Fig. 7: Comparison between proposed free-breathing (FB) reconstruction and breath-held (BH) reconstruction. The BH dataset
was reconstructed using CG-SENSE. The FB dataset was recovered using `

2

-SToRM. Two matching slices from both datasets
are shown. The rows represent different slices. (a) Images in different cardiac phases from the BH dataset. The voxel profiles
along the yellow dotted line are also shown. (b) Image frames from a particular cardiac cycle of the FB dataset. The voxel
profiles for a few cardiac cycles of the FB dataset are also shown (along the same cut as the BH dataset).

and temporal intensity profile along a vertical cut (same cut
as the breath-held dataset). Note that the breath-held dataset
has a few cardiac phases averaged over many cardiac cycles,
while the free-breathing dataset consists of several cardiac
cycles. Images from the cardiac cycle of the free-breathing
reconstructions which best matched the breath-held images
are shown here. We observe that the dataset reconstructed
using SToRM is of comparable quality to the breath-held cine
datasets.

VI. DISCUSSION

The proposed dynamic imaging scheme estimates the prox-
imity of the images on the manifold using navigator signals,
followed by a manifold aware recovery of the images from
highly undersampled measurements. The reconstructed image
quality was observed to be superior to that achieved by other
state-of-the-art ungated reconstruction methods. Moreover, the
experiment on the speech dataset demonstrated that SToRM
can recover images in case of repeating frames, irrespective of
whether the repetitions are periodic. In fact, the method does
not distinguish between periodic and aperiodic changes. The
quality of our reconstructed images is quite dependent on the
degrees of freedom of the underlying physiological process.
If the degrees of freedom is low, then every frame will have
a sufficient number of neighbours very similar to it with high
probability (provided that our acquisition time is long enough).
If the degrees of freedom is high, then many frames may not
have any other frames very similar to it, and the recovered
frames will be of poor quality. However, in such situations,
other model-based reconstruction schemes should also perform
poorly due to lack of redundancy in the data.

While the original stable embedding theory deals with
random ortho-projectors [14], our empirical comparisons in
section V show that the radial k-space sampling scheme
can estimate the neighbourhood of each image frame quite
accurately. Moreover, our experiments also show that approx-
imate estimates of the weight matrix (using one radial line
of k-space) are often sufficient to ensure good recovery of
images. Our experiments also reveal that spiral navigators
are more efficient than radial navigators. We used the radial
acquisition scheme for ease of implementation on the scanner.
We will investigate the utility of spiral navigators in the
future, which may translate to improved temporal resolution
or reconstruction quality.

The proposed scheme has a few free parameters: (1) �
(2) the number of neighbours (3) �. The optimal � value is
dependent on the k-space trajectory as well as the number of
points. However, we observed that the reconstruction quality
is not very sensitive to the exact value of �. Specifically,
changing � by a factor of 10 does not significantly affect the
reconstruction quality. The number of neighbours is a data
dependent parameter determined by the degree of redundancy
in the dataset. If a sufficient number of similar frames is
available for each frame, then a small increase in the number
of neighbours will not affect the image quality. However, if
the number of neighbours is made very high, then all the
neighbours of a particular frame will not be very similar to it,
and the resulting reconstructed image will have motion blur.
If the number of neighbours is made very low, then we will
have aliasing artefacts. Similarly, the regularization parameter
� is also data dependent.

We show that `
2

-SToRM has similarities to the k-t PCA
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Software available
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