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Abstract—We introduce a novel kernel low-rank algorithm to
recover free-breathing and ungated dynamic MRI data from
highly undersampled measurements. The image frames in the
free breathing and ungated dataset are assumed to be points on
a bandlimited manifold. We show that the non-linear features
of these images satisfy annihilation conditions, which implies
that the kernel matrix derived from the dataset is low-rank. We
penalize the nuclear norm of the feature matrix to recover the im-
ages from highly undersampled measurements. The regularized
optimization problem is solved using an iterative reweighted least
squares (IRLS) algorithm, which alternates between the update
of the Laplacian matrix of the manifold and the recovery of
the signals from the noisy measurements. To improve compu-
tational efficiency, we use a two step algorithm using navigator
measurements. Specifically, the Laplacian matrix is estimated
from the navigators using the IRLS scheme, followed by the
recovery of the images using a quadratic optimization. We show
the relation of this two step algorithm with our recent SToRM
approach, thus reconciling SToRM and manifold regularization
methods with algorithms that rely on explicit lifting of data to
a high dimensional space. The IRLS based estimation of the
Laplacian matrix is a systematic and noise-robust alternative to
current heuristic strategies based on exponential maps. We also
approximate the Laplacian matrix using a few eigen vectors,
which results in a fast and memory efficient algorithm. The pro-
posed scheme is demonstrated on several patients with different
breathing patterns and cardiac rates.

I. INTRODUCTION

The imaging of dynamically changing objects is a key ap-
plication in many imaging applications, including microscopy
[1], MRI, and ultrasound imaging [2]. For example, dynamic
imaging of the heart in MRI allows the non-invasive assess-
ment of structure and function. In many cases, the achievable
temporal resolution is often limited by the slow nature of the
acquisitions. To overcome this challenge, early work in cine
MRI relied on reconstructing the images from undersampled
k − t space measurements by exploiting the structure of x-f
space [3]–[5], diversity of coil sensitivities [6], and the sparsity
of k-space [7]. To further improve image quality, low-rank
based schemes that rely on k-space navigators were introduced
in [8], [9]. These schemes rely on different subspace/rank
models for cardiac and non-cardiac spatial regions, which are
identified manually [8], [9]. Another popular strategy is to
estimate the cardiac and respiratory phases from navigators or
central k-space regions, followed by the recovery of the binned
phase images using compressed sensing [10], [11]. These
schemes rely on a series of steps, including bandpass filtering
using prior information about the cardiac and respiratory rates
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to estimate the phases. While the good performance of these
methods have been demonstrated in several subjects, their
utility in subjects with irregular respiration and cardiac motion
(e.g. arrhythmia) is not clear.

We had recently introduced the SToRM [12] framework,
which assumes that the images in the free-breathing MRI
dataset lie on a smooth and low-dimensional manifold, pa-
rameterized by a few variables (e.g. cardiac & respiratory
phases). The acquisition scheme relies on navigator radial
spokes, which are used to compute the graph Laplacian matrix
that captures the structure of the manifold. This implicit soft-
binning strategy facilitates the simultaneous imaging of cardiac
and respiratory function and eliminates the need for explicit
binning of data as in [10], [11]. Since the framework does
not assume periodicity of the signal, it is readily applicable
to several dynamic applications, including speech imaging as
shown in [12], or cardiac applications involving arrhythmia.
Conceptually similar manifold models have been proposed by
other groups [13]–[15]. We, as well as others [13], [15], have
relied on the widely used exponential kernel to evaluate the
Laplacian entries. To reduce oversmoothing, the entries were
then truncated to keep the number of neighbours (degree) of
each node fixed, resulting in a regular graph. Note that in
practice, we do not have much control on the sampling of
the manifold; some manifold neigborhoods are oversampled,
while some others are not as well sampled; the use of a
regular graph to capture its structure may result in a tradeoff
between oversmoothing of poorly sampled regions and good
performance in well-sampled regions. We observe that the
image quality is quite sensitive to the choice of the node
degree. Another challenge with the SToRM algorithm is the
need to reconstruct and store the entire dataset (around 1000
frames), which makes the algorithm memory demanding and
computationally expensive, and restricts the eventual extension
to 3-D applications.

In this work, we introduce a novel kernel low-rank for-
mulation for the recovery of dynamic imaging data from un-
dersampled measurements. This approach reconciles SToRM
and related approaches [12]–[15] with previous kernel low-
rank methods [16] that rely on explicit mapping of the data to
non-linear features; the explicit approach [16] is restricted to
low dimensional signals such as patches or voxel time profiles
because of the curse of dimensionality. We model the images
as high dimensional points on a smooth surface/curve, which is
represented as the zero level-set of a band-limited function. We
show that under this assumption, feature maps of the images lie
on a low-dimensional subspace. We note that previous methods
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[16] made the assumption of a low-rank kernel matrix, without
specifying the underlying model on the images. Since the
feature maps are low dimensional, we propose to recover
the points from their missing entries using a nuclear norm
penalty on their feature maps. The direct implementation of
the approach would involve the lifting of the images to high
dimensional feature maps, projection to lower-dimensional
subspaces, followed by back-projection of the feature maps to
images as in [16]; this approach, which is conceptually similar
to structured low-rank methods that rely on lifting [17]–[20],
is prohibitive from a computational and memory perspective
when the manifold structure of large images are to be consid-
ered. In addition, analytical back-projection steps as in [16]
are not available for many feature maps of practical relevance.
Motivated by [21], we propose an iteratively reweighted least
square (IRLS) algorithm with gradient linearization to directly
solve the nuclear norm minimization scheme. This approach
does not require the explicit lifting and hence is considerably
more efficient. IRLS algorithms typically alternate between the
estimation of a null-space matrix and a quadratic subproblem,
where the penalty term is the energy of the projection to the
null-space. In our setting, we alternate between the estimation
of a Laplacian-like matrix from the current set of images, and
a quadratic SToRM-like subproblem involving the Laplacian-
like matrix.

The above link with the proposed kernel low-rank algorithm
enables us to further improve the performance of SToRM. To
make the recovery from undersampled data well-posed and
to further reduce computational complexity, we propose to
pre-estimate the Laplacian matrix from k-space navigators;
this approach is motivated by similar approaches in low-rank
regularizati [17], [22]–[28]. We estimate the Laplacian matrix
from the navigators using an iterative reweighted algorithm.
This is a more systematic approach compared to the SToRM
approach of using exponential maps, followed by truncating
the neighbours. To further reduce the computational complex-
ity and memory demand of SToRM by an order of magnitude,
we approximate the Laplacian matrix by a few of its eigen
vectors. The eigen vectors of the Laplacian are termed as
Fourier exponentials on the manifold/graph [29]. Instead of
reconstructing the entire dataset, we propose to only recover
the coefficients of the Laplacian basis functions. Since the
framework is an improvement over SToRM using bandlimited
modelling of the manifold, we refer to the proposed scheme
as b-SToRM.

This approach is built upon our recent work on annihi-
lation based image recovery [19], [20], [25] and the work
on polynomial kernels introduced in [21]; we extend [21] to
Gaussian kernels in this paper. While the eigen decomposition
strategy in this paper was suggested in [12] to demonstrate
the links with PSF methods [22], [23], this approach was not
implemented or validated as a means to speed up the algorithm
in [12]. We validate b-SToRM on nine adult congenital heart
disease patients with different imaging views, as an add-on to
the routine contrast enhanced cardiac MRI study. We study
the impact of patient motion, reduced number of navigators,
and reduced acquisition time on the algorithm. We also
demonstrate that the reconstructed images can be sorted into

respiratory and cardiac phases using the eigen-vectors of the
estimated Laplacian matrix, facilitating the easy visualization
of the data.

II. BACKGROUND

A. Image recovery using smooth manifold regularization

A manifold is a topological space that locally resembles
a low-dimensional Euclidean space. Many classes of natural
images can be modelled as points in high-dimensional ambient
space, lying on a low-dimensional manifold. The dimension of
the ambient space (n) is equal to the number of pixels in the
images, while the dimension of the manifold (m) depends on
the degrees of freedom of the class of images. For example,
each image in a real-time cardiac MRI acquisition can be
parameterized by the cardiac and respiratory phases.

Many machine learning algorithms exploit the smoothness
of signals on the manifold, by using the regularization prior∫
M ‖∇f‖

2; for an arbitrary function f , this metric is the
energy of the gradient of the function on the manifold.
Most algorithms operate on discrete samples {xi} ∈ Rn,
i = 1, . . . , k, and the metric is approximated as:∫
M
‖∇f‖2 ≈ 1

2

k∑
i,j=1

Wi,j ‖f(xi)− f(xj)‖2 = tr(f L fH).

(1)
The widely used weight matrix is computed as:

Wij = e−
d2
i,j

σ2 (2)

Here, d2
i,j = ‖xi − xj‖2. f is a matrix, whose columns

correspond to f(xi); i = 1, .., k and L = D − W is
termed as the graph Laplacian. D is a diagonal matrix with
elements defined as Dii =

∑
j Wij . The weight matrix

(2), originally introduced in [30], is inspired by the heat
kernel. This approximation is only valid for a well-sampled
manifold. To improve the approximation, a common approach
in practical applications is to remove graph edges that are
separated by more that a specified threshold. Another approach
is to use fixed number of neighbours, resulting in regular
graphs. However, this approach may result in false edges or
does not make full use of the redundancy in the dataset.
The problem with these approaches is the need to choose
σ, threshold, and/or the number of neighbours, which would
impact the image quality.

B. SToRM framework

SToRM [12] relies on a navigated radial acquisition scheme
where the same navigator lines (2-4 radial spokes) are played
at the beginning of every 10-12 spokes. The acquisition of the
ith image frame xi can be represented as:[

zi,j
yi,j

]
︸ ︷︷ ︸

bi,j

=

[
Φ
Bi

]
F Cj︸ ︷︷ ︸

Aij

xi + ηij (3)

Here, F is the 2-D Fourier transform matrix, Cj is a diagonal
matrix corresponding to weighting by the jth coil sensitivity
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map and ηij is the noise. Φ is the sampling matrix correspond-
ing to the navigators that is kept the same for all frames. Bi

samples different k-space locations every frame.
The weight matrix of the image manifold is estimated from

the navigator samples zi,l = ΦF Cl xi, l = 1, ..,Ncoils using
(2), where d2

i,j =
∑Ncoils

l=1 ‖zi,l − zj,l‖2. This results in high
weights between images with similar cardiac and respiratory
phase, while the weights between images with different phases
are small. The manifold Laplacian L is computed from W.

SToRM reconstructs the images by solving:

X∗ = arg min
X
‖A(X)−B‖2F + λ tr(XLXH) (4)

where X = [x1, . . . ,xk] is the Casorati matrix obtained by
stacking the vectorized images as columns, while A captures
the measurement process described in (3).

A key drawback of SToRM is the sensitivity of the Lapla-
cian matrix to noise and artifacts in the acquisition pro-
cess. As discussed previously, the exponential weight choice
assumes a well-sampled manifold and the specific way in
which neighbours are selected. Another challenge is the large
memory demand and computational complexity associated
with the recovery of the large dataset, often consisting of 1000
frames. This makes it difficult to extend SToRM to 3D+time
applications.

III. THEORY

A. Bandlimited manifold shape model

We model the manifoldM⊂ Rn by a surface/curve, which
is represented as the zero-level set of a bandlimited function
ψ : Rn → R. Specifically, we have ψ(x) = 0 for all points on
the manifold. In this work, we assume that ψ is represented
using a finite Fourier series expansion:

ψ(x) =
∑
k∈Λ

cke
j 2πkTx (5)

Here, Λ ⊂ Zn is a set of contiguous discrete locations that
indicate the support of the Fourier series co-efficients of ψ.
The number of Fourier co-efficients is equal to the number of
elements in the set Λ, denoted by |Λ|. For example, if Λ is
a rectangular region of size n1 × n2, then |Λ| = n1n2. We
assume that {ck} is the smallest set of Fourier co-efficients
that satisfies (5); we term it as the minimal filter. We refer to
the above representation as a bandlimited manifold. All points
x on the zero-level of the surface (5) satisfy ψ(x) = 0, which
implies that:

ψ(x) = cT

 ej2πkT1 x

...ej2πk
T
|Λ|x


︸ ︷︷ ︸

φΛ(x)

= 0 (6)

where c ∈ C|Λ| has entries {ck,k ∈ Λ}. The entries of
φΛ(x) are non-linear transformations of x, similar to kernel
approaches [31]; we term φΛ(x) as the non-linear feature map
of x (see Fig.1). When there are multiple points x1, ..,xk

Fig. 1: Illustration of annihilation condition for 2D curves: The data
points x are assumed to lie on a curve, which is the zero-level set
of a band-limited function ψ. Each point x on the curve satisfies
the relation: ψ(x) = 0. The Fourier series co-efficients c satisfy the
annihilation relation cTφ(x) = 0 (see (6)), where φ(x) ∈ C|Λ| is
a non-linear feature mapping of x. Since all the feature maps of all
the points φ(x1), .., φ(xk) satisfy these annihilation conditions (see
(8)), the feature maps lie on a subspace, and hence the feature matrix
ΦΓ is low-rank. The annihilation relation implies that c (indicated in
red) is orthogonal to the subspace spanned by the feature maps, as is
illustrated in the figure. Under our assumption, φ is bandlimited, and
the Fourier co-efficients {ck} are support-limited to the locations
in the set Λ. The theory generalizes to arbitrary dimensions; it is
illustrated in 2D for simplicity in this figure.

sampled from the manifold, we have the following annihilation
relation:

cT
[
φΛ(x1), . . . φΛ(xk)

]︸ ︷︷ ︸
ΦΛ(X)

= 0 (7)

Since c is the unique minimal filter of ΦΛ(X), the dimension
of the null-space of ΦΛ(X) is 1. Thus, by the rank-nullity
theorem, rank(ΦΛ(X)) = |Λ| − 1.

B. Kernel low-rank relation

In practice, the exact support of Λ is unknown. We choose a
rectangular support Γ ⊂ Zn such that Λ ⊇ Γ; the correspond-
ing feature matrix is denoted by ΦΓ(X). c1 obtained by zero-
padding the original coefficients c will satisfy cT1 ΦΓ(X) = 0.
c2 obtained by shifting c1 by an integer value will also satisfy
cT2 ΦΓ(X) = 0. We denote the number of valid shifts of c such
that it is still support limited in Γ by |Γ : Λ| [25]. Thus, we
have:

rank(ΦΓ(X)) ≤ |Γ| − |Γ : Λ| (8)

See [32], [33] for details. Thus, we obtain right null-space
relations ΦΓ(X) vi = 0, or equivalently, KΓvi = 0, where
KΓ = ΦΓ(X)HΦΓ(X). These annihilation relations are sim-
ilar to the ones in structured low-rank literature [17], [20],
[24], [25], [34]–[36]. The rank of the feature map matrix ΦΓ

or the kernel matrix KΓ can be used as a measure of the
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smoothness of the manifold. Specifically, if the rank is small, a
low bandwidth implicit surface ψ is sufficient to annihilate all
the images in the dataset. The kernel low-rank regularization
thus encourages the points to lie on a smooth manifold, which
is the zero level set of a bandlimited ψ.

C. Dynamic imaging using kernel low-rank regularization

We propose to use the low-rank property of the feature
matrix to recover the images from the undersampled measure-
ments:

X∗ = arg min
X
‖A(X)−B‖2F + λ ‖Φ (X)‖∗ , (9)

where ‖ · ‖∗ denotes the nuclear norm and Φ(X) denotes a
matrix whose columns are the non-linear maps of the columns
of X (corresponding to different frames), similar to (6). Note
that this formulation is similar to structured low-rank methods
[17], [20], [24], [25], [34]–[36], where the low-rank property
of a matrix, whose entries are dependent on the original signal,
is exploited. The main difference is that the lifted matrix is
now dependent on X by a non-linear relation, as opposed
to linear lifting operators in the classical structured low-rank
settings. Note that the above formulation simplifies to low-rank
recovery [37], when Φ = I, which is the identity map.

This low-rank formulation has conceptual similarities to
the approach in [16], where the low-rank structure of pixel
intensity profiles that are considerably smaller in dimensions
than the images in our setting are considered. In addition, we
consider shift invariant kernels unlike the polynomial setting
in [16]. Note that the dimension of the feature matrix is even
higher than the dimension of the large dynamical imaging
dataset X. Hence, the direct approach of lifting the signals,
followed by projection to a subspace, and backprojection as
in [16] is not feasible in our setting. We hence propose to use
the iterative reweighted least squares (IRLS) algorithm [38].

D. Iterative reweighted least-squares algorithm

The IRLS algorithm relies on the property:

‖Y‖∗ = tr

Y∗Y (Y∗Y)
− 1

2︸ ︷︷ ︸
P

 =
∥∥∥Y√P

∥∥∥2

F
(10)

to realize an algorithm which alternates between the update
of P = (Y∗Y)

− 1
2 and the minimization of the quadratic cost

function with penalty ‖Y
√

P‖2F . Applying the IRLS algorithm
to (10), we obtain the following iterations:

Xn+1 = arg min
X
‖A(X)−B‖2F + λ trace (K(X)Pn)︸ ︷︷ ︸

C
(11)

where Pn =
[
K(Xn) + ε(n)I

]− 1
2

(12)

Here, the K(X) = Φ(X)HΦ(X) is the k× k Gram matrix of
Φ(X) and ε(n) is a small positive constant added to ensure
invertibility. We choose ε(n) = ε(n−1)

η , where η > 1 is
a constant. Note that this matrix can be computed without
explicitly evaluating the feature matrix Φ(X); the use of this

property to speed up algorithms is often termed as the kernel
trick [31].

The second term on the right hand side of (11) involves the
non-linear map Φ. Motivated by [21], we focus on the gradient
of (11) with respect to X. The gradient of the objective
function with respect to the ith image Xi is given by:

∇XiC = 2AH
i (AiXi − bi) + 2λ

∑
j

∇Xi [K(Xi)]ij P
(n)
ij

When K is a Gaussian kernel, we can simplify
∇Xi [K(Xi)]ij P

(n)
ij = w

(n)
ij (Xi − Xj), where w

(n)
ij is

the (i, j)th entry of the matrix:

W(n) = − 1

σ2
K
(
X(n)

)
�P(n). (13)

Here, � indicates the point-wise multiplication of two matri-
ces. In matrix form, we thus have:

∇XC = 2AH (A(X)− b) + 2λ XL(n), (14)

where
L(n) = D(n) −W(n), (15)

and D(n) is a diagonal matrix with elements defined as D
(n)
ii =∑

j W
(n)
ij . The steepest descent update of (11) is given by:

Xn+1 = Xn − γn
(

2AH (A(X)− b) + 2λ XL(n)
)

(16)

E. Relation to SToRM regularization

We note that (16) can also be viewed as the steepest descent
update of the quadratic cost function:

Xn+1 = arg min
X
‖A(X)−B‖2F + λ tr

(
XL(n)XH

)
, (17)

which is essentially the main cost function solved in SToRM
[12]. Thus, the IRLS scheme can also be interpreted as an
algorithm that alternates between SToRM and an update of L
using (15) and (13). This result shows the link between kernel
low-rank regularization and SToRM. The main difference
between the methods is that the matrix W is derived from
the current iterate using a fundamentally different formula as
in (13), as opposed to its estimation from the navigators using
(2), followed by truncation to obtain a regular graph.

The computational complexity and memory demand of the
above iterative reweighted algorithm is expected to be high,
especially since the data involving 500 − 1000 frames is
heavily undersampled in k−t space. Two-step algorithms have
been introduced by several researchers in low-rank regular-
ization to reduce the computational complexity and memory
demand of structured low-rank algorithms. These methods
estimate the signal subspace (or equivalently the null-space)
from fully sampled k-space sub-regions or navigator data,
which is then used to solve for the signal. In our prior work
in the context of structured low-rank matrix regularization, we
estimated the matrix P in (10) that approximates the null-space
of the matrix, which was used to solve for the signal. We now
propose a similar strategy, where we estimate the L matrix in
(17), to obtain a computationally feasible framework.
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Fig. 2: Outline of b-SToRM. The free breathing and ungated data is acquired using a navigated golden angle acquisition scheme. We estimate
the Laplacian matrix from navigator data using the kernel low-rank model. The entries of the Laplacian matrix specify the connectivity of
the points on the manifold, with larger weights between similar frames in the dataset. The manifold is illustrated by the sphere, while the
connectivity of the points are denoted by lines whose thickness is indicative of proximity on the manifold. Note that neighbouring frames
on the manifold may be well separated in acquisition time. The bandlimited manifold recovery scheme uses the Laplacian matrix to recover
the images from the acquired k-space measurements. The Laplacian matrix also facilitates the easy visualization of the data.

F. Two step recovery using k − t space navigators

We acquire multi-coil k − t space navigators Z = ΦX as
described in Section II-B. Since this data is corrupted by noise
and subtle subject motion, we propose to estimate L using
kernel low-rank regularization. Specifically, we solve:

R∗ = arg min
R
‖R− Z‖2F + λ ‖Φ (R)‖∗ . (18)

Solving the above optimization scheme using IRLS as dis-
cussed in Section III-D, we obtain the alternating algorithm

R(n) = arg min
R
‖R− Z‖2F + λ tr

(
R L(n) RH

)
, (19)

where
L(n) = D(n) −W(n). (20)

Here, W(n) = − 1
σ2K(R(n)) � P(n), where P(n) =[

K
(
R(n)

)
+ ε(n)I

]− 1
2 . Note that the size of Z is considerably

smaller than X; the computational complexity of the above
algorithm to solve (18) is significantly lower than (17). When
the above iterations converge, we use the final L to recover
the image frames from their undersampled measurements.

Our empirical results show that the estimation of the L
matrix as the by-product of the above IRLS scheme is con-
siderably more robust than the use of (2). In addition to being
more robust to noise and subject motion, this approach do not
require us to artificially truncate the weight matrix or restrict
the number of neighbours to obtain a regular graph. Note that
we do not constrain the degree of the nodes, and hence they
can be arbitrary. In our experiments, we observe that the off
diagonal entries of L for any specific row are often small with
few significant entries.

G. Approximation of Laplacian matrix for fast computation

We now propose to use the property of the L matrix to
reduce the computational complexity and memory demand

of the algorithm. Denoting the eigen decomposition of the
symmetric Laplacian matrix as L = VΣVH , we rewrite the
SToRM cost function in (4) as:

X∗ = arg min
X
‖A(X)−B‖2F + λ tr

(XV)︸ ︷︷ ︸
U

Σ (XV)H︸ ︷︷ ︸
UH

)


= arg min

X
‖A(X)−B‖2F + λ

k∑
i=1

σi

∥∥∥∥∥∥X vi︸︷︷︸
ui

∥∥∥∥∥∥
2

(21)

Here, the columns of V form an orthonormal temporal basis
set and ui are the spatial coefficients.

We observe that the eigen values often increase rapidly, if
L is the Laplacian matrix. Hence, the weighted norm in the
penalty encourages signals X that are maximally concentrated
along the eigen vectors vi with small eigen values; these eigen
vectors correspond to smooth signals on the manifold. While
this reformulation was introduced in [12] to show similarity
with PSF methods, we did not make use of this property to
accelerate the algorithm.

We now observe that in the optimization scheme (21) the
projections of the recovered signal onto the higher singular
vectors are expected to be small. We pick the r smallest eigen
vectors of L to approximate the recovered matrix as:

X = UrV
H
r (22)

where Ur is a matrix of r basis images (typically around
r ≈ 30) and Vr is a matrix of r eigen vectors of L with the
smallest eigen values. Thus the optimization problem (4) now
reduces to:

U∗ = arg min
U
‖A(UVH)−B‖2F + λ

r∑
i=1

σi‖ui‖2 (23)

The outline of our scheme is illustrated in Fig.2. We observe
r ≈ 30 is sufficient to approximate (21) with high accuracy.
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Since we only have to recover r coefficient images from
the measurements, the optimization problem is an order of
magnitude more computationally efficient than (4). For both
the formulations, a conjugate gradient algorithm is used to
solve for the images. We compare the computational com-
plexity of one iteration of conjugate gradient for both the
formulations. Two main factors influence the computational
time. The first factor is the number of 2D FFTs and IFFTs
required to compute the gradient of the cost functions. In the
proposed scheme, we solve for U, and hence r 2D FFTs and
IFFTs are required. For the SToRM [12] scheme, we solve for
k frames and hence k 2D FFTs and IFFTs are required. The
second factor is the number of variables we solve for using
conjugate gradient. For the proposed scheme, we solve for nr
variables, while for SToRM, we solve for nk variables. Hence,
for each PCG iteration, the speed-up should be O(kr ).

H. Visualization using manifold embedding

Laplacian eigen-maps rely on the eigen vectors of the Lapla-
cian matrix to embed the manifold to a lower dimensional
space. When the signal variation in the dataset is primarily
due to cardiac and respiratory motion, the second and third
lowest eigen vectors are often representative of the cardiac
and respiratory phases. This information may be used to
bin the recovered data into respiratory and cardiac phases
for visualization as in Fig. 9, even though we do not use
explicit binning for image recovery. This post-processing step
can be thought of as a manifold embedding scheme using
an improved Laplacian eigen-maps algorithm [30], where the
main difference with [30] is the estimation of the Laplacian.

IV. EXPERIMENTS

Cardiac data was collected in the free-breathing mode
from nine patients at the University of Iowa Hospitals and
Clinics on a 1.5 T Siemens Aera scanner. The institutional
review board at the local institution approved all the in-
vivo acquisitions and written consent was obtained from all
subjects. A FLASH sequence was used to acquire 10 radial
lines per frame out of which 4 were uniform radial navigator
lines and 6 were Golden angle lines. The sequence param-
eters were: TR/TE=4.3/1.92 ms, FOV=300mm, Base reso-
lution=256, Bandwidth=574Hz/pix. 10000 spokes of k-space
were collected in 43 s. Data corresponding to two views (two-
chamber/short-axis and four-chamber) was collected for each
patient, resulting in a total of 18 datasets. We used b-SToRM
to reconstruct these datasets. A common set of parameters of
the image reconstruction algorithm were manually selected for
the first two datasets, and kept fixed for the rest of the datasets.

We compare the reconstructions using our technique to a
few other competing methods:

1) PSF scheme [22]: For this method, we estimated the
temporal profiles using the navigator signals. The re-
covery of the spatial coefficients was then posed as a
least-squares optimization problem, regularized by the
Frobenius norm of the spatial coefficients. The number
of basis functions was fixed to 30.

2) SToRM [12]: The SToRM scheme was applied using
our default parameter settings for both datasets. The
exponential weight matrix was thresholded to retain only
2 neighbours per frame.

3) SToRM with few basis functions: For this method, we
estimated the weight matrix as in SToRM and formed
the Laplacian matrix corresponding to it. A few eigen-
vectors of the Laplacian matrix were retained as the
temporal basis functions. The spatial co-efficients were
then obtained using (23). The number of basis functions
was fixed to 30.

4) XD-GRASP [11]: We adapted the authors’ code that is
available online for contrast enhanced liver MRI, to the
setting of free-breathing cardiac MRI, using [11] as a
guideline. For both datasets, we assumed 10 respiratory
phases and 18 cardiac phases, and manually tuned the
regularization parameters for best visual quality.

Since our acquired data was prospectively under-sampled, we
did not have access to the ground-truth images, and the above
comparisons could only be done qualitatively on this data. In
order to enable a quantitative comparison, we also applied the
above reconstruction techniques on a simulated cardiac dataset
with breathing motion. This was a single-coil dataset, with
matrix size 300 × 300 and 424 frames spanning 16 cardiac
cycles and 4 respiratory cycles. The data was under-sampled
using 10 radial lines per frame, out of which 4 were navigator
lines.

We conduct a few experiments to study the performance of
our method in different datasets, and with different acquisition
parameters. We study the impact of motion patterns on the
reconstructions, using two of the most challenging datasets,
with different breathing and cardiac patterns. We also study
the effect of the number of navigator lines on the quality of
the recovered images using a dataset with a large amount of
breathing motion. The main goal is to determine the minimum
number of navigator lines per frame to acquire in future
studies. For this purpose, we compared the reconstruction
using 4 navigator lines to that using only 1 or 2 navigator
lines. Two experiments were conducted using 2 navigator lines
per frame (corresponding to 0◦ and 90◦) and 1 navigator line
per frame (corresponding to 0◦) respectively to estimate the
weights. For the purpose of reconstruction, we used the full
data (6 golden angle lines and 4 navigators). We also study
the impact of the acquisition duration on image quality. For 2
datasets with different types of motion patterns, we compare
the reconstruction using the entire data, 450 contiguous frames
corresponding to 22 s, and also 300 frames corresponding to
12 s.

We demonstrate that the recovered data can be automat-
ically binned into respiratory and cardiac phases using two
eigen-vectors of the estimated Laplacian matrix. Thanks to
the accurate and robust estimation of the Laplacian matrix,
these eigen-vectors accurately represent the respiratory and
cardiac motion of the patient over the entire acquisition. Using
this information, each image frame can be assigned a bin
depending on its respiratory and cardiac phase. Images from
each bin can be viewed to find representative members of
a particular cardiac or respiratory phase. We also compare
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our free-breathing ungated reconstructions to images obtained
from a clinical breath-held sequence on the same patients.

V. RESULTS

The basis images and temporal profiles obtained using
different schemes that utilize the factorization of the Casorati
matrix are illustrated in Fig.3. We note that the temporal basis
functions obtained with the b-SToRM scheme in (a) captures
the physiological components of the motion. Specifically, we
observe that the 2nd and 3rd lowest eigen vectors correspond
to the respiratory and cardiac motion respectively, while the
higher eigen vectors can be thought of as harmonics of the
above dynamics. By contrast, the SToRM estimates show
mixing of the dynamics. The comparison of (b) and (c) show
the sensitivity of the estimates to the degree of the regular
graph; the approximation of the manifold samples by a regular
graph is poor. While the PSF scheme also relies on the
factorization of the Casorati matrix, the non-linear manifold
model facilitates the better representation of the non-linear
dynamics in free-breathing datasets with large respiratory
motion.

TABLE I: Quantitative comparison of reconstruction tech-
niques

Method SER
(dB)

Total
time
(s)

Initial
computation
(s)

Conjugate
gradient
(s)

b-SToRM 25.03 10.66 1.91 8.75
SToRM with few
basis functions

16.63 8.8 0.43 8.37

SToRM 19.80 100.65 1.79 98.86
PSF 17.08 8.27 0.85 7.42
XD-GRASP 9.86 324.45

The b-SToRM scheme is compared to other competing
methods in Fig.4. A few reconstructed images and temporal
profiles are shown for (a) b-SToRM (b) StoRM with few
basis functions (c) SToRM (d) PSF method. It is observed
that the images in (a) show less artefacts as compared to the
competing methods. In addition, the computational complexity
of (a) is significantly lower than (c). The PSF scheme shows
some streaking artefacts. In (b), we observe that there are
some artefacts in the temporal profile, since the dataset has
sudden gasps of breath. This could be because a few eigen-
vectors do not capture the physiological motion in this case,
or equivalently the approximation of the SToRM Laplacian
matrix using few eigen vectors is poor. More frames of this
challenging dataset as reconstructed by b-SToRM are shown
in Fig.5 and Fig.6.

We show the comparison of b-SToRM with XD-GRASP
in Fig.5 (a). Only 4 respiratory and 5 cardiac phases are
shown here for better visualization. The reconstructions using
b-SToRM are also re-arranged in Fig.5 (b) for a direct compar-
ison to (a). For the purpose of re-arranging the frames of the
b-SToRM dataset, we used the cardiac and respiratory signals
that were estimated using XD-GRASP from the centre k-
space temporal profile. It is observed that the images obtained
using b-SToRM have less artefacts due to motion and noise,
especially in cardiac and respiratory phases which only have a

few k-space samples (bottom row). The frames reconstructed
using XD-GRASP are also re-arranged to recover a temporal
profile. It is observed that the temporal profile is quite noisy
and motion is also suppressed, which is due to the discrete
segmentation of the frames into phases.

The reconstruction techniques were only compared quali-
tatively in Fig 4 and Fig 5 since the data was prospectively
under-sampled and the ground-truth was not available. Table I
shows a quantitative comparison of the different techniques
on a simulated dataset. It is observed that b-SToRM out-
performs the other techniques according to the Signal-to-
error ratio value. The reconstructed images and temporal
profiles are available in the supplementary material. The total
reconstruction time for each method is also reported. It is
observed that the computational complexity of b-SToRM is
comparable to the PSF scheme. The SToRM and XD-GRASP
techniques are significantly more computationally intensive.
Besides the total computation time, we also include a breakup
of the time taken to perform some initial computations for
some of the methods. This includes the total time to compute
the Laplacian matrix for SToRM and the basis functions V
for b-SToRM, SToRM with few basis functions and PSF.
It also includes the time to pre-compute the constant terms
required for the conjugate gradient step. After these initial
computations, the time required to perform 40 iterations of
conjugate gradient to compute the images or basis images is
also reported. It is observed that there is a large speed-up in
the conjugate gradient step for b-SToRM over SToRM.

The datasets in Fig. 6 have a high amount of respiratory
and out-of plane motion, compared to the other datasets that
we have collected. The first dataset shows a normal cardiac
rate (68 beats/min) accompanied by a very irregular breathing
pattern, characterized by several large gasps of breath. We
show a few reconstructed frames from different time points,
at various states of motion. The reconstruction quality is better
in presence of less respiratory motion since there are frames
similar to it in the dataset; the manifold neighbourhood is well
sampled in these neighbourhoods. By contrast, the images are
seen to be more noisy in manifold regions that are not well-
sampled (red box). The second dataset shows a high cardiac
rate (107 beats/min) accompanied by heavy regular breathing
(42 breaths/min). We observe that the algorithm is able to
reconstruct this case satisfactorily, despite the rapid motion
since the manifold is well-sampled.

We observe from Fig. 7 that for both high and low motion
regions, there is no degradation in image quality when the
number of navigator lines are reduced to two from four.
Only using one navigator spoke induces some error, especially
for the frames highlighted in green since they have more
respiratory motion. This is expected since the approach will
only be sensitive to the motion in one direction and not to the
direction orthogonal to it. As a result of this experiment, we
plan to keep only two navigator lines per frame in the future,
and consequently increase the number of golden angle lines
to 8 (from 6 in the current acquisition). This should improve
image quality by making the sampling patterns between frames
more incoherent.

The effect of reducing acquisition time is illustrated in
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Fig. 3: Visualization of the basis images and temporal functions. We compare the matrices Ur and Vr defined in (22) obtained using
different methods that employ factorization of the Casorati matrix. (a) corresponds to b-SToRM, while (b) & (c) correspond to the SToRM
approach (exponential weight matrix, followed by truncation) of estimating the Laplacian matrix, where 2 and 5 neighbours per node are
retained. The temporal basis functions are the eigen vectors V of the estimated Laplacian matrix with the smallest eigen values. For the
PSF scheme, the temporal basis functions are the eigen vectors of the navigator signal matrix with the smallest eigen values. These are
shown in (d). It is observed that b-SToRM provides more accurate estimates of cardiac and respiratory motion than the other schemes, thus
facilitating the recovery of smooth signals on the manifold. Moreover, by comparing (b) and (c), it is observed that the basis functions are
quite sensitive to the choice of the threshold used to compute the SToRM exponential weight matrix.

Fig. 4: Comparison with other methods. Few frames and temporal profiles are shown from a dataset reconstructed using (a) b-SToRM (b)
SToRM using few basis functions (c) SToRM [12] (d) PSF scheme [22]. It is observed that b-SToRM yields the best overall results, followed
by SToRM that shows some degradation in image quality indicated by the red arrows. Note that b-SToRM also benefits from a speed-up
due to the factorization of the Casorati matrix. It is also observed from (b) that using a few basis functions of the SToRM Laplacian matrix
results in artefacts in the images and the temporal profile. Specifically, the approximation of the SToRM Laplacian matrix using few basis
functions is poor, which translates to poor recovery. The PSF method also shows some image artefacts as compared to b-SToRM, which
shows the benefit of the non-linear manifold modeling over subspace approximation. The red arrows in the figure point to artefacts in the
images reconstructed using the competing methods. Similar results on an additional dataset are included in the supplementary material.

Fig.8. The dataset at the top has more breathing motion as
compared to the bottom one. We observe that the bottom
dataset is robust to decrease in the number of frames; it can

be reliably recovered even from 12 seconds of data. The top
dataset is more sensitive to reduction in scan time. The green
line corresponds to the lowest position of the diaphragm,
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Fig. 5: Comparison to XD-GRASP: Images corresponding to a few cardiac and respiratory phases reconstructed using XD-GRASP are
shown in (a). Since both methods use drastically different reconstruction strategies, we rearrange the images obtained using b-SToRM into
respiratory and cardiac phases in (b) for direct comparison to (a). Likewise, the recovered frames of XD-GRASP are also re-arranged to
form a temporal profile. It is seen that the images and temporal profiles in (a) have more artefacts as compared to (b). The images in (a)
contain speckle-like artefacts. Since the dataset included sudden gasps of breath, some respiratory phases are very poorly sampled and the
artefacts are more pronounced in these phases. In comparison, b-SToRM can recover more natural-looking images and temporal profiles.
Similar results on an additional dataset can be found in the supplementary material.

which is less frequent in the dataset. By contrast, the blue
line corresponds to a more frequent frame. The frames around
the green line, shown in the green box are more noisy when
the scan time is reduced to 12 seconds, compared to the
reconstructions within the blue box. We observe negligible
errors in both datasets when the acquisition time is reduced to
22s, whereas relatively noisy reconstructions are seen in high
motion frames when it is reduced to 12 second acquisition
windows. The error images for Fig.7 and Fig.8 are on the
same scale, to illustrate the relative effects of changing the
number of navigators and the number of frames.

The results in Fig.9 show that the improved Laplacian
eigen maps approach facilitates the easy visualization of the
data. In general, we observe that the eigen-vectors of the
Laplacian matrix with the second and third lowest eigen
values correspond to respiratory and cardiac motion. It can
be appreciated from Fig.3 that such a binning strategy is not
possible when the exponential weights are used.

Fig.10 demonstrates the potential of b-SToRM to replace

clinical breath-held and gated techniques. There is some dif-
ference in the appearance of the breath-held and free-breathing
reconstructions due to mismatch in slice position. Moreover,
the breath-held acquisition was done using a TRUFI sequence,
and thus shows higher contrast than the free-breathing data
which was acquired using a FLASH sequence. In spite of
these differences, we note that the images reconstructed using
b-SToRM are of clinically acceptable quality.

VI. DISCUSSION

We have introduced a new framework for the recovery
of free-breathing and ungated cardiac images in a short 2-
D acquisition. We assume that the images are points on a
smooth manifold. We estimate the graph Laplacian from radial
navigators. This framework relies on two key innovations
over the SToRM algorithm: (i) A novel algorithm assuming a
bandlimited manifold model is used to estimate the Laplacian
matrix (ii) Using only a few eigenvectors of the Laplacian
as the temporal basis functions reduces the computational
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Fig. 6: Sensitivity of the algorithm to high motion. We illustrate b-
SToRM on datasets acquired from two patients with different types
of motion. For both datasets, we show a temporal profile for the
whole acquisition to give an idea of the amount of breathing and
cardiac motion present. We also show a few frames from time
points with varying respiratory phase. The dataset on the left has
regions with abrupt breathing motion at a few time points. Since
these image frames have few similar frames in the dataset (poorly
sampled neighbourhood on the manifold), the algorithm results in
slightly noisy reconstructions at the time points with high breathing
motion (red box). The regions with low respiratory motion (blue and
light blue boxes) are recovered well. The dataset on the right shows
consistent, but low respiratory motion. By contrast, the heart rate in
this patient was high. We observe that b-SToRM is able to produce
good quality reconstructions in this case, since all neighbourhoods of
the manifold are well sampled.

complexity and memory demand of the algorithm by an order
of magnitude. Due to its computational efficiency and lack of
need for manual intervention, the new framework may be a
good candidate for clinical scans where patients (e.g. pediatric
patients, patients with COPD) are unable to hold their breath
for sufficiently long periods of time, or are unable to follow
breath-holding instructions.

While the framework has similarities to approaches that rely
on the factorization of the Casorati matrix [23], [37], [39], the
key difference is the signal model and the approach in which
the temporal basis functions are estimated. Moreover, we have
shown in Fig.3 that unlike other approaches, b-SToRM is able
to automatically estimate the respiratory and cardiac signals
from the eigen-vectors of the estimated Laplacian matrix.
When the Laplacian matrix is estimated using the exponential
function as in SToRM, or using the navigator signals as
in the PSF method, a few eigen-vectors do not capture the
physiological motion. For SToRM, it is also required to
threshold the weight matrix to achieve good reconstruction
results. This is equivalent to heuristically forming a regular
graph by fixing the node degree. In this case, the eigen-
vectors are dependent on the specific thresholding function
that is used. The proposed Laplacian estimation technique does
not require any manual thresholding and does not constrain
the graph to be a regular one. When reconstructing using
a fixed number of basis functions (r = 30), it is shown

Fig. 7: Effect of number of navigator lines on the reconstruction
quality. We perform an experiment to study the effect of computing
the Laplacian matrix L from different number of navigator lines. For
this purpose, we use one of the acquired datasets with 4 navigator
lines per frame. We compute the ground-truth L matrix using all
4 navigators. Next, we also estimate the L matrix using 2 navigator
lines (keeping only the 0◦ and 90◦ lines) and 1 navigator line (keeping
only the 0◦ line). We now reconstruct the full data using these
three Laplacian matrices, as shown in the figure. We observe that
two navigator lines are sufficient to compute the Laplacian matrix
reliably. Using one navigator line induces some errors, especially
in the frames highlighted in green which are from a time point with
higher respiratory motion. As a comparison, note that the error images
are in the same scale as those for Fig.8.

that the proposed Laplacian preserves the temporal profiles
better than when an exponential weight matrix is used as in
SToRM. Moreover, due to the need to reconstruct only a few
basis images, b-SToRM is significantly faster than SToRM. It
was illustrated in [12] that an exponential weight matrix can
also be used to estimate the respiratory and cardiac signals.
However, this was shown for phantom data, and we have found
that it does not hold true in general for many real datasets.
Other conventional methods often require the binning of the
k-space data to respiratory bins before reconstructions, using
self gating approaches [10]. The main benefit of b-SToRM is
that it does not require any explicit binning. However, we have
shown in Fig.5 and Fig.9 that our reconstructions can easily be
visualized in a binned fashion. In contrast, as shown in Fig.5,
the temporal profiles obtained by rearranging the XD-GRASP
reconstructed images often have artefacts due to binning into
discrete phases. Thus, when images are reconstructed using a
binned approach, they might not always be rearranged to get
back the original time series.

There are conceptual similarities between our method and
[16]. However, there are several differences which make it
difficult for us to apply the method to our setting. As the
authors themselves point out, their approach is sub-optimal for
the setting considered in our paper. Specifically, the undersam-
pling factor considered in [16] is significantly lower than our
free breathing CINE setting, where we consider large number
of frames to overcome the difficulty with undersampling. The
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Fig. 8: Effect of number of frames on the reconstruction quality. We
perform an experiment to study the effect of reconstructing the data
from a fraction of the time-frames acquired. The original acquisition
was 45 seconds long, resulting in 1000 frames. We compare the
reconstruction of the 1st 250 frames, using (1) all 1000 frames
(2) only 550 frames, i.e. 22 s of acquisition (3) only 350 frames,
i.e. 12 s of acquisition. As can be seen from the temporal profiles,
Dataset-1 has more respiratory motion than Dataset-2. Consequently,
the performance degradation in Dataset-1 is more pronounced with
decrease in the number of frames. Moreover, the errors due to
decrease in the number of frames is mostly seen in frames with higher
respiratory motion, as pointed out by the arrows. As a comparison,
note that the error images are in the same scale as those for Fig.7.

technique in [16] employs a Cartesian acquisition trajectory,
and a fully sampled low-resolution region of k-space is ac-
quired in every frame. This allows them to get low-resolution
images and form training data from it. Modification of [16]
to our sampling setting, which is fundamentally different, is
challenging and is beyond the scope of this work. Moreover,
their method is demonstrated only for single coil data. We
require multi-channel sampling to obtain good reconstructions
in our highly undersampled setting. A multi-coil extension of
their method is not straight-forward. The authors also mention
that their technique is very computationally intensive due to
the pre-imaging step. We expect this to be significant in our
setting of large number of frames.

Since our acquired data was prospectively under-sampled,
we were not able to perform quantitative comparisons for the
various techniques used to reconstruct this data. We performed

additional experiments on a retrospectively under-sampled
phantom dataset for quantitative comparison. The results are
summarized in Table I. It is observed that b-SToRM has the
highest SER (25.03 dB) out of all the methods reported,
while SToRM performs second-best (19.80 dB). The PSF
scheme has the lowest reconstruction time (7.42 s), closely
followed by SToRM with few basis functions (8.37 s) and
b-SToRM (8.75 s). SToRM and XD-GRASP are significantly
more computationally intensive. b-SToRM shows good per-
formance in a considerably low reconstruction time, and thus
outperforms the other techniques. The reconstructed images
and temporal profiles for all the techniques are illustrated in the
supplementary material. The times for initial computations and
conjugate gradient are also reported separately for PSF and the
SToRM-based methods. 40 iterations of the conjugate gradient
algorithm for b-SToRM is 11.3 times faster than for SToRM.
The speed-up is of the same order as k

r = 424
30 = 14.13.

We demonstrate our algorithm on a number of datasets with
different respiratory and cardiac patterns. We show that the
technique is able to reconstruct data with irregular breathing
motion, since there is no periodicity assumption in our recon-
struction technique. The method only requires some repetitive
motion, which need not be periodic. We also expect that the
algorithm will work on datasets with arrhythmia. However, we
did not have access to any patient datasets with arrhythmia,
so this could not be illustrated in the paper.

There are two parameters in the reconstruction algorithm,
namely the regularization parameter λ, and rank r. For a
low λ value, we will get a lot of aliasing artefacts, and the
reconstructions will be close to the zero-filled inverse Fourier
transforms of the acquired data. For a very high λ value, we
will notice a lot of motion blur. Note from (21), (22), (23) that
the modification of the original SToRM cost function using the
low-rank approximation is exact if the rank is appropriately
high. If the rank is set to a very low value, then we would
notice some motion artefacts since a few basis functions would
not be able to capture the motion. If the rank is set to a
very high value, the computational complexity would become
higher, and comparable to the SToRM approach. Note that
the use of the penalty in (23), weighted by the singular values,
ensures that the recovery with larger number of basis functions
is still well-posed. Specifically, the higher order eigen vectors
are penalized more heavily than the ones corresponding to
smoother functions on the manifold. For our first 2 datasets,
we empirically selected a common regularization parameter λ
and rank r which gave qualitatively good reconstructions. We
then kept this parameter fixed for the rest of our datasets and
did not do any manual tuning. We noticed good performance
with this approach for all our 18 datasets. We expect the
performance to improve if the parameter is manually tuned
for each dataset. However, since this is not practically feasible
for clinical practice, we suggest that the parameters be kept at
their default setting.

In accordance with the results of our retrospective experi-
ments on the impact of the number of navigator lines, we plan
to collect data with only two navigator lines in the future. This
would increase the incoherence of the undersampling patterns
across frames, resulting in better quality reconstructions. Our
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experiments on reduced scan time show that we can obtain
reliable data from datasets with high motion with around 22s
of data/slice, while it can be pushed down to 12s for datasets
with less motion.

Our method produces a series of ungated images, enabling
the user to visualize the real-time data with both respiratory
and cardiac motion. This approach may be useful in studies
on patients with pulmonary complications such as COPD. The
data can also be automatically segmented into respiratory and
cardiac phases post reconstruction for easy visualization, using
the eigen-vectors of the estimated Laplacian matrix.

Since the study was an add on to the routine cardiac exam,
there was no perfect control on the specific time point of
acquisition following contrast administration. This explains the
differing contrast between the datasets.

VII. CONCLUSION

We proposed a novel bandlimited manifold regularization
framework for free-breathing and ungated cardiac MR imag-
ing. The validation of the dataset using cardiac datasets with
differing amount of cardiac and respiratory motion shows the
ability of the scheme to provide good image quality. It is also
demonstrated that the resulting ungated images can be easily
binned into respiratory and cardiac phases and viewed as a
gated dataset. The success of the method on very challenging
datasets with high cardiac rate and irregular breathing patterns
suggests a useful clinical application of the method on patients
who have difficulty in following traditional breath-holding
instructions.
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