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Abstract

Purpose:

To accelerate the motion-compensated iterative reconstruction of multi-shot non-Cartesian diffusion data.

Method:

The motion-compensated recovery of multi-shot non-Cartesian diffusion data is often performed using a

modified iterative sensitivity encoded (SENSE) algorithm. Specifically, the encoding matrix is replaced

with a combination of non-uniform Fourier transforms and composite sensitivity functions, which account

for the motion-induced phase errors. The main challenge with this scheme is the significantly increased

computational complexity, which is directly related to the total number of composite sensitivity functions

(number of shots × number of coils). The dimensionality of the composite sensitivity functions and hence

the number of Fourier transforms within each iteration is reduced by using a principal component analysis

(PCA)-based scheme. Using a Toeplitz-based conjugate gradient approach in combination with an aug-

mented Lagrangian optimization scheme, a fast algorithm is proposed for the sparse recovery of diffusion

data.

Results:

The proposed simplifications considerably reduce the computation time, especially in the recovery of diffu-

sion data from under-sampled reconstructions using sparse optimization. By choosing appropriate number

of basis functions to approximate the composite sensitivities, faster reconstruction (close to 9 times) with

effective motion compensation is achieved.

Conclusion:

The proposed enhancements can offer fast motion-compensated reconstruction of multi-shot diffusion data

for arbitrary k-space trajectories.

Keywords: motion-compensated diffusion imaging, multi-shot diffusion imaging, Toeplitz-embedding,
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principal component analysis, under-sampled reconstruction for high resolution diffusion imaging, aug-

mented Lagrangian.
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Introduction

The use of multi-shot non-Cartesian parallel MRI acquisitions is emerging as a popular scheme for high

spatial resolution diffusion weighted imaging. Multi-channel acquisition provides improved signal-to-noise

ratio (SNR), while the segmented k-space readouts reduce the echo train length which in turn reduces the

T2* decay and geometric distortions caused by magnetic field inhomogeneities [1–5]. Combined with non-

Cartesian acquisitions such as SNAILS [6], PROPELLER [7] etc., high spatial resolutions using matrix

sizes of up to 512 x 512 were achieved in diffusion-weighted images (DWIs) with significantly diminished

distortions [2]. However, a primary shortcoming of the above multi-shot method for diffusion weighted

imaging is the sensitivity of the modality to motion-induced artifacts [8–11]. While rigid body motion

resulting from subject motion can induce linear phase perturbations, physiologically induced motion such

as blood and cerebrospinal fluid pulsation can cause nonlinear phase errors that will result in significant

ghosting artifacts [1, 3]. Several algorithms have been proposed to account for motion artifacts in DWI.

Linear phase errors resulting from rigid body motion result in shifts in k-space, which can be relatively

easily corrected in k-space and can be de-coupled from the image reconstruction [12, 13]. However, non-

linear phase errors cannot be corrected this way. The approach typically followed is to subtract an estimate

of the phase errors from each shot. The phase errors are estimated either from an additional navigator scan or

from the fully sampled center of a self-calibrating k-space trajectory and computing a low-resolution phase

map from the navigator region of each shot [5, 6, 14]. It has been shown that correction of non-linear phase

errors can be reformulated as an iterative SENSE reconstruction scheme and it works better than a simple

phase subtraction [2, 15].

While iterative reconstruction methods can offer excellent motion-compensation, these methods are

inherently slow, especially when multi-dimensional datasets are involved. Since phase errors are different

for each coil and each shot, the number of sensitivity functions to be accommodated in the iterative SENSE

reconstruction is often large. Also, because the number of Fourier transforms at each iteration scales with

the number of sensitivity functions, the computational complexity increases considerably with the number of

shots and coils. Our own motivation in the problem is in the context of motion-compensated reconstruction

of high spatial and angular resolution (typically > 60 DWIs) diffusion data. To reduce the acquisition time,

these measurements are highly under-sampled; the recovery is performed using non-linear reconstruction

schemes such as compressed sensing (CS) [16–18] to reconstruct the multi-directional diffusion data [19–

21].

We aim to accelerate the reconstruction algorithm by exploiting the redundancy and smoothness of the
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phase maps using dimensionality reduction techniques. Specifically, we compress the phase maps corre-

sponding to each shot and each coil using a principal component analysis (PCA). Note that this method is

different from the PCA-based coil compression methods [22, 23], which reduce the dimensionality of the

k-space data itself before performing the image reconstruction; these schemes are infeasible in our setting

since the k-space trajectory for each composite sensitivity is different. In contrast, we propose a synthesis

formulation (see Figure 1 in supporting information) wherein we represent the composite sensitivity func-

tions of all the channels using a single PCA basis set. This enables us to exploit the redundancy of the

composite sensitivity functions along the channels as well as shots, thus enabling higher accelerations than

what is offered by the convention channel compression schemes. We show that the proposed simplified

scheme can enable fast joint reconstruction of the multi-dimensional data without compromising the quality

of motion-compensation. In the following sections, we first describe the simplified motion-compensation

approach and then extend it to accelerated recovery from under-sampled acquisitions.

Methods

Liu et al., have formulated the forward model that describes the diffusion encoded k-space acquisition for

the qth diffusion direction as [2]:

mc(kq,i) =
∑
r

sq(r) pc,q,i(r) e
−j2πkT

q,ir, (1)

where mc is the k-space measurement at the k-space location k on the ith shot using coil c. Here, sq(r) is

the diffusion signal at voxel location r for the qth diffusion weighted image, pc,q,i(r) is the motion induced

phase error, which is also weighted by the coil sensitivities (also referred to as composite sensitivities),

for the voxel location r for the cth coil, ith shot and qth diffusion direction. e−j2πkT
q,ir are the Fourier

exponentials for the arbitrary k-space locations. For a given diffusion direction, the system of measurements

in Eq. (1) in matrix form is given by:

m = Es + ε, (2)

where m is the vector of k-space measurements of size (Nk×Ni×Nc)×1; Nk, Ni, andNc are respectively

the number of k-space points per shot, the number of shots, and the number of channels. The matrix of

Fourier exponentials combined with the composite sensitivities form the encoding function E and ε is the

Gaussian-distributed measurement noise in k-space. The reconstruction of the vectorized image s is then
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solved as an iterative SENSE recovery problem [24], often solved using conjugate gradients (CG):

s∗ = argmin
s
‖Es−m‖2`2 . (3)

The flowchart showing the update of s using the CG-SENSE algorithm is given in Figure 1(a). At each

iteration, we need to compute h = EHEs, where EH represents the adjoint of E.

EHE =

Ni×Nc∑
l=1

(
PH
l QH

l Ql Pl

)
. (4)

Here, Ql is the non-uniform discrete Fourier transform that maps the image to the k-space samples corre-

sponding to the lth shot. Pl = diag(pl(r)) is a diagonal matrix, whose diagonal entries correspond to the

lth composite sensitivity function pl(r). Note that the computation of the above equation requires Nc ×Ni

non-Cartesian Fourier transforms and inverse transforms, per iteration (see Figure 1(a)); the computational

complexity of this step is the key bottleneck in achieving fast implementation. We use a three step strategy

to considerably reduce the computation time. The main components are described in the following sections.

Step 1: Dimensionality Reduction using PCA

The number of non-uniform Fourier transforms to be evaluated at each iteration is equal to the number

of composite sensitivity functions (M = Ni × Nc per diffusion direction). We now propose to reduce

the number of non-uniform Fourier transforms by exploiting the redundancy in the composite sensitivity

functions. The central idea is to approximate the composite sensitivity functions pl(r); l = 1, ..,M as a

linear combination of Nb basis functions, cj(r); j = 1, .., Nb:

pl(r) ≈
Nb∑
j=1

al,j cj(r); l = 1, ..,M (5)

where al,j are the scalar coefficients. Since each composite sensitivity function is a linear combination of the

same Nb basis functions, the number of non-uniform Fourier transforms required to evaluate EHE reduces

from M to Nb;Nb << M .

We use a principal component analysis to determine the optimal basis functions for representing the

composite sensitivity functions. We stack the vectorized composite sensitivity functions into the columns of

a matrix Z and perform a singular value decomposition, Z = UΣΛH . The left singular vectors, U, corre-

spond to the basis functions, while ΣΛH are the coefficients. One can choose the number of basis functions,
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Nb, so as to obtain the desired approximation quality; a good guess can be obtained by plotting the singular

values of Σ. Note that this approach is different from the conventional PCA-based channel compression

schemes where the k-space data is compressed (see Figure 1 supporting information). Other choices of

basis functions such as polynomials can also be used [25] (see section 1.1 in supporting information).

Step 2 : Integrate PCA-based approximation and Toeplitz embedding

The evaluation of forward and backward non-uniform Fourier transforms within each iteration is computa-

tionally expensive. To speed up this computation, the Toeplitz structure of QH
l Ql can be exploited [26–29].

This enables to rewrite QH
l Ql = FH Wl F,where the (2N)2×(2N)2 matrix F corresponds to the uniform

discrete Fourier transform that maps the N × N image to the 2N × 2N grid in the Fourier domain. Note

that F can be efficiently implemented using zero-padded fast Fourier transform. Wl is a (2N)2 × (2N)2

diagonal matrix whose diagonal entries correspond to the 2N × 2N DFT of wl(r) =
∑

kl
e−j2πkT

l r; kl

denotes the k-space location of the shot corresponding to l.

Combining step 1 and 2 described above, Eq. (4) can be simplified as:

h = EHEs =
M∑
l=1

(
PH
l FH Wl F Pl

)
s, (6)

replacing the non-uniform Fourier transforms by fast Fourier transforms. Since the Fourier transforms are

linear, we can simplify the Fourier transform of the sensitivity weighed image as F Pl s =
∑Nb

j=1 al,j ( F Cj s).

Here, Cj is a diagonal matrix, whose diagonal entries correspond to the jth basis function cj(r). Further

simplification of EHE follows:

EHE =

M∑
l=1

Nb∑
k=1

a∗l,k
(
CH
k FH

)
︸ ︷︷ ︸

PH
l FH

Wl

Nb∑
j=1

al,jFCj︸ ︷︷ ︸
FPl

=
M∑
l=1

Nb∑
k=1

Nb∑
j=1

al,j a
∗
l,k

(
CH
k FHWlFCj

)
=

Nb∑
k=1

Nb∑
j=1

CH
k FH

(
M∑
l=1

al,ja
∗
l,kWl

)
︸ ︷︷ ︸

Uj,k

FCj (7)

The simplification of EHE using Eq. (7) is graphically illustrated in Figure 1(d). While Toeplitz-

embedding is standard in non-Cartesian MRI reconstruction, the combination of the weights corresponding

to the different trajectories specified by Ujk introduced above is a novel formulation. Since the composite
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sensitivity functions are smooth and have significant redundancy between them, the above approximation is

often very good for even small values of Nb. Note that the computation of the above expression requires

only Nb FFT and IFFT operations, instead of M >> Nb, resulting in faster computations and reduced

memory demands.

Step 3: Image recovery from under-sampled data using augmented Lagrangian algorithm

The above simplification will considerably accelerate the CG-SENSE recovery of fully-sampled [30] or

moderately under-sampled reconstructions. As described earlier, our own motivation is to use this scheme

for under-sampled reconstructions using CS-based schemes; these methods use additional regularization

priors to exploit the structure imposed by various sparse diffusion models [19, 20, 31]. Existing formulations

of such schemes has a general form:

x∗ = argmin
x
C(x) where C(x) = ||Ax− y||2`2 + λ1||Bx||TV + λ2||Gx||`1 , (8)

where some formulations use both TV and `1 constraints [19, 20, 31], while others use only the `1 constraint

[32]. Here, y is the under-sampled k-space measurements for all diffusion directions, A is the consolidated

forward model, ||Bx||TV is the total-variation (TV) norm of the unknown vector x in some transform

domain Bx, ||Gx||`1 is the `1 norm of x in some transform domain Gx , λ1 and λ2 are regularization

parameters controlling the weights. The TV norm is defined as ||x||TV = ||
√∑2

k=1 |Rkx|2||`1 where R1

and R2 are the finite difference matrices along the x- and y- dimensions, and the `1 norm is defined as

||x||`1 =
∑
|xi|.

Due to the compound nature of the regularizations, problems of the form in Eq. (8) are typically solved

using variable splitting techniques such as the classical augmented Lagrangian (AL) approach [33, 34] or the

split Bregman approach [20]. These techniques convert the above unconstrained problem to a constrained

form through introduction of auxiliary variables:

C1(x) = ‖Ax− y‖2`2 + λ1

√√√√ 2∑
k=1

|gk|2 + λ2||y||`1 such that y = Gx and gk = RkBx. (9)

Here, y and g are the auxiliary variables. The constrained form of Eq. (9) is easier to solve. The AL

algorithm for optimizing the cost function in Eq. (9) is included below. The algorithm alternates between
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the quadratic subproblem

xn+1 = argmin
x
||Ax− y||2`2 +

β1
2

2∑
k=1

||gk −RkBx||2 −
2∑

k=1

γ1k
T (gk −RkBx) +

β2
2
||y − x||2 − γ2T (y − x), (10)

and simpler shrinkage steps given in Eq. (11-13). Of these updates, the computationally expensive step is

the one in Eq. (10), which is solved using CG. Here, we propose to express AHA in terms of EH
q Eq; q =

1, .., Nq, for the recovery of the qth diffusion direction, each of which can be efficiently computed as de-

scribed in the previous subsection.

Algorithm Augmented Lagrangian algorithm for minimizing the cost in Eq. (8)

1: Initialize x(0), y(0), gk(0), β1 > 0, β2 > 0,γ1k,γ2
2: set n = 0
3: Repeat
4: x(n+1): Solve Eq. (10) using CG.
5: y(n+1): Update using the `1 shrinkage rule:[35]

y∗ = sign(x +
γ2
β2

)
(
|x +

γ2
β2
| − 1

β2

)
+
. (11)

6: g
(n+1)
k : Update using the multi-dimensional TV shrinkage rule : [35–37]

gk
∗ =

Rkx + γk
β1√∑1

k=0 |Rkx + γk
β1
|2

(√√√√ 1∑
k=0

|Rkx +
γk
β1
|
2
− 1

β1

)
+

. (12)

7: Update Lagrange multipliers:

γ2
n+1 = γ2 − β2(y − x)

γ1k

n+1 = γ1k
− β1(gk −Rkx). (13)

8: set n = n+ 1
9: Until stopping criterion is reached

Datasets for Validation

In-vivo datasets from two healthy adult volunteers were used for validation. The datasets were collected

in accordance with the Institutional Review Board of the University of Iowa on a Siemens 3T MR scanner

with maximum gradient amplitude of 45 mT/m and slew rate of 200 T/m/sec using a 12 channel head coil.

64 DWIs (b-value =1200 s/mm2) and one non-diffusion weighted image were collected using a SNAILS
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sequence with the following specifications: FOV = 20cm, matrix size = 192x192, TE/TR = 61/2500ms.

Dataset1 was collected using a fully sampled acquisition, prescribed as follows: 10 slices were acquired

with slice-thickness of 2.5mm using 22 spatial shots, variable density factor (α) = 8, readout duration =

18.6ms, total scan time= 60mins. This dataset was retrospectively under-sampled to achieve a reduction

factor (R) of 8 (keeping only 3 out of 22 spatial shots) giving an equivalent scan time of 8 mins. Dataset2

was prospectively collected at R=8. 38 slices were acquired with slice-thickness of 1.5mm, total scan time

= 28mins. In all instances, the non-diffusion weighted images are fully sampled and the incoherent k-q

scheme reported in Mani et al. [19] was used to under-sample the DWIs.

Results

We focus on reconstructing the 64 DWIs jointly employing the CS reconstruction given in Eq. (8) using the

algorithm given above. All computations were performed using MATLAB on a 4-core Linux workstation

with a 3.6GHz Intel Xeon processor with 32GB RAM. Under-sampled measurements at R=8 were used. The

coil sensitivities were computed using the sum-of-squares method from the non-diffusion weighted images.

The DWIs were first jointly reconstructed using a regular CG-SENSE reconstruction without accounting for

motion-induced phase errors. As expected, significant signal drop-outs are observed in the reconstructed

images. Representative images from three diffusion weightings are shown in Figure 2; Figure 2a correspond

to the motion-uncompensated reconstruction using dataset1.

With composite sensitivities estimated from the over-sampled center-k-space of each shots correspond-

ing to every diffusion direction, the images were reconstructed with motion compensation using the tra-

ditional implementation of EHEs shown in Figure 1a. As can be observed from Figure 2b, the resulting

images are free of motion artifacts. However, the time to reconstruct the artifact-free DWIs was about 13.6

hours using the above method, with about 37 sec spent per computation of EHEs. The reconstruction time

using this method scales linearly with the number of composite sensitivities (M) per DWI. Note that M

increases with the number of shots and the number of channels. To appreciate the computational com-

plexity and memory demands of the traditional implementation, we tabulate in Table 1 the scaling of these

parameters with M.

Next, the same motion-compensated reconstruction was implemented using the proposed simplification

shown in Figure 1d. For the first experiment, Nb was chosen to be the same as M (=36) for the case of R=8

so that there is no approximation. Results of this implementation are shown in Figure 2c; note that even

without reducing the dimensionality, the reconstruction was 1.33× faster (time=10.22 hours) compared to
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the traditional implementation. In the subsequent experiments, Nb was varied to take values of 18, 10 and 5

and the reconstruction was repeated. In Figure 3a, we plot the time spent per computation of EHEs as well

as the memory demands for Nb=5, 10, 18 and 36. The reconstruction time and the memory requirements

scales with the number of basis functions. Figure 2d show the results for the reconstruction with Nb=5.

The time of reconstruction was 1.45 hours, about 9× faster compared to the traditional implementation. To

quantify the errors in the reconstructions, in Figure 3b, we report the normalized sum-of-squares error of

the reconstructed images as a function of the number of basis functions used. As observed from Figures 2

and 3b, the loss in image quality while using as low as 5 basis functions is minimal compared to using all

the basis functions. In all cases, λ1 and λ2 were empirically chosen to give the best visual results.

The DWIs were collected at high angular and spatial resolution so that they can be later used to recon-

struct fiber orientations in each voxel. To further verify that these high resolution fiber orientation informa-

tion were not lost during the reconstruction when using different number of basis functions, we computed

the orientation distribution functions (ODF) [38] at a high angular resolution of 724 uniformly spaced direc-

tions and report the average angular error of the ODF and the success rate [39] in finding the correct number

of diffusion components (see Figure 3c-d). Compared to the full PCA-bases, the average angular error was

less than 2◦ and 3◦ and the success rate was close to 98 % and 97% for dataset1 and dataset2 respectively,

verifying the quality of those reconstructions. The recovered high-resolution diffusion data were used for

fiber tracking using the fiber-tracking module of the DSI studio software [40]. We compare the fiber tracking

results from the same region of interest for the DWI reconstructed using Nb=36, 18, 10 and 5. Results in

Figure 2 of supporting information show good agreement between the fiber tracking results, confirming the

utility of the proposed approach.

Comparison with conventional channel compression

To demonstrate the performance difference between a conventional software channel compression (SCC)

scheme [23] and the proposed scheme, we focus on recovering the motion-compensated DWI correspond-

ing to a particular diffusion direction from fully-sampled data (12-channel, 22-shot) using the CG-SENSE

reconstruction in Eq. (3). The k-space data is compressed to Nscc channels, followed by estimation of coils

sensitivities and composite sensitivities from the compressed data for the purpose of motion-compensation.

Figure 4 shows the comparison of the reconstruction quality as well as the reconstruction time using SCC,

PCA-based and traditional CS-SENSE implementations. When the coils are compressed to a single virtual

channel to achieve the least computation time, there is considerable loss in image quality.
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Discussion and Conclusion

The above results show that the PCA-based approximation is capable of accounting for the motion-induced

phase errors accurately, while enabling fast reconstruction of multi-dimensional datasets from under-sampled

k-space measurements. It is also shown here that the large number of composite sensitivity functions can

be compactly represented using a few number of principal components; around 5-10 principal components

give very good approximation. With approximation using 5 basis functions, the reconstruction was 9 times

faster, with minimal loss in accuracy. The number of basis functions can be chosen appropriately to achieve

the desired accuracy. Further speed up can be obtained using GPU-based implementations. Our preliminary

studies show speed up by a factor of 4-6 while using GPU-based implementations (23 mins for Nb=5; 98

mins for Nb=36). Computations based on over-lapping k-space blocks [41] can be used to further reduce

memory demands while performing GPU-based computations. In addition, a matrix-formulation of EHE

might enable to exploit the recently proposed matrix-inversion approach [42] to achieve even faster recon-

structions. In conclusion, we have proposed a faster implementation for achieving motion-compensated CS

reconstruction for multi-shot imaging for arbitrary k-space trajectories, which enables the reconstruction of

high angular and spatial resolution DWI in a reasonable time.
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List of figure captions

Figure 1: Various implementation of EHEs (a) The traditional implementation of EHEs in the update of

s is shown. (b) and (c) are the intermediate steps that leads to the final simplified implementation in (d).

The various symbols are defined as follows: Sq is the diffusion weighted image corresponding to the qth

diffusion direction, Pq,i,j are the composite sensitivity matrices corresponding to the qth diffusion

direction, ith interleaf and jth coil, g represents the gridding of Cartesian points to non-Cartesian grid

followed by gridding back to Cartesian grid and Cj are the basis functions.

Figure 2: Diffusion weighted images reconstructed using various methods. (a) Images reconstructed using

CG-SENSE without motion compensation, (b) motion-compensated reconstruction using traditional

implementation of CG-SENSE, (c) & (d) are motion-compensated reconstruction using the proposed

simplified implementation of CG-SENSE with 36 basis functions and 5 basis functions respectively. (e)

and (f) are difference images (scaled to 1/12 the intensity of images in (b),(c),(d). The time (t) for the joint

reconstruction of all DWIs are reported.

Figure 3: The scaling of different parameters with number of basis functions. (a) Memory demands and

computation time per iteration of EHEs, (b) NSSE error for different number of basis functions, (c)

Average ODF angular error for different number of basis functions, and (d) Success rate in finding the

correct number of fiber orientations in a voxel for different number of basis functions.

Figure 4: Performance comparison between the proposed PCA-based method and the conventional

channel compression (SCC). The reference image in (a) is obtained using the traditional implementation of

CG-SENSE. The time to reconstruct a single diffusion direction is reported. (Difference images scaled to

1/4th of the dynamic range of reconstructed images.)
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(a) The update of s using the traditional implementation of EHEs

(c) The FFTs get shifted to before the summations and IFFTs shifted
to after the summations. All the red arrows indicated together form the
weighting U1,1

(b) Represent composite sensitivities in terms of the basis functions Cj

(d) The simplified implementation requires only Nb FFTs and
IFFTS

Figure 1: Various implementation of EHEs (a) The traditional implementation of EHEs in the update of
s is shown. (b) and (c) are the intermediate steps that leads to the final simplified implementation in (d).
The various symbols are defined as follows: Sq is the diffusion weighted image corresponding to the qth

diffusion direction, Pq,i,j are the composite sensitivity matrices corresponding to the qth diffusion direction,
ith interleaf and jth coil, g represents the gridding of Cartesian points to non-Cartesian grid followed by
gridding back to Cartesian grid and Cj are the basis functions.
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(a) No motion
correction

(b) Traditional
implementation;
t=13.6h

(c) Simplified
implementation
PCA-based;
Nb=36 t=10.22h

(d) Simplified
implementation
PCA-based;
Nb=5 t=1.45h

(e) Difference
image (b)−(c)

(f) Difference
image (b)−(d)

Figure 2: Diffusion weighted
images reconstructed using vari-
ous methods. (a) Images recon-
structed using CG-SENSE with-
out motion compensation, (b)
motion-compensated reconstruc-
tion using traditional implemen-
tation of CG-SENSE, (c) & (d)
are motion-compensated recon-
struction using the proposed sim-
plified implementation of CG-
SENSE with 36 basis functions
and 5 basis functions respec-
tively. (e) and (f) are difference
images (scaled to 1/12 the inten-
sity of images in (b),(c),(d). The
time (t) for the joint reconstruc-
tion of all DWIs are reported.
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Table 1: Scaling of computational complexity with M for the traditional implementation, where M is the
the number of composite sensitivities per DWI. Here, the case of a 12-channel acquisition for 64 DWIs is
considered.

Number of M Memory demands Time to compute
shots per DWI in Megabytes EHEs (in sec)

3(R=8) 36 10.125*64=648 Mb 37.11
6(R=4) 72 20.25*64=1.2656 Gb 86.97

11(R=2) 132 37.125*64=2.32 Gb 214.5

20



(a) Memory demands and computation time per
iteration of EHEs for different number of basis
functions

(b) NSSE error for different number of basis
functions

(c) Average odf angular error for different
number of basis functions

(d) Success rate in finding the correct number of
fiber orientations in a voxel for different number
of basis functions

Figure 3: The scaling of different parameters with number of basis functions.
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(a) Reference image;
time=172.47 sec

Figure 4: Performance comparison between the proposed
PCA-based method and the conventional channel com-
pression (SCC). The reference image in (a) is obtained
using the traditional implementation of CG-SENSE. The
time to reconstruct a single diffusion direction is re-
ported. (Difference images scaled to 1/4th of the dynamic
range of reconstructed images.)
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(b) Nb=10; (c) Nb=5; (d) difference image; (e) difference image;
time=4.8 sec time=2.3 sec (a)-(b) (a)-(c)
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(f) Nscc=4; (g) Nscc=1; (h) difference image; (i) difference image;
time=34.4 sec time=8.6 sec (a)-(f) (a)-(g)
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