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Abstract—Recent theory of mapping an image into a structured
low-rank Toeplitz or Hankel matrix has become an effective
method to restore images. In this paper, we introduce a gen-
eralized structured low-rank algorithm to recover images from
their undersampled Fourier coefficients using infimal convolution
regularizations. The image is modeled as the superposition of a
piecewise constant component and a piecewise linear component.
The Fourier coefficients of each component satisfy an annihi-
lation relation, which results in a structured Toeplitz matrix,
respectively. We exploit the low-rank property of the matrices
to formulate a combined regularized optimization problem. In
order to solve the problem efficiently and to avoid the high
memory demand resulting from the large-scale Toeplitz matrices,
we introduce a fast and memory efficient algorithm based on the
half-circulant approximation of the Toeplitz matrix. We demon-
strate our algorithm in the context of single and multi-channel
MR images recovery. Numerical experiments indicate that the
proposed algorithm provides improved recovery performance
over the state-of-the-art approaches.

Index Terms—Structured low-rank matrix, infimal convolu-
tion, compressed sensing, image recovery

I. INTRODUCTION

The recovery of images from their limited and noisy mea-
surements is an important problem in a wide range of biomed-
ical imaging applications, including microscopy [1], magnetic
resonance imaging (MRI) [2], and computed tomography [3].
The common method is to formulate the image reconstruction
as an optimization problem, where the criterion is a linear
combination of data consistency error and a regularization
penalty. The regularization penalties are usually chosen to
exploit the smoothness or the sparsity priors in the discrete
image domain. For example, compressed sensing methods
are capable of recovering the original MR images from their
partial k space measurements [2] using the L1 norm in the
total variation (TV) or wavelet domain. The reconstruction
performance is determined by the effectiveness of the regular-
ization. In order to improve the quality of the reconstructed
images, several extensions and generalizations of TV are also
proposed, such as total generalized variation (TGV) [4], [5],
Hessian-based norm regularization [6], and higher degree total
variation (HDTV) [7], [8]. All of these regularization penalties
are formulated in the discrete domain, and hence suffer from
discretization errors as well as lack of rotation invariance.
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Recently, a new family of reconstruction methods, which
are based on the low-rank property of structured Hankel or
Toeplitz matrices built from the Fourier coefficients of the
image, have been introduced as powerful continuous domain
alternatives to the above discrete domain penalties [9], [10],
[11], [12], [13]. Since these methods minimize discretization
errors and rotation dependence, they provide improved recon-
struction. These algorithms can be viewed as the multidimen-
sional extensions of the finite-rate-of-innovation (FRI) frame-
work [14], [15]. All of these methods exploit the “annihilation
property”, which implies that image derivatives can be annihi-
lated by multiplication with a bandlimited polynomial function
in the spatial domain; this image domain relation translates to a
convolutional annihilation relationship in the Fourier domain.
Since the locations of the discontinuities are not isolated in the
multidimensional setting, the theoretical tools used to show
perfect recovery are very different from the 1-D FRI setting
[11], [16]. The convolution relations are compactly represented
as a multiplication between a block Hankel structured matrix
and the Fourier coefficients of the filter. It has been shown
that the above structured matrix is low-rank, which allows
the recovery of the unknown matrix entries using structured
low-rank matrix completion. Empirical results show improved
performance over classical total variation methods [17], [16],
[9], [18]. Haldar proposed a Hankel structured low-rank matrix
algorithm (LORAKS) for the reconstructions of single coil MR
images [10] with the assumption that the image has limited
spatial support and smooth phase. The effectiveness of the
algorithm was also investigated in parallel MRI [19], [20],
[21].

In this paper, we extend the structured low-rank framework
to recover the sum of two piecewise smooth functions from
their sparse measurements. This work is inspired by the infimal
convolution framework [22], where the sum of a piecewise
constant and a piecewise linear function was recovered; the
infimal convolution of functions with first and second order
derivatives were considered as penalties in [22]. The algorithm
was then applied in a general discrete setting for image de-
noising [23] to obtain improved performance over standard TV.
The extension of TV using infimal convolution (ICTV) was
applied in video and image reconstruction in [24]. The infimal
convolution of TGV (ICTGV) was proposed in the context
of dynamic MRI reconstruction by balancing the weights for
the spatial and temporal regularizations [25]. In [26] and
[27], the infimal convolution of two total variation Bregman
distances are applied to exploit the structural information
in the reconstruction of dynamic MR datasets and the joint
reconstruction of PET-MRI, respectively. In [28], the authors
adopted the robust PCA method [29] into dynamic MRI, where
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the dataset is decomposed into low-rank and sparse component
(L+S). In [30], instead of imposing low-rank assumptions,
the k-t PCA method was improved using model consistency
constraints (MOCCO) to obtain temporal basis functions from
low resolution dynamic MR data. In this paper, we propose
to model the image as the combination of a piecewise con-
stant component and a piecewise linear component. For the
piecewise constant component, the Fourier coefficients of the
gradient of the component satisfy the annihilation relation. We
thus build a structured Toeplitz matrix, which can be proved
to be low-rank. Similarly, we can obtain a structured low-rank
Toeplitz matrix from the Fourier coefficients of the second
order partial derivatives of the piecewise linear component.
By introducing the generalized structured low-rank method,
the image can be automatically separated into components
where either the strong edges and feature details or the smooth
regions of the image can be accurately recovered. Thus, the
optimal balance can be obtained between the first order and
higher order penalties.

Since the proposed method involves the recovery of large-
scale first and second order derivatives lifted Toeplitz matrices,
the implementation of the method is associated with high
computational complexity and memory demand. In order to
solve the corresponding optimization problem efficiently, we
introduce an algorithm based on the half-circulant approxi-
mation of Toeplitz matrices, which is a generalization of the
Generic Iteratively Reweighted Annihilating Filter (GIRAF)
algorithm proposed in [17], [31]. This algorithm alternates
between the estimation of the annihilation filter of the image,
and the computation of the image annihilated by the filter in a
least squares formulation. By replacing the linear convolution
by circular convolution, the algorithm can be implemented
efficiently using Fast Fourier Transforms, which significantly
reduces the computational complexity and the memory de-
mand. We investigate the performance of the algorithm in
the context of compressed sensing MR images reconstruc-
tion. Experiments show that the proposed method is capable
of providing more accurate recovery results than the state-
of-the-art algorithms. The preliminary version of the work
was accepted as a conference paper. Compared to the work
[32], the theoretical and algorithmic frameworks are further
developed here. We have significantly more validation in the
current version, in addition to the generalization of the method
to parallel MRI setting.

II. GENERALIZED STRUCTURE LOW-RANK MATRIX
RECOVERY

A. Image recovery model

We consider the recovery of a discrete 2-D image ρ ∈ CN
from its noisy and degraded measurements b ∈ CM . We
model the measurements as b = A(ρ)+n, where A ∈ CM×N
is a linear degradation operator which maps ρ to b, and
n ∈ CM is assumed to be the Gaussian distributed white
noise. Since the recovery of ρ from the measurements b is
ill-posed in many practical cases, the general approach is to
pose the recovery as a regularized optimization problem, i.e.,

ρ = arg min
ρ
‖A(ρ)− b‖2 + λJ (ρ) (1)

where ‖A(ρ) − b‖2 is the data consistency term, λ is the
balancing parameter, and J (ρ) is the regularization term,
which determines the quality of the recovered image. Common
choices for the regularization term include total variation,
wavelet, and their combinations. Researchers have also pro-
posed the extensions of total variations [4], [6], [8] to improve
the performance.

B. Structured low-rank matrix completion

Consider the general model for a 2-D piecewise smooth
image ρ(r) at the spatial location r = (x, y) ∈ Z2:

ρ(r) =

N∑
i=1

gi(r)χΩi
(r) (2)

where χΩi
is a characteristic function of the set Ωi and the

functions gi(r) are smooth polynomial functions which vanish
with a collection of differential operators D = {D1, ..., DN}
within the region Ωi. It is proved that under certain assump-
tions on the edge set ∂Ω =

⋃N
i=1 ∂Ωi, the Fourier transform of

derivatives of ρ(r) satisfies an annihilation property [11]. We
assume that a bandlimited trigonometric polynomial function
µ(r) vanishes on the edge set of the image:

µ(r) =
∑
k∈∆1

c[k]ej2π〈k,r〉 (3)

where c[k] denotes the Fourier coefficients of µ and ∆1 is any
finite set of Z2. According to [13], the family of functions in
(2) is a general form including many common image models
by choosing different set of differential operators D.

1) Piecewise constant images: Assume ρ1(r) is a piecewise
constant image function, thus the first order partial
derivative of the image D1ρ1 = ∇ρ1 = (∂xρ1, ∂yρ1)
is annihilated by multiplication with µ1 in the spatial
domain:

µ1∇ρ1 = 0 (4)

The multiplication in spatial domain translates to the
convolution in Fourier domain, which is expressed as:∑

k∈∆1

∇̂ρ1[`− k]c1[k] = 0, ∀` ∈ Z2 (5)

where ∇̂ρ1[k] = j2π(kxρ̂1[k], kyρ̂1[k]) for k =
(kx, ky). Thus the annihilation property can be formu-
lated as a matrix multiplication:

T1(ρ̂1)c =

[
Tx(ρ̂)
Ty(ρ̂)

]
c1 = 0 (6)

where T1(ρ̂1) is a Toeplitz matrix built from the entries
of ρ̂1, the Fourier coefficients of ρ1. Specifically, Tx(ρ̂1),
Ty(ρ̂1) are matrices corresponding to the discrete 2-D
convolution of kxρ̂1[k] and kyρ̂1[k] for (kx, ky) ∈ Γ,
omitting the irrelevant factor j2π. Here c1 is the vector-
ized version of the filter c1[k]. Note that c is supported
in ∆1. Thus, we can obtain that:

ρ̂1[k] ∗ d[k] = 0, k ∈ Γ (7)
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Here d[k] = c1[k] ∗ h[k], where h[k] is any FIR filter.
Note that ∆1 is smaller than Γ, the support of d. Thus, if
we take a larger filter size than the minimal filter c1[k],
the annihilation matrix will have a larger null space.
Therefore, T1(ρ̂1) is a low-rank matrix. The method
corresponding to this case is referred to as the first
order structured low-rank algorithm (first order SLA)
for simplicity.

2) Piecewise linear images: Assume ρ2(r) is a piecewise
linear image function, it can be proved that the sec-
ond order partial derivatives of the image D2ρ2 =
(∂2
xxρ2, ∂

2
xyρ2, ∂

2
yyρ2) satisfy the annihilation property

[13]:
µ2

2D2ρ2 = 0 (8)

Thus, the Fourier transform of D2ρ2 is annihilated by
convolution with the Fourier coefficients c2[k],k ∈ ∆2

of µ2
2: ∑

k∈∆2

D̂2ρ2[`− k]c2[k] = 0, ∀` ∈ Z2 (9)

where D̂2ρ2[k] = (j2π)2(k2
xρ̂2[k], kxkyρ̂2[k], k2

yρ̂2[k])
for k = (kx, ky). Similarly, the annihilation relation can
be expressed as:

T2(ρ̂2)d =

 Txx(ρ̂2)
Txy(ρ̂2)
Tyy(ρ̂2)

 c2 = 0 (10)

where T2(ρ̂2) is a Toeplitz matrix. Txx(ρ̂2), Txy(ρ̂2),
and Tyy(ρ̂2) are matrices corresponding to the discrete
convolution of k2

xρ̂2[k], kxkyρ̂2[k], and k2
yρ̂2[k], omit-

ting the insignificant factor, and c2 is the vectorized
version of d[k]. Similar to the piecewise constant case,
the Toeplitz matrix T2(ρ̂2) is also a low-rank matrix.
The method exploiting the low-rank property of T2(ρ̂2)
is referred to as the second order structured low-rank
algorithm (second order SLA).

C. Generalized structured low-rank image recovery (GSLR)

We assume that a 2-D image ρ is a piecewise smooth
function, which can be decomposed into two components
ρ = ρ1 + ρ2, such that ρ1 represents the piecewise constant
component of ρ, while ρ2 represents the piecewise linear
component of ρ. We assume that the gradient of ρ1 and the
second derivative of ρ2 vanish on the zero sets of µ1 and µ2,
respectively. This relation transforms to a convolution relation
between the weighted Fourier coefficients of ρ1 and ρ2 with
c1 and c2, respectively, based on the analysis in Section. II-B.
Inspired by the concept of infimal convolution, we consider
the framework of a combined regularization procedure, where
we formulate the reconstruction of the Fourier data ρ̂ from the
undersampled measurements b as follows:

min
ρ̂1+ρ̂2=ρ̂

rank[T1(ρ̂1)] + rank[T2(ρ̂2)]

such that b = A(ρ̂) + n (11)

Since the above problem is NP hard, we choose the Schatten
p (0 ≤ p < 1) norm as the relaxation function, which makes
(11) as the following optimization problem:

{ρ̂1
?, ρ̂2

?} = arg min
ρ̂1,ρ̂2

λ1‖T1(ρ̂1)‖p + λ2‖T2(ρ̂2)‖p

+‖A(ρ̂1 + ρ̂2)− b‖2 (12)

where T1(ρ̂1) and T2(ρ̂2) are the structured Toeplitz matrices
in the first and second order partial derivatives weighted lifted
domain, respectively. λ1 and λ2 are regularization parameters
which balance the data consistency and the degree to which
T1(ρ̂1) and T2(ρ̂2) are low-rank. ‖ · ‖p is the Schatten p norm
(0 ≤ p < 1), defined for an arbitrary matrix X as:

‖X‖p =
1

p
Tr[(X∗X)

p
2 ] =

1

p
Tr[(XX∗)

p
2 ] =

1

p

∑
i

σpi (13)

where σi are the singular values of X. Note that when p→ 1,
‖X‖p is the nuclear norm; when p → 0, ‖X‖p =

∑
i

log σi.

The penalty ‖X‖p is convex for p = 1, and non-convex for
0 ≤ p < 1.

III. OPTIMIZATION ALGORITHM

We apply the iterative reweighted least squares (IRLS)
algorithm to solve the optimization problem (12). Based on
the equation ‖X‖p = ‖XH

1
2 ‖2F , where H = (X∗X)

p
2−1, let

X = Ti(ρ̂i) (i = 1, 2), (12) becomes:

{ρ̂?1, ρ̂?2} = arg min
ρ̂1,ρ̂2

λ1‖T1(ρ̂1)H
1
2
1 ‖2F + λ2‖T2(ρ̂2)H

1
2
2 ‖2F

+ ‖A(ρ̂1 + ρ̂2)− b‖2 (14)

In order to solve (14), we can use an alternating minimization
scheme, which alternates between the following subproblems:
updating the weight matrices H1 and H2, and solving a
weighted least squares problem. Specifically, at nth iteration,
we compute:

H
(n)
1 = [T1(ρ̂

(n)
1 )∗T1(ρ̂

(n)
1 )︸ ︷︷ ︸

G1

+εnI]
p
2−1 (15)

H
(n)
2 = [T2(ρ̂

(n)
2 )∗T2(ρ̂

(n)
2 )︸ ︷︷ ︸

G2

+εnI]
p
2−1 (16)

{ρ̂(n)
1 , ρ̂

(n)
2 } = arg min

ρ̂1,ρ̂2

‖A(ρ̂1 + ρ̂2)− b‖2

+ λ1‖T1(ρ̂1)(H
(n)
1 )

1
2 ‖2F + λ2‖T2(ρ̂2)(H

(n)
2 )

1
2 ‖2F (17)

where εn → 0 is a small factor used to stabilize the inverse.
We now show how to efficiently solve the subproblems.

A. Update of least squares

First, let H
1
2
1 = [h

(1)
1 , . . . ,h

(L)
1 ], H

1
2
2 = [h

(1)
2 , . . . ,h

(M)
2 ],

we rewrite the least squares problem (17) as follows:

{ρ̂(n)
1 , ρ̂

(n)
2 } = arg min

ρ̂1,ρ̂2

‖A(ρ̂1 + ρ̂2)− b‖2

+ λ1

L∑
l=1

‖T1(ρ̂1)h
(l)
1 ‖2F + λ2

M∑
m=1

‖T2(ρ̂2)h
(m)
2 ‖2F (18)
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We now focus on the update of ρ̂1. The update of ρ̂2 can be
derived likewise. From the structure property of T1(ρ̂1) and
the convolution relationship, we can obtain:

T1(ρ̂1)h
(l)
1 = PΓ1(M1ρ̂1 ∗ h

(l)
1 ) = PΓ1(h

(l)
1 ∗M1ρ̂1)

= P1C
(l)
1 M1ρ̂1, l = 1, ..., L (19)

where C
(l)
1 denotes the linear convolution by h

(l)
1 , PΓ1

is the
projection of the convolution to a finite set Γ1 of the valid
k space index, which is expressed by the matrix P1. M1

is the linear transformation in k space, which denotes the
multiplication with the first order Fourier derivatives j2πkx
and j2πky , referred to as the gradient weighted lifting case.
We can approximate C

(l)
1 by a circular convolution by h

(l)
1

on a sufficiently large convolution grid. Then, we can obtain
C

(l)
1 = FS

(l)
1 F∗, where F is the 2-D DFT and S

(l)
1 is a

diagonal matrix representing multiplication with the inverse
DFT of h

(l)
1 . Assuming P∗1P1 ≈ I, we can thus rewrite the

second term in (18) as:

λ1

L∑
l=1

‖P1C
(l)
1 M1ρ̂1‖2 = λ1ρ̂1

∗M∗
1F

L∑
l=1

S
(l)∗
1 S

(l)
1 F∗M1ρ̂1

= λ1‖S
1
2
1 F∗M1ρ̂1‖2 (20)

where S1 is a diagonal matrix with entries
∑N
l=1 |µl(r)|2,

and µl(r) is the trigonometric polynomial of inverse Fourier
transform of h

(l)
1 . S1 is specified as

S1 =

L∑
l=1

S
(l)∗
1 S

(l)
1 = diag(F∗P∗1h1) (21)

Similarly, the third term in (18) can be rewritten as
λ2‖S

1
2
2 F∗M2ρ̂2‖2, where S2 is given by

S2 =

M∑
m=1

S
(m)∗
2 S

(m)
2 = diag(F∗P∗2h2) (22)

Therefore, we can reformulate the optimization problem
(18) as:

min
ρ̂1,ρ̂2

‖A(ρ̂1 + ρ̂2)− b‖2 + λ1‖S
1
2
1 y1‖2F + λ2‖S

1
2
2 y2‖2F

s.t. Fy1 = M1ρ̂1, Fy2 = M2ρ̂2 (23)

The above constrained problem can be efficiently solved us-
ing the alternating directions method of multipliers (ADMM)
algorithm [33], which yields to solving the following subprob-
lems:

y
(n)
1 = min

y1

‖S
1
2
1 y1‖22 + γ1‖q(n−1)

1 + F∗M1ρ̂1
(n−1) − y1‖22

(24)

y
(n)
2 = min

y2

‖S
1
2
2 y2‖22 + γ2‖q(n−1)

2 + F∗M2ρ̂2
(n−1) − y2‖22

(25)

ρ̂
(n)
1 = min

ρ̂1

‖A(ρ̂1+ρ̂2)−b‖22+γ1λ1‖q(n−1)
1 +F∗M1ρ̂1−y(n)

1 ‖
2
2

(26)

ρ̂
(n)
2 = min

ρ̂2
‖A(ρ̂1+ρ̂2)−b‖22+γ2λ2‖q(n−1)

2 +F∗M2ρ̂2−y(n)
2 ‖

2
2

(27)

q
(n)
i = q

(n−1)
i + F∗Miρ̂

(n)
i − y

(n)
i i = 1, 2 (28)

where qi (i = 1, 2) represent the vectors of Lagrange
multipliers, and γi (i = 1, 2) are fixed parameters tuned to
improve the conditioning of the subproblems. Subproblems
(24) to (27) are quadratic and thus can be solved easily as
follows:

y
(n)
1 = (S1 + γ1I)−1[γ1(q

(n−1)
1 + F∗M1ρ̂

(n−1)
1 )] (29)

y
(n)
2 = (S2 + γ2I)−1[γ2(q

(n−1)
2 + F∗M2ρ̂

(n−1)
2 )] (30)

ρ̂
(n)
1 = (A∗A+ γ1λ1M

∗
1M1)−1[γ1λ1(M∗

1F)(y
(n)
1 − q

(n−1)
1 )

+A∗b−A∗Aρ̂(n−1)
2 ]

(31)

ρ̂
(n)
2 = (A∗A+ γ2λ2M

∗
2M2)−1[γ2λ2(M∗

2F)(y
(n)
2 − q

(n−1)
2 )

+A∗b−A∗Aρ̂(n−1)
1 ]

(32)

B. Update of weight matrices

We now show how to update the weight matrices H1 and
H2 in (15) and (16) efficiently based on the GIRAF method
[11]. In order to obtain the weight matrices H1 and H2, we
first compute the Gram matrix G1 and G2 as:

G1 = T1(ρ̂1)∗T1(ρ̂1) (33)
G2 = T2(ρ̂2)∗T2(ρ̂2) (34)

Let (V1,Λ1) denote the eigen-decomposition of G1, where
V1 is the orthogonal basis of eigenvectors v

(l)
1 , and Λ1 is

the diagonal matrix of eigenvalues λ(l)
p1 , which satisfy G1 =

V1Λ1V
∗
1 . Then we can rewrite the weight matrix H1 as:

H1 = [V1(Λ1 + εI)V∗1]
p
2−1 = V1(Λ1 + εI)

p
2−1V∗1 (35)

Thus, one choice of the matrix square root H
1
2
1 is

H
1
2
1 = (Λ1 + εI)

p
4−

1
2 V∗1

= [(λ(1)
p1 + ε)

p
4−

1
2 (v

(1)
1 )∗, ..., (λ(L)

p1 + ε)
p
4−

1
2 (v

(L)
1 )∗]

= [h
(1)
1 , . . . ,h

(L)
1 ] (36)

Similarly, we can obtain H
1
2
2 as:

H
1
2
2 = [(λ(1)

p2 + ε)
p
4−

1
2 (v

(1)
2 )∗, ..., (λ(M)

p2 + ε)
p
4−

1
2 (v

(M)
2 )∗]

= [h
(1)
2 , . . . ,h

(M)
2 ] (37)
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C. Implementation details

The details for solving the optimization problem (14) are
shown in the following pseudocode Algorithm 1. In order
to investigate how the SNR values of the recovered image
behave as the function of the balancing parameters λ1 and λ2,
we plot the parameters optimization results for two images
in Fig. 1, where (a) correspond to the parameters for the
compressed sensing reconstruction of an ankle MR image
with the acceleration factor of 6, and (b) correspond to the
parameters choices for the recovery of a phantom image with
4-fold undersampling. We find that the tuning of the two
parameters is not very time consuming, since we observe that
the optimal parameters are localized in a narrow range between
105 and 106 for λ1 and between 107 and 108 for λ2, for
different images under different scenarios.

(a) SNR of ankle MR image (b) SNR of phantom image

Fig. 1: Parameters optimization results for the recovery of two images. (a)
shows the SNR as the function of the two parameters λ1 and λ2 for the 6-
fold undersampling recovery of an ankle MR image (as shown in Fig. 5). (b)
shows the SNR as the function of λ1 and λ2 for the 4-fold undersampling
recovery of a piecewise smooth phantom image (as shown in Fig. 3). The
black rectangles correspond to the optimal parameters with the highest SNR
values.

IV. EXPERIMENTS AND RESULTS

A. 1-D signal recovery

We first experiment on a 1-D signal to investigate the
performance of the algorithm on recovering signals from their
undersampled measurements. Fig. 2 (a) shows the original
signal, which is 2-fold undersampled in k space using variable
density undersampling pattern, indicated in (b). The direct
IFFT recovery is shown in (c). (d) shows the recovered signal
(in blue solid line) using the proposed GSLR method in 1-
D, and the decomposition results of the piecewise constant
component ρ1 (in black dotted line) and the piecewise linear
component ρ2 (in red dotted line). We then experiment on the
signal recovery using a 4-fold random undersampling pattern,
shown in (e). (f) is the direct IFFT of the undersampled
measurements. (g) represents the recovered signal and the
decomposition results. The results clearly show that by the
GSLR method, both the jump discontinuities and the linear
parts of the signal are nicely restored.

B. MR images recovery

The performance of the proposed method is investigated in
the context of compressed sensing MR images reconstruction.
We compare the proposed GSLR method with the first order
and the second order structured low-rank algorithms. We also
study the improvement of the image quality offered by the

(a) Original signal

(b) 2-fold variable
density sampling

(c) IFFT signal (d) Reconstruction
from (c)

(e) 4-fold random
sampling

(f) IFFT signal (g) Reconstruction
from (f)

Fig. 2: 1-D signal recovery using the GSLR method. (a) is the original signal,
which is undersampled by a 2-fold variable density random undersampling
pattern, indicated in (b). (c) is the direct IFFT recovery of the undersampled
measurements. (d) shows the recovered signal (in blue solid line) and the
decomposition results of the two components, namely the piecewise constant
component (showed in black dotted line) and the piecewise linear component
(showed in red dotted line). (e)-(g) represent the results of a 4-fold random
undersampling compressed sensing signal recovery experiment. Note that the
proposed scheme recovers the Fourier coefficients of the signal; the ringing
at the edges is associated by the inverse Fourier transform of the recovered
Fourier coefficients.

GSLR algorithm over standard TV, TGV algorithm [4], and
the LORAKS method [10]. For all of the experiments, we
have manually tuned the parameters to ensure the optimal
performance in each scenario. Specifically, we determine the
parameters to obtain the optimized signal-to-noise ratio (SNR)
to ensure fair comparisons between different methods. The
SNR of the recovered image is computed as:

SNR = −10 log10

(
‖forig − f̂‖

2
F

‖forig‖2F

)
(38)

where f̂ is the recovered image, forig is the original image,
and ‖ · ‖F is the Frobenius norm.

In the experiments, we consider two types of undersam-
pling trajectory: a radial trajectory with uniform angular
spacing, and a 3-D variable density random retrospective
undersampling trajectory. For the 3-D sampling pattern, since
the readout direction is orthogonal to the image plane, such
undersampling patterns can be implemented on the scanner.

We first study the performance of the proposed method for
the recovery of a piecewise smooth phantom image from its
noiseless k space data. We assume the data was sampled with
26 k radial spokes, with the approximate acceleration factor of
10.7. Fig. 3 (a) is the actual image, (b) to (g) are the recovered
images using GSLR with filter size of 51 × 51, GSLR with
filter size of 31×31, the 1st SLA and the 2nd SLA with filter
size of 31× 31, TGV, and the standard TV, respectively. The
second row show the zoomed regions of the corresponding
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Algorithm 1: GSLR image recovery algorithm

Initialization: ρ̂(0) ← A∗b, n ← 1, ε(0) > 0 ;
while n < Nmax do

Step1: Update of weight matrices;
Compute the Gram matrices Gi (i = 1, 2) using (33) and (34);
Compute eigendecompositions (λ(k)

pi ,v
(k)
i )Kk=1 of Gi (i = 1, 2);

Compute h
(l)
1 and h

(m)
2 using (36) and (37);

Step2: Update of least squares;
Compute the weight matrices S1 and S2 using (21) and (22);
Solve the following least squares problem :

min
ρ̂1,ρ̂2

λ1‖S
1
2
1 y1‖2F + λ2‖S

1
2
2 y2‖2F + ‖A(ρ̂1 + ρ̂2)− b‖2using ADMM iterations (24) to (28);

Choose ε(n) such that 0 < ε(n) ≤ ε(n−1);
end

ORIG
GSLR 51×51
SNR: 33.71

1st 31×31
SNR: 32.66

2nd 31×31
SNR: 32.01

TGV
SNR: 31.27

TV
SNR: 30.83

(a) (b) (c) (e) (f) (g)

(i) (j) (k) (l) (m) (n)

(q) (r) (s) (t) (u) (v)(o)

(h)

(d)

0

0.02

0.04

0.06

0.08

0.1

0.12

GSLR 31×31
SNR: 33.28

Fig. 3: Recovery of a piecewise smooth phantom image from around 10-fold undersampled measurements. (a): the actual image. (b)-(g): Reconstructions
using the proposed GSLR method with filter size of 51 × 51, GSLR with filter size of 31 × 31, the 1st and 2nd SLA with filter size of 31 × 31, TGV,
and the standard TV, respectively. (h)-(n): the zoomed regions of the area indicated in the red rectangle for the corresponding images. (o): the undersampling
pattern. (q)-(v): the error images. Note that recovered images using TGV and TV methods present undersampling artifacts, indicated in green arrows, while
the GSLR methods outperform the other methods in recovering both the edges and the smooth regions, indicated in red arrows.

images. (o) is the undersampling pattern, (q) to (v) are the
error images.

We observe that the structured low-rank algorithms outper-
form TGV and the standard TV algorithms under this scenario,
in that the recovered images by TGV and TV methods
suffer from obvious undersampling artifacts, indicated in green
arrows. For the structured low-rank algorithms with filter size
of 31×31, it is shown that GSLR performs better than the 1st
SLA and the 2nd SLA in recovering the edges, indicated in
red arrows. It is shown that with larger filter sizes (51× 51),
the GSLR method provides the best reconstruction result with
the SNR improvement of around 3dB over standard TV.

In the following experiments, we investigate the proposed
GSLR method on the reconstruction of single-coil real MR

images. The reconstructions of a brain MR image at the
acceleration of 4 is shown in Fig.4, where we compare the
proposed GSLR method using different filter sizes with the
first and second order SLA, S-LORAKS method, TGV, and
the standard TV method. Fig. 4 (a) is the original image.
(b) to (h) are the reconstructions using the GSLR with filter
size of 51 × 51, GSLR with filter size 31 × 31, the 1st and
2nd SLA with filter size 31× 31, S-LORAKS, TGV, and the
standard TV. (i) to (p) are the zoomed versions of the images,
indicated by the red rectangle. (q) is the variable density
random undersampling pattern. (r) to (x) are the error images
using the corresponding methods. It is seen that among all of
the methods, GSLR performs the best in preserving the details
and providing the most accurately recovered image. Note that
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ORIG
GSLR 51×51
SNR: 27.36
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Sampling: 25%
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0.04
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0.1

(x)

S-LORAKS
SNR: 25.86
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SNR: 24.93
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(y) (z)(s)

Fig. 4: Recovery of a brain MR image from 4-fold undersampled measurements. (a): the original image. (b)-(h): Reconstructions using GSLR with filter size
of 51× 51, GSLR with filter size 31× 31, the 1st and 2nd SLA with filter size 31× 31, S-LORAKS, TGV, and the standard TV, respectively. (i)-(p): The
zoomed versions of the area shown in the red rectangle in (a). (q): The undersampling pattern. (r)-(x): the error images.

0

0.05

0.1

0.15

ORIG
GSLR 51×51
SNR: 27.08

S-LORAKS
SNR: 25.15

1st 51×51
SNR: 26.76

2nd 51×51
SNR:26.49

TGV
SNR: 25.59

TV
SNR: 24.15

Sampling:15%

(a) (b) (c) (d) (e) (f) (g) (h)

(i) (j) (k) (l) (m) (n) (o)

(q) (r) (s) (t) (u) (v) (w)

(p)

G-LORAKS
SNR:25.24

(x)

Fig. 5: Recovery of an ankle MR image from 6.7-fold undersampled measurements with radial undersampling pattern. (a): The actual image. (b)-(f): The
recovery images using GSLR, 1st SLA, 2nd SLA with filter size of 51 × 51, S-LORAKS, G-LORAKS, TGV, and TV, respectively. (i)-(p): The zoomed
versions of the images. (q): The undersampling pattern. (r)-(s): Error images using the corresponding methods. Note that the proposed GSLR method performs
the best in preserving the edges and eliminating the artifacts caused by the undersampling, compared with the other methods.

by increasing the filter size from 31×31 to 51×51, the image
quality is significantly improved, with only a modest increase
in runtime (85 s versus 36 s).

We demonstrate the performance of the proposed method on
the reconstruction of an ankle MR image at the approximate
acceleration rate of 6.7 using the radial undersampling pattern
in Fig. 5. In this experiment, we compare the proposed GSLR
method with 1st and 2nd SLR, S-LORAKS, G-LORAKS,
TGV, and the standard TV. All of the structured low rank
methods are with filter size of 51 × 51. (a) is the original
image. (b) to (h) are the reconstructed images using GSLR,

1st SLA, 2nd SLA, S-LORAKS, G-LORAKS, TGV, and
TV, respectively. (j) to (p) are the zoomed versions of the
images indicated by the red rectangle shown in (a). (q) is the
radial undersampling pattern. (r) to (x) are the error images.
We observe that TV method gives blurry reconstruction. The
images recovered by S-LORAKS, G-LORAKS, and TGV
methods have undersampling artifacts, indicated in the green
arrow. The structured low rank methods provide improved
results, among which GSLR performs better in preserving
image details, shown in red arrows.

In Fig. 6, we experiment on a brain MR image using radial
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undersampling pattern with the acceleration factor around 4.8.
(a) is the actual image. (b) to (h) are the reconstruction results
using GSLR with filter size of 51 × 51, 1st and 2nd SLA
with filter size of 51 × 51, S-LORAKS, G-LORAKS, TGV,
and the standard TV, respectively. The second row are the
zoomed versions of the red rectangular area shown in (a)
for different methods. (q) shows the undersampling pattern.
(r) to (x) are the error images of the corresponding methods,
respectively. We observe that TV and TGV methods provide
blurry reconstructions, and the LORAKS methods preserve
fine details better while suffers from undersampling artifacts.
Among the methods, GLSR provides the best reconstruction
and improves the SNR by around 2dB compared over standard
TV.

In Fig. 7, we compare different methods on the recovery of
a multi-coil MR dataset acquired using four coils from 8-fold
undersampled measurements. The data was retrospectively
undersampled using the variable density random undersam-
pling pattern. (a) is the actual image. (b) to (g) show the
reconstruction results using GSLR, 1st and 2nd SLA with filter
size of 31 × 31, S-LORAKS, G-LORAKS, and the standard
TV, respectively. (h) to (n) are the zoomed regions indicated
in the red rectangle. (o) is the undersampling pattern. (p) to
(u) indicate error images by different methods. According to
the results, we observe that compared with the other methods,
GLSR performs the best in preserving the image features and
providing the recovered image with highest SNR value. We
have shown the phase images of all the datasets in Fig. 8.
We note that all of the images are associated with reasonable
phase variations, expected from a typical MR acquisition. We
note that GSLR relies on the compact representation of the
image, enabled by its decomposition into piecewise constant
and linear components. Since S-LORAKS and G-LORAKS do
not exploit these property, we obtain improved reconstructions
with filter sizes larger than 31x31.

The SNRs of the recovered images using variable density
random undersampling patterns are shown in Table I, and
the reconstruction results using radial undersampling patterns
are shown in Table II. We compare the 1st and 2nd SLA,
S-LORAKS, G-LORAKS, TGV, the standard TV with the
proposed GSLR method. For the structured low-rank algo-
rithms, we compare the performance by different filter sizes.
Specifically, we use three different filter sizes, 15 × 15,
31 × 31 and 51 × 51 for the variable density undersampling
experiments, and two filter sizes for the radial undersampling
experiments. Note that when the filter size is 15 × 15, the
results provided by GSLR are not comparable to the other
methods for some cases. However, using larger filter sizes
leads to significantly improved image quality. For filter sizes
31×31 and 51×51, GSLR consistently obtains the best results,
with the SNR improvement by around 2-3 dB over standard
TV. The reason is that the size of the filter specifies the type
of curves or edges that its zero set can capture. Specifically,
smaller filters can only represent simpler and smoother curves,
while larger filters can represent complex shapes (see [11] for
an illustration). When complex structures are presented in the
image, the use of a smaller filter fails to capture the intricate
details. We note that for most images, we need to use larger

filters to ensure that the details are well captured. The use of
larger filters is made possible by the proposed IRLS algorithm,
which does not require us to explicitly compute the Toeplitz
matrices.

V. CONCLUSION

We proposed a novel generalized structured low-rank al-
gorithm to recover images from their undersampled k space
measurements. We assume that an image can be modeled as
the superposition of two piecewise smooth functions, namely
a piecewise constant component, and a piecewise linear com-
ponent. Each component can be annihilated by multiplica-
tion with a bandlimited polynomial function, which yields
to a structured Toeplitz matrix. We formulate a combined
regularized optimization algorithm by exploiting the low-
rank property of the Toeplitz matrix. In order to solve the
corresponding problem efficiently, we adapt the iteratively
reweighted least squares method which alternates between the
computation of the annihilation filter and the least squares
problem. We investigate the proposed algorithm on the com-
pressed sensing reconstruction of single-coil and multi-coil
MR images. Experiments show that the proposed algorithm
provides more accurate recovery results compared with the
state-of-the-art approaches.
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R2filter size [31,31] [51,51] [31,31] [51,51]
Brain Fig.4 acc≈4.8 acc≈6.7
First SLA 26.64 26.85 23.19 23.80

Second SLA 26.05 26.55 22.82 23.32
TGV 25.90 25.90 23.11 23.11
TV 25.26 25.26 22.59 22.59

S-LORAKS 26.31 26.31 22.85 22.85
G-LORAKS 25.97 25.97 21.30 21.30

GSLR 26.77 27.25 23.45 24.18
Brain Fig.6 acc≈4.8 acc≈6.7
First SLA 24.99 26.25 21.17 22.62

Second SLA 23.82 24.95 20.86 22.29
TGV 24.26 24.26 21.63 21.63
TV 23.65 23.65 20.88 20.88

S-LORAKS 24.23 24.23 21.20 21.20
G-LORAKS 23.75 23.75 21.53 21.53

GSLR 25.23 26.62 22.47 23.01
Ankle acc≈4.8 acc≈6.7

First SLA 31.02 31.37 26.15 26.76
Second SLA 31.14 31.42 26.07 26.49

TGV 30.53 30.53 25.59 25.59
TV 28.53 28.53 24.15 24.15

S-LORAKS 31.03 31.03 25.15 25.15
G-LORAKS 29.89 29.89 25.24 25.24

GSLR 31.39 31.69 26.60 27.08
Multi-coil acc=5.2 acc=10
First SLA 27.78 29.01 22.33 22.87

Second SLA 27.24 28.15 21.76 22.60
TGV 26.08 26.08 20.77 20.77
TV 24.92 24.92 18.53 18.53

S-LORAK 27.32 27.32 21.01 21.01
G-LORAKS 26.58 26.58 20.22 20.22

GSLR 27.90 29.43 22.51 23.15

TABLE II: Comparison of MR image recovery algorithms using radial
undersampling pattern
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