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ABSTRACT In this paper, a comprehensive study of the effectiveness of the classical grid and coordinate
models (CMs) in producing the optimal wind farm layout is conducted based on theoretical analyses and
computational experiments. The wind farm layout planning with the grid model (GM) and CM is formulated
as a combinatorial and a continuous optimization problem separately. Theoretical analyses prove that it
is more complicated to solve CM than GM if the solution space of two models is searched exhaustively.
In computational studies, the impact of advanced heuristic search methods on generating optimal wind farm
layouts with GMandCM is analyzed. First, twomodels are solvedwith themulti-swarm optimization (MSO)
algorithm, and CM, in general, produces better layouts, because swarm intelligence is inherently continuous
and the flexibility of CM. To further evaluate the importance of selecting an appropriate heuristic search
algorithm, the random key genetic algorithm (RKGA) is introduced to compare with MSO in solving GM.
Results show that GM produces much better wind farm layouts with RKGA, which is inherently combina-
torial. Computational results demonstrate that it is important to match the inherent suitability of heuristic
search algorithms with the type of the layout planning models in the wind farm layout optimization.

INDEX TERMS Wind farm, layout planning, heuristic search, comparative analysis, power maximization.

I. INTRODUCTION
Wind turbines are usually distributed over a broad geograph-
ical area. The upstream turbines of a wind farm produce
wakes affecting downstream turbines [1]. Wind farm layout
design researches aim at generating optimal locations of wind
turbines to minimize the wake effect and maximize the power
output over the life-span of the wind farm.

Studies of the wind farm layout planning are categorized
into two groups. The first group focuses on optimization of
the wind farm layout with GMs. In [2]–[8], the geographical
region of a wind farm is modeled as a grid with a number of
columns and rows. Centers of the grid cells are typically con-
sidered as potential spots for placing wind turbines. The solu-
tion of a GM is a combination of cells with the assigned wind
turbines. Mosetti et al. [2] studied optimizing wind turbine
locations at a site modeled as a 10× 10 grid. The authors [2]
considered two objectives, the maximization of energy output
and minimization of the installation cost. Grady et al. [3]
investigated the optimization of the wind turbine placement
with GMs for different wind directions. Castro Mora et al. [4]
presented an algorithm for designing a wind farm, including

the layout of wind turbines. The major drawback of the grid
layout approach is in the optimality of obtained solutions.
First, the GM usually locates each wind turbine at the center
of a cell which restricts the layout flexibility. Next, the effec-
tiveness of heuristic search algorithms impacts the quality
of solutions. To improve the flexibility of the grid layout
model, Du Pont and Cagan [5] introduced an extended pattern
search approach for solving GMs, thus allowing for more
flexible placement of wind turbines. Emami and Noghreh [6]
extended the genetic algorithm by incorporating a new coding
approach to solve the GM. Long and Zhang [7] presented a
two-echelon wind farm layout model to improve the flexibil-
ity of GM in the wind farm layout planning. Chen et al. [8]
developed an innovative optimization method based on the
multi-objective genetic algorithm to solve the wind farm
layout model.

The second group of topics focused on optimizing the
wind farm layout with CMs. These models allow the full
freedom of locating wind turbines. In CMs, a wind farm is
represented in Cartesian coordinates, and therefore any x-y
location can be used for placing wind turbines. Since values

1810
2169-3536 
 2017 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 5, 2017



H. Long et al.: Formulation and Analysis of Grid and Coordinate Models for Planning Wind Farm Layouts

of x and y are continuous, solving the CM is a continuous
optimization problem. Kusiak and Song [9] formulated the
wind farm layout model based on the coordinate system and
proposed an evolutionary strategy algorithm for solving the
model. Saavedra-Moreno et al. [10] introduced a seeding
evolutionary algorithm to solve a CM converted from a GM.
Eroglu and Seckiner [11] examined the ant colony algorithm
in solving the CM. Perez et al. [12] utilized the coordinate
system to model the site of an offshore wind farm and
introduced a mathematical programming approach to solve it.
Chowdhury et al. [13] discussed a CM with multiple types of
wind turbines. According to [9]–[14], themajor researches on
CMs have focused on examining the development of solution
algorithms.

The wind farm layout optimization has been independently
studied based on GMs and CMs [1]–[12]. A comprehensive
comparison of the advantages and drawbacks of GM and CM
in planning the wind farm layout is seldom [15]. This research
offers a thorough investigation of the effectiveness of GM and
CM in planning the wind farm layout based on theoretical
analyses and computational experiments. The general GM
and CM are firstly formulated. The wake effect as well as the
uncertainty of the wind speed and direction are considered.
The key model difference is that planning the optimal wind
farm layout with GM and with CM belong to a combinato-
rial and a continuous optimization problem separately. The
theoretical analyses prove that solving CM with exhaustively
searching its solution space is more complicated than solving
GM with the same approach. In computational experiments,
the impact of advanced heuristic search algorithms on pro-
ducing wind farm layouts with GM and CM is analyzed. The
MSO algorithm is firstly applied to solve both GM and CM.
Computational results show that CM solved by MSO gen-
erates better layouts than GM. As the swarm intelligence is
inherently continuous, solving GM with a solution algorithm
which is inherently combinatorial might return better results.
The RKGA algorithm is next applied to solve the GM and
compared with the MSO. Computational results validate that
it is important to choose the suitable solution algorithm based
on characteristics of the optimization model in the wind farm
layout design.

II. PROBLEM DESCRIPTION
In this section, the wind farm layout planning problem includ-
ing its assumptions, the considered wake loss model and the
wind power generation model is described.

A. BACKGROUND AND ASSUMPTIONS
The following assumptions, A1 – A5, are considered for
simple and general layout design cases:
A1. The power curves of wind turbines are identical and

their power output characteristics are modeled by a
2-parameter logistic function in (1).

Pi = p(vi) =


0 vi > vco, vi < vci

evi

a+ bevi
vci ≤ vi < vr

Pmax vr ≤ vi < vco

(1)

where P is the power output, Pmax is the rated power, v
is the wind speed, i is the wind turbine index, vco is the
cut-out wind speed, vci is the cut-in wind speed, vr is
the rated wind speed, and a, b are the parameters of the
logistic function (1).

A2. The geographical region for locating wind turbines is a
plane.

A3. The minimal distance between two adjacent wind
turbines is set to four times of the rotor radius, 4R.

A4. Thewind speed v conditioned on direction θ in thewind
farm follows a Weibull distribution described in (2)
with the scale parameter λ and the shape parameter k .

fW (v, λ, k) =
k
λ

( v
λ

)k−1
exp

(
−

( v
λ

)k)
,

λ = λ′ (θ) , k = k ′ (θ) (2)

A5. The wake produced by a wind turbine expands linearly
and forms a conic shape.

B. WAKE EFFECT MODEL
Wind turbines generate wake behind their swept areas as
shown in Fig. 1. The wake weakens the kinetic energy of the
wind at downstream wind turbines which negatively impact
the wind farm power output. Although the elimination of
the wake effect is challenging, given the prevailing wind
direction, it is possible to minimize the wake effect by the
optimal wind farm layout.

FIGURE 1. Jensen’s wake effect model.

To quantify the wake effect in the layout design, the
Jensen’s wake model introduced in [16] is applied. The wake
generated by wind turbine i located at point Ti is modeled as
a conic section. The angle 6 TiATj in Fig. 1 identifies turbine j
affected by the wake of turbine i, i and j = 1, 2, . . . , n, i 6= j.
Given the wind direction, θ , the wake expansion constant, κ ,
coordinates of turbine i, (xi, yi), and coordinates of turbine j,
(xj, yj), the angle, denoted as βi,j, can be obtained from (3).

βi,j = cos−1

×

 (xj − xi) cos θ + (yj − yi) sin θ + R/κ√
(xj − xi + R

κ
cos θ )2 + (yj − yi + R

κ
sin θ )2


(3)

The distribution of the wind speed at wind turbines affected
by the wake is re-estimated by Kusiak and Song [9]. It is
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demonstrated that only the scale parameter, λ′(θ ), of the
Weibull distribution is impacted. The new λ′(θ ) and newwind
speed of affected wind turbine j is estimated by (4) and (5).

λ′j(θ ) = λ(θ )(1− v
def
j ), j = 1, 2, . . . , n (4)

vdefj =

√√√√ n∑
i=1,i 6=j,βi,j<arctan(κ)

[
1−
√
1− CT

(1+ κ
Rdi,j)

2

]2
(5)

where CT is the thrust coefficient constant and di,j describes
the distance between turbine i and j projected on θ

(see Eq. (6)).

di,j =
∣∣(xi − xj) cos θ + (yi − yj) sin θ

∣∣ . (6)

C. WIND POWER GENERATION MODEL
Having computed λ′j(θ ), the expected power output of
turbine j can be obtained by integrating the product of (1)
and (2) over v and θ as shown in (7). The power output over
[0, vci) and [vco,∞) is 0 because p(vj) = 0 when vj ∈ [0, vci)
and [vco,∞).

E(Pj) =

360◦∫
0

vr∫
vci

fθ (θ )fW (vj, λ′j(θ ), k
′(θ ))

evi

a+ bevi
dvjdθ

+

360◦∫
0

vco∫
vr

fθ (θ )fW (vj, λ′j(θ ), k
′(θ ))Pmaxdvjdθ (7)

The integration in (7) is challenging as the model has a
complex form and the probability distribution function of
θ , fθ (θ ), is unknown. Numerical integration is applied to
obtain an approximate value. Let θ1, θ2, . . . , θh be the divid-
ing points of the wind direction with the following order,
θ1 ≤ θ2 ≤ . . . ≤ θh−1 ≤ 360, where θ0 = 0◦ and
θh = 360◦. The wind speed interval, [vci, vr ], is divided
by points, v1, v2, . . . , vs with the order v1 ≤ v2 ≤ . . . ≤

vs−1 ≤ vr , where v0 = vci and vs = vr . The expected power
output of wind turbine j is approximated as shown in (8).

E(Pj) =
h∑
ξ=1

wξ


s∑

ψ=1

e(vψ−1+vψ )/2

a+ be(vψ−1+vψ )/2

×

(
e
−

(
vψ−1/λ′j((θξ−1+θξ )/2)

)k′((θξ−1+θξ )/2)

−e
−

(
vψ/λ′j((θξ−1+θξ )/2)

)k′((θξ−1+θξ )/2))

+Pmax

(
e
−

(
vr/λ′j((θξ−1+θξ )/2)

)k′((θξ−1+θξ )/2)

− e
−

(
vco/λ′j((θξ−1+θξ )/2)

)k′((θξ−1+θξ )/2))}
(8)

III. WIND FARM LAYOUT MODELS
In this section, general grid and coordinate wind farm layout
models are separately formulated.

A. GRID MODEL
The geographical region of a wind farm is modeled as a grid
composed of equal size cells. The center of each cell is con-
sidered as the potential spot for locating a wind turbine. Let a
variable, ln′m′ ∈ {0, 1}, n′ = 1, 2, . . . ,N , m′ = 1, 2, . . . ,M ,
denote the decision of selecting cells in row n′ and columnm′

for locating wind turbines, the GM becomes a combinatorial
optimization model formulated in (9).

The equality constraint in (9) states that the total number
of selected cells should be equal to the total number of wind
turbines. The inequality constraint says that the total number
of cells in the grid needs to be larger than the total number
of wind turbines. To compute E(Pn′m′ ) by (8), centers of the
selected cells are transformed in a set of two dimensional
coordinates, (xn′m′ , yn′m′ ).

max
N∑

n′=1

M∑
m′=1

ln′m′E(Pn′m′ )

s.t.
N∑

n′=1

M∑
m′=1

ln′m′ = n

MN ≥ n

ln′m′ ∈ {0, 1}, n′ = 1, 2, . . . ,N ,m′ = 1, 2, . . . ,M

(9)

B. COORDINATE MODEL
The CM is more flexible than the GM. The region for
developing a wind farm is represented by an infinite set of
2-dimensional coordinates. Each coordinate represents for a
potential location of a wind turbine. Let (xi, yi) denote the
position of wind turbine i, i = 1, 2, . . . , n, xl be the lower
bound of xi, xu be the upper bound of xi, yl be the lower bound
of yi, and yu be the upper bound of yi, the wind farm layout
planning based on the coordinate system is a continuous
optimization model as expressed in (10).

max
n∑
i=1

E(Pi)

s.t. xl + R ≤ xi ≤ xu − R

yl + R ≤ yi ≤ yu − R

(xi − xj)2 + (yi − yj)2 ≥ 64R2, ∀i, j, i 6= j

i, j = 1, 2, . . . , n (10)

In (10), the constraint, (xi − xj)2 + (yi − yj)2 ≥ 64R2,
is applied to guarantee a safe distance, 4R, between wind
turbines i and j. In GM, such safe distance is automatically
satisfied by the appropriate design of cell size.

IV. MODEL ANALYSIS
The advantages and drawbacks of GM and CM in plan-
ning the wind farm layout are theoretically studied in this
section. It is intuitively obvious that GM offers a subset
of solutions of CM and is less flexible in locating wind
turbines. Due to the complexity of both GM and CM, they
have been widely solved with heuristic search algorithms.
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Thus, it is interesting to study the complexity of solving
twomodels heuristically. To facilitate the theoretical analysis,
the simplest heuristic procedure that all feasible solutions of
two models are exhaustively searched without replication to
obtain the optimal solution is considered. We can prove that
theoretically it is more complicated to solve CM than GM
with the exhaustive search through Lemma 1 – 4:
Lemma 1: The number of feasible solutions for distributing

n wind turbines into anM × N grid is Cn
MN , where n ≤ MN .

Proof: The combination of distributing n wind turbines
into anM×N grid is equivalent to the combination of select-
ing n out of total MN cells. It is intuitively obvious that the
number of feasible solutions is the number of combinations
without repetitions and orders, which is MN !

n!(MN−n)! = Cn
MN .

Lemma 2: Given a rectangular wind farm site approxi-
mated as an M ′ × N ′ matrix containing M ′N ′ pairs of x-y
coordinates, whereM ′ and N ′ are large numbers, and a set of
minimal distance constraints, (xi − xj)2 + (yi − yj)2 ≥ 64R2,
∀i, j, i 6= j, the number of feasible solutions of CM needs to

be searched is
n∏
i=1

C1
M ′N ′−

∑i−1
j=0 Kj−(i−1)

by assuming that min-

imal distance constraints indicate mutually exclusive regions
of Ki pairs of coordinates, i = 1, 2, . . . , n, infeasible for
locating any other wind turbines after installing the ith wind
turbine.

Proof: Given a site for planning the wind farm layout
approximating by a set of M ′N ′ pairs of x-y coordinates,
{(x1, y1), (x1, y2), . . . , (xM ′ , yN ′ )}, the assignment of wind
turbines into this site is equivalent to the selection of n out of
M ′N ′ pairs of x-y coordinates without repetitions. However,
due to the constraint, (xi − xj)2 + (yi − yj)2 ≥ 64R2, ∀i, j,
i 6= j, Ki pairs of x-y coordinates forming a round region will
be infeasible for assigning next wind turbine after the region
center, (xi, yi), is selected to locate the wind turbine i, shown
as Fig. 2(a).

FIGURE 2. Two scenarios of infeasible regions for locating wind turbines.

The selection order matters because Ki pairs of coor-
dinates, i = 1, 2, .., n, might not form a full circle. It
is because that the infeasible round regions could over-
lap as shown in Fig. 2(b) and the order impacts the size
of Ki. For i = 1, the number of feasible solutions is
C1
M ′N ′ . For i = 2, the number of feasible solutions is

C1
M ′N ′C

1
M ′N ′−K1−1

. For i = 3, the number of feasible

solutions is C1
M ′N ′C

1
M ′N ′−K1−1

C1
M ′N ′−K1−K2−2

. Following
this pattern, it can be inferred that when i = n, the number of
feasible solutions is C1

M ′N ′C
1
M ′N ′−K1−1

C1
M ′N ′−K1−K2−2

. . . .

C1
M ′N ′−K1−K2···−Kn−1−(n−1)

=

n∏
i=1

C1
M ′N ′−

∑i−1
j=0 Kj−(i−1)

.

Lemma 3: The least number of feasible solutions of
the coordinate model needs to be searched given a
site approximated as M ′N ′ pairs of x-y coordinates is
n∏
i=1

C1
M ′N ′−(i−1)K−(i−1), where K = max{K0,K1, . . . ,Kn−1}

and the constraint, (xi − xj)2 + (yi − yj)2 ≥ 64R2, indicates
a round region covering K pairs of x-y coordinates infeasible
for installing wind turbines, ∀i, j, i 6= j.

Proof: Assume a best case (e.g. Fig. 2(a)) that each con-
straint, (xi− xj)2+ (yi− yj)2 ≥ 64R2, covers an identical and
independent round region containing K pairs of x-y coordi-
nates infeasible for installing any other wind turbines after the
ith turbine is placed, ∀i, j, i 6= j,K ≥ max{K0,K1, . . . ,Kn−1},

the number of feasible solution is
n∏
i=1

C1
M ′N ′−(i−1)K−(i−1).

Since K ≥ max{K0,K1, . . . ,Kn−1}, C1
M ′N ′−(i−1)K−(i−1) ≤

n∏
i=1

C1
M ′N ′−

∑i−1
j=0 Kj−(i−1)

, ∀i. Next, we can obtain that

n∏
i=1

C1
M ′N ′−(i−1)K−(i−1)/

n∏
i=1

C1
M ′N ′−

∑i−1
j=0 Kj−(i−1)

≤ 1 which

proves that
n∏
i=1

C1
M ′N ′−(i−1)K−(i−1) is the least number of

feasible solutions offered by the coordinate model.
Lemma 4: If M ′N ′ − (n − 1)K ≥ MN , the total number

of feasible solutions of the coordinate model needs to be
searched in the benchmark heuristic procedure is larger than
that of the grid model.

Proof: The number of feasible solutions of grid and
coordinate models is compared by evaluating (11).

Cn
MN

n∏
i=1

C1
M ′N ′−(i−1)K−(i−1)

=
[MN (MN − 1) · · · (MN − (n− 1))]/n!

M ′N ′(M ′N ′ − K − 1) · · · (M ′N ′ − (n− 1)K − (n− 1))

≤
[MN (MN − 1) · · · (MN − (n− 1))]

M ′N ′(M ′N ′ − K − 1) · · · (M ′N ′ − (n− 1)K − (n− 1))
(11)

The MN
M ′N ′ ≤

MN−1
M ′N ′−K−1 ≤ · · · ≤

MN−(n−1)
M ′N ′−(n−1)K−(n−1)

holds for K > 1. The value K > 1 is obvious because
of the constraint, (xi − xj)2 + (yi − yj)2 ≥ 64R2, ∀i, j,
i 6= j. In this case, MN−(n−1)

M ′N ′−(n−1)K−(n−1) < 1 can infer

that [MN (MN−1)···(MN−(n−1))]
M ′N ′(M ′N ′−K−1)···(M ′N ′−(n−1)K−(n−1)) < 1, which means

CnMN
n∏
i=1

C1
M ′N ′−(i−1)K−(i−1)

< 1. Therefore, one can conclude that if

the condition, M ′N ′ − (n − 1)K > MN , is met, the total
number of feasible solutions of the CM needs to be searched
is larger than that of the GM.
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V. MULTI-SWARM OPTIMIZATION ALGORITHM
Exhaustive search is simple but inefficient. In previous stud-
ies, advanced heuristic search algorithms, such as variants of
the genetic algorithm and swarm intelligence, were widely
employed to solve wind farm layout models [1]–[12]. It is
challenging to theoretically analyze their impacts on solving
GM (9) and CM (10) due to the algorithm complexity. Thus,
such analysis is explored through extensive computational
experiments. Based on (9) and (10), it is explicit that solving
GM and CM belong to a constrained combinatorial and a
continuous optimization problem separately since decision
variables in (9) and (10) are binary and continuous. To con-
duct a fair computational experiment, a powerful swarm intel-
ligence, themulti-swarm optimization (MSO) algorithm [17],
is adapted to solve GM and CM.

The MSO algorithm is revised from the classical particle
swarm optimization (PSO) algorithm [18], while the particle
evolution principle remains the same as descripted by (12).

Ui = $Ui−1 + c1r1(lbesti−1 − xi−1)− c2r2(gbest− xi−1)

xi = xi−1 + Ui (12)

where U is a vector of the velocity of a particle, x is a vector
describes the position of a particle, lbest describes the local
best solution, gbest is the global best solution, i is the index
of search generations, $ is the inertia weight, c1, c2 are
two acceleration constants, as well as r1, r2 are randomly
generated from U (0, 1). To update the lbest and gbest, the
fitness of local and global bests is compared with the fitness
of particles’ positions. If the fitness of a particle’s position
is better, the local and global bests will be replaced by the
particle’s position.

Compared with the PSO, which groups all particles into a
single swarm, particles in MSO form multiple small swarms.
These swarms are continuously regrouped over search itera-
tions to exchange information among swarms. All particles
are grouped into a single swarm to perform the ordinary PSO
search at the end of search iterations. The principle of MSO
offers better diversification during the search process and
prevents the early convergence.

The procedure of MSO includes the following steps:
Step 1 Initialize positions and velocities of s1 × s2 par-

ticles given the swarm size, s1, and the number of swarms,
s2. Randomly assign all particles into s2 swarms.
Step 2 Repeat Steps 2.1 – 2.3 until the number of genera-

tions exceeds 0.9 of the maximal generation, Nmso.
Step 2.1 Evaluate the fitness of all particles and update their

positions and velocities of s2 swarms by (12).
Step 2.2 Update lbest and gbest of s2 swarms.
Step 2.3 Regroup swarms if the regrouping condition is

satisfied.
Step 3 Group all particles into a swarm and repeat

Steps 3.1 - 3.2 until Nmso is reached.
Step 3.1 Evaluate the fitness of all particles and update their

positions and velocities by (12).
Step 3.2 Update lbest and gbest.

Since the MSO is inherently continuous, it cannot directly
solve the GM (9). Thus, the MSO is extended by integrating
the binary PSO introduced by Kennedy and Eberhart [19]
to offer the operation in the binary space and to solve the
GM (9). It uses the concept of velocity as a probability that
a position takes on 1 or 0. Updating the velocity in (12)
remained unchanged. The update of the position is imple-
mented by (13).

υi = $υi−1 + c1r1(lbesti−1 − xi−1)− c2r2(gbest − xi−1)

xi =

{
0 if rand() ≥ S(υi)
1 if rand() < S(υi)

(13)

where S(·) is the sigmoid function for transforming the veloc-
ity into the probability and rand() is an operator randomly
generating numbers from a uniform distribution over [0, 1].
In the discrete version, it appears that υi functions as a
probability threshold.

VI. COMPUTATIONAL STUDIES
The capability of GM and CM in producing optimal wind
farm layouts is examined through computational experi-
ments considering two wind scenarios. Moreover, a variety of
cases are developed based on various wind turbine numbers,
10 – 25, as well as the side length of grid cells ranging from
4.5R to 12.5R. The combinatorial and continuous versions of
MSO are firstly applied to address GM and CM respectively.
As MSO is inherently continuous, the random keys genetic
algorithm (RKGA) [20], which is inherently combinatorial,
is next compared with the MSO in solving GM, which is a
combinatorial optimization problem. Heuristic search algo-
rithms can converge to different local optima over multiple
runs due to the stochasticity in the iterative search. To pro-
vide an overall computational performance, the experiment is
repeatedly implemented five times for each case. The com-
putational results including the maximal power output, the
average power output, and the average running time of five
repetitions of solving GM and CM are reported and analyzed.

A. PARAMETER SETTINGS
The parameters of the wind farm layout and the algorithms
used in this research are fixed as follows for all computational
experiments. The site is a square with a 2000 × 2000 m2

area. The GE1.5-77 turbine with a rated power of 1500 kW
is considered in the layout design. The parameters of the
wind turbine and MSO algorithm are respectively specified
in Tables 1 and 2.

B. COMPUTATIONAL STUDY 1
The wind scenario 1 (WS1) is considered in this section.
In WS1, the wind distribution is relatively simple and the
prevailing wind direction is obvious. The characteristics of
WS1 are described in Table 3. According to Table 3, the wind
blows predominantly in directions from 75◦ to 105◦ with a
probability of 0.8. In experiments ofWS1, the number of grid
cells varies from 5× 5 to 11× 11.
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TABLE 1. Parameter settings of wind turbines.

TABLE 2. Parameter settings of MSO algorithm.

TABLE 3. Wind scenario 1.

TABLE 4. Maximal power output of GM and CM in WS1 under MSO.

The computational results of solving GM and CM with
different wind turbine numbers and grid designs are presented
in Tables 4 – 6. In Table 4, it is observable that the maximal
and average power output of CM is better than the best one of
GM for all cases. The advantage of CM is more obvious with
increasing the number of the wind turbines, e.g., n = 19 – 25.
It is because that CM allows more flexible layout design and
the MSO algorithm is inherently continuous.

In Table 6, since GM and CM are solved by the same
algorithm, MSO, their computational time is close. Solving
GM is slightly more computationally intensive than solving

TABLE 5. Average power output of GM and CM in WS1 under MSO.

TABLE 6. Average running time of GM and CM in WS1 under MSO.

CM with MSO because the update of the particle’s position
in the discrete MSO requires extra operations.

Moreover, as shown in Tables 3 and 4, when wind turbine
number is low, the power output slightly decreases with the
increase of grid cells, e.g., n = 10, 11 and 12. It is because
that the heuristic algorithm is trapped by the local optimum.
Thus, it is valuable to choose the appropriate grid number to
provide the best performance of solving GM with MSO.

FIGURE 3. Best layout of GM and CM with n = 13 in WS1 under MSO.
(a) GM. (b) CM.

When the number of wind turbines is low, such as, n = 13
in Fig. 3, locations of wind turbines produced by both of
GM and CM can indicate the predominant wind direction.
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FIGURE 4. Best layout of GM and CM with n = 25 in WS1 under MSO.
(a) GM. (b) CM.

When the number of wind turbines is larger, such as n = 25 in
Fig. 4, the predominant wind direction becomes less obvious.
Compared with the layout offered by GM, wind turbines in
layout of CM stayed far away from their neighbors. Such
observation indicates that CM solved MSO can offer more
meaningful layout.

C. COMPUTATIONAL STUDY 2
This section discusses computational experiments based on
the wind scenario 2 (WS2). In WS2, the predominant wind
direction covers a wider range than that ofWS1, such as, from
120◦ to 225◦. The details of WS2 are presented in Table 7.

TABLE 7. Wind scenario 2.

TABLE 8. Maximal power output of GM and CM in WS2 under MSO.

The computational results of various cases in WS2 are
reported in Tables 8 – 9. Since the computational time inWS2

TABLE 9. Average power output of GM and CM in WS2 under MSO.

is almost the same as the WS1, it is not specified here. Based
on results, the performance of CM is still better than GM in
most cases, except n = 24, and the difference becomes more
significant with increasing the number of wind turbines. Yet,
the advantage of CM is less obvious in WS2 than WS1.

In WS2, the 7 × 7 grid is usually chosen as the best grid
for GM. It is because that the predominant wind direction of
WS2 covers a wide range. It makes the heuristic algorithm
prefer a larger size grid where wind turbines stay far away
from each other in all directions.

FIGURE 5. Best layout of GM and CM with n = 13 in WS2 under MSO.
(a) GM. (b) CM.

FIGURE 6. Best layout of GM and CM with n = 25 in WS2 under MSO.
(a) GM. (b) CM.

The best wind farm layouts produced by two models with
n = 13 and 25 are shown in Figs. 5 and 6. When n = 13,
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both of the layouts of GM and CM can indicate the
predominant wind direction. When n = 25, both of GM and
CM layouts intend to evenly allocate wind turbines over the
space.

Based on the results in WS1 and WS2, the CM obtains
the better performance than GM with the MSO algorithm.
Besides the flexibility of CM, the MSO, which is inherently
continuous, can also impact the quality of solutions obtained
by solving the GM, which is a combinatorial optimization
problem. Thus, the inherent suitability of heuristic algorithms
can influence the solution quality of the same model and it
will be explored in the next section.

D. COMPUTATIONAL STUDY 3
In previous studies [2], [3], [6] considering GM in the wind
farm layout design, the genetic algorithm (GA) was com-
monly considered. Here, an improved GA algorithm, the
RKGA, is employed to compare with the discrete MSO in
solving the GM.

The RKGA introduced random keys to ingeniously main-
tain solution feasibility over search iterations. In RKGA, ran-
dom keys, which are usually random number generated from
the [0, 1] uniform distribution, replaces binary variables in
the generic GA to form the solution. A decoder next converts
random keys to binary values. In the decoder, values in the
random keys space are mapped with values in the literal space
for the fitness evaluation.

TABLE 10. Parameter settings of RKGA algorithm.

TABLE 11. Maximal power output of GM in WS1 under RKGA.

The stopping criterion in this paper is the number of iter-
ations. The decoder is a direct mapping between the random
keys and the binary solution. Since the number of turbines
is n, the number of variables = 1 in one solution is n

and the number of variables = 0 is MN − n. The decoder
converts the n largest random keys to 1 and the left random
keys to 0 to automatically guarantee the solution feasibility.
Table 10 describes the detailed parameter settings of the
RKGA algorithm.

In Tables 11 – 13, computational results of the RKGA in
WS1 are presented. According to results of Tables 11 – 12,
the RKGA has better performance than MSO in solving GM.
In addition, the results are even better than those of the CM.
Such observation indicates that selecting the suitable heuristic
algorithm can boost the performance of models.

TABLE 12. Average power output of GM in WS1 under RKGA.

TABLE 13. Average running time of GM in WS1 under RKGA.

In Table 13, it is obvious that the RKGA ismuchmore com-
putationally efficient than the discrete MSO. The RKGA can
quickly converge to the optimal solution in a small number of
iterations as it is inherently combinatorial.

Fig. 7 shows the best layout of GM when n = 13 and
n = 25. Compared with previous experiment results, the
RKGA can provide better layouts clearly indicating the pre-
dominant wind direction. When n = 13, the layout presents
an explicit shape of three lines. When n = 12, most wind
turbines are located in two lines. It is clear to show the
advantage of RKGA in solving GM from the quality of model
solutions.
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FIGURE 7. Best layout of GM with n = 13 and 25 in WS1 under RKGA.
(a) n = 13. (b) n = 25.

VII. CONCLUSION
This research assessed the effectiveness of GM and CM
for the wind farm layout design. The formulations of grid
and coordinate wind farm layout models were presented.
The computational complexity of solving GM and CM with
the exhaustive search was theoretically analyzed. Computa-
tional studies were conducted to examine the impact of more
advanced heuristic search algorithms on solving two models.
To compare the performances of GM and CM, theMSO algo-
rithm was applied. To evaluate the importance of selecting
correct algorithms, the RKGAwas comparedwithMSO algo-
rithm in solving GM. Case studies based on different wind
scenarios were investigated and the results were reported.

Through the theoretical analyses, we proved that solving
CM is more complicated than GMwith the exhaustive search.
Based on computational results of different cases in wind
scenarios 1 and 2, the following insights were discovered:
1) the performance of CM was better than GM on maximiz-
ing the power output and computational time in most cases
under MSO. Besides the flexibility of CM, the MSO, which
is inherently continuous, is more suitable for solving the
continuous problem than the combinational problem; 2) when
the number of wind turbines was low, the optimal solutions
were not unique and easy to be searched for both of GM
and CM; 3) an extremely large number of grid cells might
affect the quality of the generated wind farm layout based
on GM because the pool of feasible solutions expanded and
the effectiveness of heuristic algorithms degraded; 4) it was
important to match the inherent suitability of heuristic search
algorithms with the type of the layout planning models.
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