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energy extraction. A data-mining approach is proposed to predict wind direction. To accommodate the
full range of yaw motion, the wind direction data is transformed into two time series (sine value and
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1. Introduction

Growing awareness of global warming has led to interest in
renewable energy. Wind and photovoltaic generation have expe-
rienced the fastest growth in the past two decades [1]. The world’s
combined wind generation will provide 11.5%—12.3% of electricity
by 2020 [2]. To realize this goal, improvement in wind energy
technology and performance of the deployed assets is needed.

Predictive technologies are key to performance of wind gener-
ators due to variability of the wind. It is a common practice to shut
off wind turbines due to high and variable speed wind [3]. Some
generation loses are encountered due to misalignment between the
rotor and wind direction. Prediction of wind speed and wind di-
rection are important for wind generation.

A wind speed prediction system shuts off a turbine when wind
speed becomes too large. A power prediction system impacts sta-
bility of the electric power system. The prediction approaches
discussed in the literature fall into two categories [4], with the
physics-based models making the first category. Models have been
proposed to predict wind speed by fusing terrain, temperature,
pressure, and data from numerical weather prediction systems
(NWPs) [5]. The predicted wind speed constitutes a basis for power
prediction. The second category encompasses models versed in
statistics. Models such as auto-regression and moving average
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(ARMA) use either wind speed or the wind power time series as the
input [6]. Three neural networks (NNs) were proposed to predict
wind speed in Ref. [7]. Algorithms such as fuzzy logic methods,
support vector machine models, Kalman filters, and hybrid
methods, have been applied to predict wind speed or wind power
[8—10].

Besides the wind speed, wind direction is a significant factor
impacting the energy output [11]. Since wind direction is an
angular variable, as opposed to the scalar variables such as wind
speed, temperature, and wind power, it offers limitations in direct
use in prediction models. In most published literature, wind di-
rection is predicted along with wind speed. Yang et al. [12] applied
Bayesian approach to build models predicting wind speed, wind
direction, and ambient temperature. In Ref. [13], a circular regres-
sion model was developed to predict wind direction by applying
bias correction and ensemble calibration techniques. Wind direc-
tion was used to decompose wind speed into lateral and longitu-
dinal components, wind direction was computed based on
predicted values of these two components in Ref. [14]. In some
cases, wind direction was predicted by wind vector, for example,
historical “similar days” were used to predict wind vector in
Ref. [15]. An adaptive neuro-fuzzy inference system was developed
in Ref. [16]. Wind direction was also predicted in other applications,
including pollution management and ship routing. For example, a
model predicting wind direction was developed to track volcanic
ash in Ref. [17]. The predicted wind direction was applied to fore-
cast the ozone and pollutant levels in Refs. [18,19].

In the published literature on prediction of wind direction, two
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issues stand out. The first one is that wind direction is an angular
variable with a period of 360°. The latter implies that general
prediction algorithms applied to a periodic variable, e.g., wind di-
rection, do not work well. Therefore, transforming the wind di-
rection into a linear form is the first step. Lateral and longitudinal
wind speed were applied to express wind direction in Ref. [20]. A
link function was proposed in Ref. [21] to transform wind direction
into a linear variable. The second issue is that of prediction accuracy
of wind direction which impacts energy generation.

A new model predicting wind direction is proposed in this paper
(shown in Fig. 1). Trigonometric functions and data mining algo-
rithms were adopted to predict wind direction. The sine and cosine
functions transform wind direction into a linear variable. The range
of wind direction [0°, 360°] is mapped into [-1, 1]. The prediction
model developed in this paper was developed with data mining
algorithms. This approach is suitable for capturing dynamic phe-
nomena hidden in big data.

The paper is organized in six sections. Section 2 analyzes the
properties of the selected wind data sets. The proposed method is
described in Section 3. Details of transformation of the wind di-
rection data are also included. Section 4 offers modeling details of
wind direction prediction. Section 5 discusses the prediction re-
sults. Section 6 concludes the paper.

2. Data source and analysis

The wind data used in this paper to predict wind direction was
obtained from an operating wind farm. The data was collected in
the period June 1st, 2014 to July 1st, 2015 at 10 min intervals. The
total number of data points is 57024.

A brief analysis of the historical data indicates that wind di-
rection has obvious seasonal features affecting the yaw of wind
turbines. Fig. 2 shows rose diagrams of wind direction over four
seasons of a year.

Fig. 2(a) shows the wind direction data in the summer season
(June, July and August) with the prevailing direction around 180°.
Similarly, Fig. 2(b)-(d) are for the fall (September, October, and
November), winter (December, January, and February), and spring
(March, April, and May), respectively. The prevailing wind direction
in Fig. 2(c) is about 315°. There are more than two prevailing di-
rections around 180° and 315° in the fall and spring.

Fig. 3 illustrates the rose diagram of wind direction over a year
period. Two wind directions around 180° and 315° are prevailing. It
is concluded from Figs. 2 and 3 that wind in the analyzed data set
has seasonal features. Wind turbines are usually yawed around the
prevailing directions.

Fig. 4 depicts the mean wind speed of four seasons. Wind is
stronger in the fall and winter than in the spring and summer. This
implies that most energy is generated in the second half of a year.
Prediction of wind direction is more important in the strong wind
seasons.

3. Data transformation

Prediction of wind direction is important to yaw control. When
wind direction changes, the rotor of a wind turbine is aligned to
face the wind direction. Any misaligned (yaw error) results in

production loses. Based on the predicted wind direction, the nacelle
is adjusted to reduce the yaw error.

Historical wind direction data is crucial to predict wind direc-
tion. Fig. 5 shows the variability of wind direction in time. It can be
observed that the wind direction is not a continuous and linear
variable, e.g., area A in Fig. 5.

In Ref. [20], the wind velocity vector was decomposed into
lateral and longitudinal components in (1), which containing the
information of wind direction.

vy = vsin(ﬁ 79)

vy:ucos(ﬁ—?) W

where: vy and vy, are the lateral and longitudinal components of the

wind speed, respectively; 4 is the direction of wind vector; and 4 is
the mean direction. The predicted direction is determined from the
predicted vy and vy. The link function (2)—(3) was proposed in
Ref. [21] to transform the circular variable into a linear variable.

g = 2v( 0w - 5) +4 )

g1 =07 ((x-w)/2m s ) 3)

where: @(u) is the standardized Gaussian distribution function
N(0,1); u is the mean direction in radians. Equation (3) is the inverse
link function transforming the circular variable. Component models
are more appropriate to predict wind direction. They predict wind
direction using wind speed, and thus the direction prediction ac-
curacy is affected by the wind speed. The approach proposed in this
paper, the wind direction is directly predicted. As shown in Fig. 5,
wind direction ranges from 0° to 360°. Assuming wind direction 4,
the sine and cosine functions of # have positive or negative values in
different quadrants, for example, (+,—) means the angle in the
second quadrant having a positive sine value and negative cosine
value (see Fig. 6).

The equations for transforming wind direction are defined in

(4).

y1 = sin(f
{hzad @

where: f represents the wind direction; y; and y- are the values of
sine and cosine function, respectively. Fig. 7 shows the values of
these two functions at the same period as in Fig. 5.

Based on the plot in Fig. 7, the sine and cosine functions do not
include regions with rapidly changing value areas such as area A in
Fig. 5. It is also obvious that the values of the two functions map
into the four quadrants. Therefore, this transformation approach is
adopted in building the prediction model of wind direction. The
overall steps of prediction of wind direction is presented in Fig. 8.

The proposed approach follows the following steps:

Step 1: Pre-process the data from a wind farm, including the
wind direction data.

Step 2: Apply the sine and cosine functions (4) to transform the

Wind direction
(circular variable)

Transformation - Linear variable Data mining -

(predictable) d

Inverse
transformation _| Yaw error and
L

control

Prediction >

Wind direction

Fig. 1. Description of the proposed approach.
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Fig. 2. Rose diagrams of wind direction over four seasons: (a) Summer; (b) Fall; (c) Winter; (d) Spring.

180

Fig. 3. Rose diagram of wind direction in the entire year.

wind direction data of Step 1.

Step 3: Select important parameters and data mining algorithms
and build prediction models.

Step 4: Predict wind direction. Predict sine and cosine values,
then use inverse trigonometric function to transform the predicted
value into an angle.

Step 5: Apply the predicted angle to position the yaw of a wind
turbine.

4. Models for prediction of wind direction
4.1. Basic models of sine and cosine values

The wind direction data is a time series, therefore the trans-
formed sine and cosine values are also a time series. According to
[6], historical data of time series play important roles in prediction
of wind speed and direction. Based on [22], the past values of a
parameter are employed in a time-series prediction model
expressed in (5).

y(t)y =fy(t—T),y(t = 2T), -, y(t —nT)) (5)

where: y(t) is the predicted value; y(t-nT) is the nth historical
observed value; and T is the sampling interval. Assuming the
transformed sine and cosine values of historical wind direction are
s(t) and c(t), the sampling interval T is 10 min, the prediction
models of these two time series are defined as f and g, respectively.
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Fig. 5. Variability of wind direction time series.

The predicted values of s(t) and c(t) are related to the historical
values of the sine function s(t), cosine function c(t), and the wind
speed w(t). The prediction models are defined in (6) and (7).

of a prediction model. The models (6)—(7) include p + q + r pre-
dictors. Algorithms such as the Boosted Trees Algorithm (BTA),
Neural Network (NN), and Random Forest Algorithm (RFA) are used

s(t) =f(s(t = 1),s(t = 2), -, s(t = p),c(t = 1),¢(t = 2), -, c(t — q), w(t = 1), w(t — 2), -, W(t 1)) (6)

c(t)=g(s(t—1),s(t —2),---,s(t —p),c(t —1),c(t = 2),---,c(t —q),w(t — 1),w(t —2),---,w(t —r1)) (7)

where: w(t) represents the wind speed at time t; p, g, r are the
number of historical sine, cosine, and wind speed values, respec-
tively. To limit the number of parameters, the initial dimension of
each parameter in (6)—(7) has been based on the previous data
analysis experience, e.g. the values of p, g, and r set at 5 here.

4.2. Parameter selection

Parameter selection is important for performance and accuracy

to select important parameters. In this paper, BTA is applied to
determine the importance of parameters in models (6)—(7). The
importance results are presented in Table 1.

The parameter rank in Table 1 is computed by setting the value
of the most important parameter to 100. Then the importance of
parameters is decided by normalizing the rank value.

Fig. 9 shows the plots of parameter importance used in models
(6) and (7), respectively. It is obvious that s(t-1),---, s(t-5) are the
most important parameters in predicting s(t), and that c(t-1),---, c(t-
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Fig. 6. Representation of sine and cosine functions in four quadrants.

5) are the most important parameters in predicting c(t). To reduce
dimension of the input, eight parameters according to Table 1 and
Fig. 9 are selected out of 15. The prediction models (6)—(7) are
expressed as (8)—(9).

s(t) =f(s(t—1),s(t —2),---,s(t = 5),c(t — 1),c(t — 2),c(t — 3))

(8)

—1),s(t —3),s(t —2))

(9)

c(t) =g(c(t—1),c(t—2),---,c(t —5),s(t

4.3. Data mining algorithms

The prediction models studied in this paper are developed with
data mining algorithms. Four algorithms, support vector machine

Wind data
» Wind direction » Yaw error
]
a Sine value Cosine value
2
5 1 |
= | - === -
E Parameter selection, |
Model selection |
L . _
A
— Model 1 Model 2
Fig. 8. Steps of the proposed wind direction prediction.
Table 1
Importance of parameters in models (6)—(7) predicting s(t) and c(t).
Parameters of s(t) Importance Parameters of c(t) Importance
s(t-1) 1.000000 o(t-1) 1.000000
s(t—2) 0.887795 o(t-2) 0.899699
s(t—3) 0.864507 o(t-3) 0.864764
s(t-4) 0.862072 c(t-4) 0.836095
s(t—5) 0.822728 o(t-5) 0.823975
c(t-1) 0.456624 s(t—1) 0.260657
o(t-2) 0.259794 s(t-3) 0.234974
c(t—3) 0241125 S(t-2) 0.200682
c(t—5) 0.233592 s(t—4) 0.204235
o(t-4) 0.222564 s(t-5) 0.199367
w(t—1) 0.148914 w(t—2) 0.169140
w(t-2) 0.113982 w(t-5) 0.166735
w(t-3) 0.098042 w(t-1) 0.161363
w(t—4) 0.099297 w(t-3) 0.136659
w(t—5) 0.083507 w(t—4) 0.132772

(SVM), neural networks (NN), Random Forest algorithm (RFA) and
Gradient Boosted Regression Trees (GBRT), are developed.

SVM is a supervised machine learning algorithm that was
initially used in linear classification into two categories. The clas-
sification hyper-plane of SVM model is trained based on the

i

I |
-0.4 ]
0.6 ' \
08 I Sine data

R | | !— Cosine data

0 100 200 300 400 500 600 700 800 900 1000

Time

Fig. 7. Values of sine and cosine functions in time.
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Fig. 10. Prediction of the sine and cosine values with four data mining algorithms: (a) Sine value; (b) Cosine values.
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Table 2
Error metrics for the predicted sine values.
MAE RMSE CC
SVM 0.1079 0.1632 0.9719
MLP 0.0935 0.1603 0.9703
RFA 0.0820 0.1468 0.9771
GRBT 0.0993 0.1652 0.9704
ARMA 0.1182 0.2116 0.9511
Table 3
Error metrics for the predicted cosine values.
MAE RMSE CC
SVM 0.1268 0.1815 0.9650
MLP 0.0803 0.1468 0.9766
RFA 0.0869 0.1525 0.9749
GRBT 0.1026 0.1672 0.9701
ARMA 0.1164 0.2027 0.9555

structural risk criterion. SVM was subsequently extended to the
support vector regression (SVR). Kernel functions have been
introduced to map data points into a high dimension feature space
[23].

NN is a computational model inspired by concepts from biology
[24]. A NN comprises of interconnected neurons exchanging mes-
sages between each other. It has the ability to capture complex
relationships between input and output variables. In this paper, a
network known as the multilayer perception (MLP) is used.

RFA is an ensemble method used in classification and regression.
It includes a multitude of decision trees, the final result is decided
by the mean prediction of trees. A collection of decision trees is
trained. The bagging technique is used to select the features
randomly, and independently sampled data is used for each deci-
sion tree [25]. This algorithm is suitable for large data sets,
including ones with missing data.

GBRT is a flexible non-parametric learning technique for clas-
sification and regression. It combines the advantages of the

regression tree and the gradient boosting algorithm. GBRT is well
suited to model complex nonlinear relationships that may include
interaction among predictors [26].

5. Wind direction prediction and discussion
5.1. Prediction of sine and cosine values

Wind direction data has been transformed into sine and cosine
values according to (4). To predict wind direction, four data mining
algorithms are utilized to build the prediction model of sine and
cosine time series. Fig. 10 illustrates the prediction results.

Fig.10(a) and (b) shows the prediction results of sine and cosine,
respectively. The time period in Fig. 10(a) and (b) is the same, from
08/05/2014 20:30 to 08/06/2014 13:10. The plots in Fig. 10 illustrate
different performance of the four models. To assess performance of
data mining algorithms, a benchmark model based on ARMA(2,1)
was used (see the results in Fig. 10). The best performing model is
selected based on the error metrics discussed next.

The errors are classified into longitudinal and transverse errors
[27]. The longitudinal errors reflect the long-term performance of
system in amplitude measured with the mean absolute error (MAE)
and the root mean squared error (RMSE). Transverse errors are
applied to performance in time and measured with the correlation
coefficient (CC). The three error metrics are defined in (10).

/n
izn; <xi —?i)z/n
_cov(xﬁ)

I~ =
 /DxvDx

n

Ivae = >

i=1

Xi—k\i

Irmse = (10)

where: x; is the actual observed points; X; is the predicted points; n
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Fig. 11. Absolute error between the predicted and observed wind direction in August 2014.
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is the number of predicted points. Tables 2 and 3 provide values of
the three error metrics. -[l’-?:;iec‘tlion error of the wind direction.
The MAE and RMSE values reflect the amplitude errors and they '
are expected to be small. A CC value that is close to 1 indicates a MAE RMSE
good performance of the model. First, the models based on data Traditional method (M1) 9.7737 30.5118
mining algorithms perform better than ARMA. Second, the random Proposed method (M2) 9.1536 18.7689
6.34% 38.49%

forest algorithm (RFA) performs best in the three error metrics in

Improvement of M2 over M1
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Fig. 13. The wind power curve based on the training data.

Measured wind direction Predicted wind direction

Average generation bias —10.0307 —21.0803
Generation loss 214701 19.4450
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predicting the sine values in Table 2. The MLP model performs best
in predicting the cosine value in Table 3. Therefore, RFA and MLP are
selected as the prediction models of sine and cosine value,
respectively.

5.2. Error analysis of wind direction

The sine and cosine of the wind direction are predicted by the
selected prediction model. The two values are transformed into
wind direction. In general, the conversion from the sine/cosine
function into an angle presented in (11) is used.

f = arctan (2:)2((3))) (11)

where: # is in the range from —90° to 90°, arctan(*) is the inverse
function of the tangent function. According to Fig. 5, the sign of the
tangent function is positive in quadrants 1 and 3 and negative in
quadrants 2 and 4. To express the wind direction as a circular
variable, the equation is defined in (12) based on (11).

D(t) = arctan (%) + 90" *(1 — sgn(c(t))) (12)

where: s(t) and c(t) are the predicted sine and cosine values,
respectively, sgn(*) is the sign function, and D(t) is the predicted
wind direction. The value of 180° is added to the value § of (11)
when the sign of c(t) is negative, therefore the predicted wind di-
rection D(t) has a range of [-90°, 270°]. The predicted sine and
cosine values are transformed into wind direction with (12). The
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Fig. 14. Absolute prediction errors of the wind direction in the months representing four seasons: (a) October; (b) January; (c) April; (d) June.
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Fig. 15. Rose diagrams of the absolute wind direction errors in the months representing four seasons: (a) October; (b) January; (c) April; (d) June.

absolute error, between the predicted wind direction and the
observed data, sign | x; —X;| is shown in Fig. 11.

The horizontal red lines in Fig. 10 represent the angle 0° and
360°, respectively. It can be seen that most absolute error points
scatter near these two lines. The prediction errors of the wind di-
rection are illustrated in Fig. 12 as the angle errors.

Fig. 12(a) illustrates the angle distribution of the wind direction
error. The angle errors of the predicted wind direction are around
0° and 360°. As wind direction is a circular variable with a period of
360°, 0° and 360° represent the same direction in two dimensional
space. Therefore, the rose diagram representation in Fig. 12(b) is
considered. Based on the rose diagram, it is reasonable to analyze
the angle error of wind direction. The span of the angle errors is less
than 720° in Fig. 12(a), the actual angle errors in Fig. 12(b) are
adjusted to the span of 0°—360° by (13).

e =e—180*(1—sgn(180 —e)) (13)

where: e is the angle error, e’ is the adjusted error. The errors

around 360° are adjusted to distribute around 0° through (13), then
the error matrixes MAE and RMSE are applicable.

Table 4 illustrates prediction error produced by two wind di-
rection models, M1 and M2, where M1 is the AR(3) model built on
the concept of component models [20], M2 represents the pro-
posed model. Performance of the two models M1 and M2 is also
compared in Table 4.

Table 4 show the values of MAE and RMSE are smaller for M2
than M1, and the improvement of M2 over M1 is positive implying
better performance of model M2. Furthermore, the average pre-
diction error of wind direction is in the interval [-10°, 10°] (two red
lines in Fig. 12(b)) which implies the yaw error is acceptable.

Table 6
Angle errors at four seasons.
October January April June
MAE 7.19 7.80 9.57 12.27
RMSE 12.18 14.27 18.15 22.40
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Yaw error impacts efficiency of power generation. Based on the
predicted wind direction, nacelle position, yaw error, and the wind
power curve model, the expected wind power is computed. Then
expected power and actual power are compared to compute the
power loss. The training data is utilized to build a wind power curve
in Fig. 13.

Fig. 13 shows the built wind power curve. The solid red line
represents the wind power curve built by the data partitioning and
mining approach described in Ref. [28]. The expected wind power is
computed from the wind power curve model. The power loss is that
expected power minus the actual power. For the measured and
predicted wind direction, the bias between generated power and
the expected power is presented in Table 5.

Table 5 shows the average generation bias and the generation
loss for the measured and the predicted wind direction. The
average generation bias is computed from all test data. The gen-
eration loss is computed by the data points below the wind power
curve. The generation bias based on the actual and predicted yaw
error is negative, which implies that the generated power is larger
than the expected one. The predicted wind direction increases the
generated power.

5.3. Feasibility analysis

5.3.1. Analysis of data from different seasons
The analysis performed in Section 2 demonstrates that the
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prevailing wind direction is seasonal. Four test data sets are
selected to validate the proposed model, namely the October,
January, April, and June data representing the fall, winter, spring,
and summer season, respectively.

Fig. 14(a)-(d) illustrate the prediction results in the month of
October, January, April, June, respectively. The results indicate that
most error values oscillate around 0° or 360°. Fig. 15 presents dis-
tributions of wind direction errors in the form of rose diagrams.

The red broken lines in Fig. 12(a)-(d) represent the angle range
of [-10°,10°]. This indicates that most prediction errors are confined
to a small region.

Similarly, Table 6 shows the error matrixes of adjusted angle
errors as in Fig. 12. The results confirm high accuracy of the pro-
posed prediction model.

5.3.2. Analysis of different frequency data

To provide more insights into prediction accuracy, the four data-
mining algorithms are applied to predict wind direction using
higher frequency data. The data with a sampling interval of 10 s,

Table 7
Angle error for four sampling frequencies.
10s 30s 1 min 5 min
MAE 0.08 0.42 0.67 2.26
RMSE 0.38 1.57 1.63 3.94
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30 s, 1 min, and 5 min is considered.

Fig. 16(a)—(d) illustrate the prediction results with different
sampling frequency. Each model makes one-step-ahead prediction,
i.e, 10,30 s,1 min, and 5 min respectively. In total 1000 points are
presented. The results also illustrate that the error values are
around 0° or 360°.

Table 7 presents the error produced by the algorithm used to
derive data in Tables 2 and 3 for the data sampled at four fre-
quencies. The value of the wind direction predicted at different
frequencies (horizons) can be fused for optimal control of the yaw
error.

6. Conclusion

A data-driven approach to minimize yaw error was presented.
This error reduction was accomplished with a model predicting
wind direction. The circular variable (wind direction) is trans-
formed into two continuous variables with sine and cosine func-
tions. Four data mining algorithms were used to construct
prediction models. Two algorithms, the random forest algorithm
and the multilayer perception, were selected to predict the sine and
cosine time series. The prediction errors of the wind direction and
the sine and cosine values were analyzed across four seasons and
four different sampling frequencies. Industrial data was used in
model development and error analysis. Computational results have
demonstrated high accuracy of the prediction models.
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