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ARTICLE

Extreme learning machine – radial basis function (ELM-RBF) networks for 
diagnosing faults in a steam turbine
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aDepartment of Industrial Engineering, Faculty of Engineering, Universitas Indonesia, Depok, Indonesia; bDepartment of Electrical 
Engineering, Faculty of Engineering, Universitas Indonesia, Depok, Indonesia; cDepartment of Industrial and Systems Engineering, The 
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ABSTRACT
A fast and reliable fault diagnosis system for a steam turbine in thermal power plant is crucial. 
The system will detect and classify a potential or occurring fault, hence suitable precautions 
steps will be correctly determined, and unplanned breakdown will be prevented. This study 
proposes a new application of extreme learning machine-radial basis function networks (ELM- 
RBF) for steam turbine fault diagnosis system. ELM-RBF recently has been known for its 
extremely fast computation. The proposed system was tested with real fault historical data 
from a steam power plant in Jakarta. To evaluate the system performance, a comparison with 
backpropagation neural networks (BPNN) was conducted. Four scenarios using ELM-RBF and 
BPNN, with and without ReliefF for feature selection were designed. The results show high 
accuracy in almost all the scenarios tested. The BPNN shows better accuracy than ELM-RBF, 
however, ELM-RBF performs considerably faster computation than BPNN without significant 
decrease in accuracy.
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1. Introduction

The supply of electricity is of vital importance in mod
ern life. To ensure the availability of electricity, the 
reliability of power plants must be maximized, which 
also implies higher safety and quality requirements. 
Maintenance is the key to the efficient operation of 
electrical power plants because it prevents unplanned 
breakdowns.

The urgency of effective and efficient maintenance is 
even higher for aging power plants because failures can 
cause serious safety concerns and can even be life- 
threatening. The International Energy Agency [1] 
reported that the majority of electricity suppliers world
wide still relies on thermal power plants (about 66%). 
Most of these plants are aging, even the plants in 
Japan [2].

In response to these issues, predictive maintenance 
has emerged as a more efficient maintenance strategy. 
This maintenance strategy is also known as condition- 
based maintenance, which is based on equipment 
monitoring. It recommends maintenance only when 
an urgency appears [3].

Figure 1 depicts the process of condition-based main
tenance. The initial stage in condition-based mainte
nance is monitoring the condition of the equipment. 
Once these data are acquired, they are pre-processed to 
prepare for analysis in the following stage. If a fault is 
detected and its type is diagnosed, the remaining useful 

life can be predicted by using a prognostic method. 
Hence, the maintenance time and activity can be 
determined.

The first critical analysis of condition monitoring is 
fault diagnosis, which is initiated by fault detection. 
A fault is defined as an unacceptable deviation of at 
least one parameter of a normally operating system [4]. 
Fault diagnosis should be fast and accurate, while 
ignoring faults degrades the safety and security of 
the process, such as catastrophic failures and loss of 
material and even life [5].

As one of the main systems of a steam power plant, 
a steam turbine hardly needs a fast and accurate fault 
diagnosis system, to avoid unplanned breakdown during 
operation. Any disturbance during steam turbine opera
tion may cause trip and interrupt the electricity 
generation.

Previous studies developed fault diagnosis system by 
using model-based approaches, such as the Kalman filter 
or the parity relation [6]. However, in a complex industrial 
system, it is more challenging to develop 
a comprehensive understanding of the process, which is 
prerequisite to develop a model-based method.

On the other hand, distributed control systems 
(DCSs) have been widely adopted in industrial pro
cesses, including in aging power plants. DCSs involve 
process monitoring and automated control systems 
that generate a data stream and provide huge 
amounts of data for process monitoring. This situation 
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creates popularity for data-driven approaches, which 
use machine learning method. They are distribution 
free assumption methods, require no prior knowledge 
of the system, and offer satisfactory performance.

Neural networks (NN) have been known as data- 
driven self-adaptive model which can handle complex 
and nonlinear problem without prior knowledge. 
BPNN is the most popular NN-based technique due 
to its accuracy. Karlsson et al. [7], Changfeng et al. [8], 
and Chen et al. [9] used NN based methods to detect 
and diagnose faults, and compared with other meth
ods, such as Bayesian networks (BN), support vector 
machine (SVM) and traditional multivariate method: 
linear discriminant analysis (LDA). Some studies used 
simulated data in their studies [7,10], while some 
recent studies used real data from power plants.

There is an urgency to lengthen the lifetime and 
preserve the reliability and availability of aging thermal 
power plant. Alongside, development in machine 
learning methods has created more advanced 
approaches. It creates an opportunity to investigate 
how the impact of advanced data-driven methods to 
fault diagnosis systems in the aging thermal power 
plant using recent machine learning based methods. 
Hence, this study proposes a new application of 
extreme learning machine-radial basis function net
works (ELM-RBF) for steam turbine fault diagnosis sys
tem that uses real data for a steam turbine of a thermal 
power plant. The preliminary study on this topic has 
been published in [11].

A recent learning algorithm, Extreme learning 
machine (ELM), is proposed for RBF. ELM-RBF was first 
introduced by Huang and Siew [12], which was known 
to have extremely fast convergence and good general
ization. It is due to random input weights selection and 
applied the generalized inversion method to get out
put weights [13]. Wang et al. [14] stated that ELM 
shown potential learning algorithm for single hidden- 
layer feedforward neural networks (SFLNNs).

ELM-RBF has attracted many researchers due to its 
capability, and there has been many studies to develop 
the derivation method [13,15]. However, the applica
tions of ELM-RBF on power plant industries are still 
limited. Wong et al. [16], compared ELM and SVM for 
gas turbine fault diagnosis system using simulated 

data. Despite the fact that ELM only slightly outper
formed SVM in accuracy, ELM proves significant faster 
time computation. Thus, the analysis done herein com
pares the performance of two NN-based approaches: 
ELM-RBF and BPNN.

The present study constitutes an empirical study of 
NN-based fault-diagnosis systems based on real data 
from a steam turbine of an aging thermal power plant 
in Jakarta, Indonesia. A snapshot of the data acquired 
from the DCS gives the historical faults and the normal 
operating conditions from 2014 to 2017. This study 
contributes to applying data-driven approach to create 
a real-time system, which detects and diagnosis faults 
accurately in the steam turbine.

This paper is organized as follows. Section 2 
describes the steam turbine role in a power plant, 
steam turbine faults, and the significant role of fault- 
diagnosis systems in steam turbine maintenance. 
Section 3 explains in detail how the study was con
ducted, while Section 4 presents results and discus
sion. Section 5 concludes the paper with some 
limitations and future work.

2. Steam turbines

2.1. Steam turbine mechanism

As one of the main system in the power plant, steam 
turbine generator comprises of many subsystems: 
mechanical, electrical, hydraulic, heating, and related 
accessorial units. The mechanical unit alone contains 
hundreds of components, such as blades, rotor shaft 
and bearings, casings and seals, turbine pressure sec
tions, and steam-flow control parts [8]. The 200 MW 
steam turbine used herein is a double-flow steam tur
bine that consists of two casings: one for both high 
and intermediate pressure, and the other for low pres
sure (LP). It operates as an impulse-reaction 
mechanism.

The work mechanism of a steam turbine can be 
explained as follows. First, superheated high-pressure 
steam passes through a small opening, i.e. nozzle, 
where the steam will attain a remarkably high steam 
velocity. After rotating turbine, the steam pressure is 
lowered and reheated in the boiler. The next cycle 
starts when the steam enters the intermediate- and 
low-pressure turbines.

2.2. Fault types in a steam turbine

Arjona-López et al. [17] state that one of the most 
critical periods during steam turbine operation is the 
start-up process. Turbine damages are often related 
with the transients such as turbine elements thermal 
fatigue, rotor brittle fracture, stress corrosion cracking, 
erosion of LP blading [18]. Figure 2 shows steam tur
bine fault types, which are classified based on turbine 

Condition 
Monitoring Data

Data 
Preprocessing

Fault 
Diagnosis Prognostics Condition-based 

Maintenance

Figure 1. Condition-based maintenance scheme.
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six main components, i.e. moving blades, nozzles, 
rotors, casing and valves, steam pipes, and bearings 
[19] .

The four faults (misalignment, rotor bowing, blade 
cracking, and casing cracking), were selected as out
puts for this study. They were based on historical data 
and through in-depth discussions with experts.

Misalignment is a condition whereby the center
lines of coupled shafts do not coincide which was 
due to some reasons, such as burrs or dirt on shaft or 
housing shoulders. The high amplitude bearing vibra
tion should not exceed 0.125 mm. Nonetheless, 
a vibration amplitude of around 0.04–0.05 mm for 
two successive bearings indicates misalignment, as 
well as the abnormal temperature increase of bearings. 
The inputs of misalignment data were obtained from 
event on 30 January 2017.

Rotor bowing is caused by the lack of space for rotor 
expansion. Rotor bowing creates high-amplitude 
vibration and rubbing on casings and bearings [19]. 
The vibration amplitude of all bearings increased from 
0.04 to 0.3 mm, while the limit is 0.125 mm. Differential 
expansion and casing expansion can also be used as 
indicators of rotor bowing if they show abnormality. 
Data for this fault type were gathered from July 14 to 
15, 2014, and the fluctuation is shown in Figure 3.

Blade cracking is the subsequent fault. Segura et al. 
[20] explain that out-of-range operating parameters are 
evidence of a crack in the final blades of the last stage; for 
example, excessive flow steam, low vacuum, or the 
impact of implosion particles in the nozzle area. The 
data for this event were collected on 
19 December 2016, when an abnormality was appeared 
in the absolute condenser pressure, which was in the 
low-vacuum range (below atmospheric pressure). The 
tolerance of wet steam is only around 10% above the 

limit [18]. The main steam flow also reveals the presence 
of excessive wet steam.

The last type of fault is casing cracking. Chowdhury 
et al. [21] summarized that most of cracking is caused by 
thermal fatigue (65%), followed by brittle fracture (30%), 
and creep (5%). Long-term exposure to a large tempera
ture difference between the upper and lower casings of 
a steam turbine leads to cracks in the casing. The data for 
this event were collected on 23 November 2015. The 
acceptable temperature range for the HP-IP upper and 
lower casings is −42 to 42 °C.

3. Proposed data-driven research methods 
and application

This study proposes and compares the performance of 
two neural-network-based approaches to detect and 
diagnose steam turbine faults. As described in Zhang 
et al. [22], NN has many advantages: (1) NN is data- 
driven self-adaptive model that require no prior 
assumptions or knowledge about the problem. (2) NN 
generally lends themselves to generalization. (3) NN 
has more general and flexible functional forms than 
any traditional statistical model. Finally, (4) NN can 
handle complex and nonlinear problems.

Previous studies in numerous applications of NN for 
fault detection in industries, including power plants, 
showed satisfactory results [7,16,23–25].

3.1. Research frameworks

Figure 4 depicts the proposed research framework to 
develop a data-driven fault-diagnosis system for the 
steam turbine. The figure shows the stages for devel
oping the fault-diagnosis system.

There are 140 process parameters of the steam 
turbine, which covers the following categories: 

Moving Blades
• Erosion
• Cracking
• Lift up
• Rubbing, Wear

Nozzles
• Erosion
• Deflection
• Rubbing, Scuffing
• Cracking

Rotors
• Cracking
• Bowing
• Vibration
• Rubbing, Wear

STEAM TURBINE FAULTS

Casings, Valves
• Deformation
• Cracking
• Scuffing
• Steam Leakage
• Erosion
• Valve shaft 

sticking/bowing/
failure

• Bolt/bolt hole 
failure

Steam Pipes
• Scale erosion
• Deformation
• Cracking

Bearing
• Vibration
• Rubbing
• Wear
• Failure

Figure 2. Degradation, damages, and failure modes of steam 
turbine components, adapted from [19].

Figure 3. Vibration versus time indicating rotor bowing from 
July 14 to 15, 2014.
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temperature, pressure, flow, and vibration. They were 
used as inputs for the data-driven fault diagnosis 
model.

This research uses “snapshots” of both normal oper
ating conditions (NOC) and fault events data. 
A comparison with and without feature selection 
using the ReliefF algorithm is also evaluated in this 
study. Redundancies may also exist among the fea
tures, and not all the features give high contribution 
to the certain condition: NOC or fault.

The next step is the main part of this study. Two NN- 
based approaches are applied to the data, and the 
results of each approach are compared with each 
other. Huang and Siew [12] found that the use of an 
ELM algorithm in RBF networks significantly improves 
the computation efficiency. The BPNN method, as the 
most popular approach of NN, is used as a benchmark. 
Details of both methods are elaborated in the follow
ing sections.

3.2. Backpropagation neural networks

The NN contains interconnected neurons, which 
denote knowledge by their assigned weights, as 
described in Figure 5. One typical NN, namely, multi
layer perceptron, consists of an input layer, a hidden 
layer, and an output layer. The number of inputs (x1, 
x2, . . ., xn) denotes the number of features in the pro
cess, which each is connected to each hidden neuron 
in the hidden layer. Finally, each hidden neuron is 
connected to each output neuron (y1, y2, . . ., ym). The 

strength of each connection is called its “weight” (i.e. vij 

for the connection between each input neuron and 
each hidden neuron, and wjt for the connection 
between each hidden neuron and each output neu
ron). This study applies sigmoid activation function.

BPNN employs iterative gradient algorithm for mini
mizing the mean square error between the developed 
model and the real outputs by updating weights. 
When the output of the error function is satisfactorily 
small, then, the iteration can be terminated.

3.3. Extreme learning machine – radial basis 
function networks (ELM-RBF)

ELM-RBF is a modified RBF network. RBF networks are 
artificial NN which employs radial basis functions as 
activation functions. The structure of an RBF network 
consists of three-layered feedforward NN: the first layer 
is linear and distributes the input signal only, 
the second layer is nonlinear and uses Gaussian func
tions, and the third layer linearly combines the 
Gaussian outputs.

Traditionally, in the training process, the weights 
between the hidden layer and the output layer are 
adjusted. In this case, the RBF requires the following 
five parameters to be optimized: (1) weights between 
the hidden layer and the output layer, (2) the activation 
function, (3) the activation function centers, (4) the 
distribution of the activation function centers, and (5) 
the number of hidden neurons.

Huang, et al. [26] reported some drawbacks of the 
gradient descent algorithm which is used in traditional 
RBF: (1) If the learning rate is too small, the learning 
converges very slowly. In contrast, the learning 
diverges and is unstable. (2) The probability of a local 
minima is nonzero. (3) The NN may be over-trained, 
which hinders generalization. (4) The learning is time- 
consuming.

Thus, an ELM is introduced to overcome these 
weaknesses. Unlike the gradient descent-based algo
rithm, in a single-hidden-layer feedforward NN, the 
ELM arbitrarily picks the input weight and, therefore, 
the hidden biases of neurons and analytically define 
the output weights [12]. Furthermore, Huang, et al. [26] 
claimed that the use of an ELM results in better gen
eralization and in an extremely high learning speed.

This study uses the ELM-RBF, which randomly gen
erates kernel centers and the impact widths of RBF 
kernels and analytically calculates the output weights. 
As in Huang and Siew [12] (xi,ti), where xi = [xi1,xi2, . . ., 
xin]T ϵ Rn and ti = [ti1,ti2, . . ., tim]T ϵ Rm, RBFs with Ñ 
kernels can be mathematically modeled as 

X~N

i¼1
βi;i xj
� �
¼ oj; j ¼ 1; . . . ;N (1) 

where βi = [βi1, βi2, . . ., βim]T is the weight vector 
linking kernel i and the output neurons and ;i(x) is the 

BPNN

ELM-RBF

Misalignment

Rotor Bowing

Casing Cracking

Blade Cracking

NOC

140 Steam 
Turbine Process 

Parameters 
ReliefF

Figure 4. Framework of data-driven fault-diagnosis system.
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Figure 5. Architecture of neural network.
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output of kernel i. μi = [μi1, μi2, . . ., μin]T is the center of 
kernel i and σi is the impact width. ; is the radially 
symmetric kernel function and it is assumed that ;i(x) is 
a nonlinear bounded integral and is everywhere 
almost continuous: 

X~N

i¼1
βi;iðμi; σi; xjÞ ¼ tj; j ¼ 1; . . . ;N: (2) 

In short, 

Hβ ¼ Y (3) 

where H is the hidden-layer output matrix of the 
RBF network. Column i of H is the output of kernel 
i with respect to inputs x1, x2, . . ., xN. Because the 
number of kernels is unequal to the number of training 
samples, in this case Ñ << N, H is a non-square matrix 
and βi = (i = 1, 2, . . ., Ñ) may not exist, such that Hβ = T. 
Therefore, the unique smallest-norm least-squares 
solution β̂ of the previous linear system is 

β̂ ¼ HþT ; (4) 

where H+ symbolizes the Moore–Penrose general
ized inverse.

3.4. Application domain

The research framework as on Figure 4 were applied to 
data from an aging steam power plant in Jakarta. The 
power plant has been operating since 1980s and sup
plies around 26% of the highest electricity demand for 
the Greater Jakarta.

The data provide snapshots of four fault-type indi
cators: misalignment, rotor bowing, blade cracking, 
and casing cracking, which were observed through 
DCS. In addition to these fault types, the proposed 
fault diagnosis system also learns the normal operation 
condition (NOC) data of the steam turbine. It is 
assumed that only single fault may arise at any time.

3.5. Data preprocessing

The data preprocessing was conducted in the following 
stages: Firstly, data are transformed, from 1 s, into 1 min 
intervals, by averaging over groups of 60 sequential data. 
The next step in data preprocessing was data cleaning, 
whereby only relevant data are selected. Data cleaning 
resulted in 4320 one-minute-interval NOC data selected 
for classification learning (September 1 to 4, 2015). The 
process identified only 1296 one-minute-interval data 
(January 29 to 30, 2017) for the misalignment fault, 529 
one-minute-interval data (July 13 to 15, 2014) for rotor 
bowing, 133 blade cracks from 19 December 2016, and 
61 casing cracking from 23 November 2015.

To increase the accuracy and nullify any bias, the 10- 
fold cross-validation was used for model validation. 
According to Kohavi [27], the best k-fold cross- 
validation for model selection is 10-fold cross- 

validation because of the small bias reported from 
experiments. This process was applied before the 
data underwent further preprocessing to prevent leak
age to the data testing.

Subsequently, because of the unbalanced data for 
each class, the NOC data were under-sampled, redu
cing the data count from 4320 to 4000. In addition, 
bootstrap, an over-sampling method, was applied to 
the rest of the fault-type data. Thus, there were 4000 
data in each class.

The next step is data scaling, with the following 
reasons: (1) to avoid the domination of the larger- 
scale data over the smaller-scale data, and (2) to obtain 
a more rapid convergence of the learning process. This 
study applies the min-max formula to obtain scaled 
data in the range [−1,1] before classification by the 
BPNN approach. The formula is as on (5). 

xinew ¼
xi � min xð Þ

max xð Þ � min xð Þ

� �

� 2
� �

� 1 (5) 

ELM-RBF applied normalization for data scaling. It sub
tracts the mean from the value of each feature and 
divides it by its standard deviation.

3.6. Feature selection

Chandrashekar and Sahin [28] stated that feature selec
tion helps to understand the data, reduces computa
tion time, minimizes the curse of dimensionality, and 
improves the performance of data processing. 

W A½ � ¼ P different value of Ajnearestð

instance from different classÞ

� P different value of Ajnearestð

in stancefrom different classÞ:

(6) 

W A½ � :

¼ w A½ � �
diff A; R;Hð Þ

m
þ

X

C�class Rð Þ

P Cð Þxdiff A; R;M Cð Þð Þ½ �=m (7) 

Kira and Rendell [29] proposed Relief-based algorithm, 
one of the more powerful feature-selection methods. 
Relief is the only individual evaluation filter algorithm 
that can detect all feature dependencies [30]. An instance 
examines for its two nearest neighbors; namely, one from 
the same class (nearest hit) and another from a different 
class (nearest miss). Estimating the attribute weight of A, 
W [A], is done based on the difference between the 
following probabilities, as Equation (6).

Furthermore, Kononenko [31] explored this approach 
to handle multi-class problems with noisy and incom
plete data. This study uses the extended version of 
Relief, called ReliefF. The ReliefF algorithm searches 
one near miss M(C) for each other class and calculates 
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the average of the contribution for updating estimates 
W[A]. The next step is calculating weighted average with 
the prior probability of each class, as in Equation (7).

The study uses the ReliefF algorithm with k = 3, 10, 
and 15, where k is the number of nearest neighbors. 
Figure 6 shows the distribution of predictor weights for 
k = 15. A predictor with greater weight is more impor
tant than a predictor with less weight. The 13 features 
are selected based on consistency of weights over three 
values of k. These features are detailed in Table 1, with 
the associated weights of each k.

4. Results and discussions

This section presents the results of the BPNN and ELM- 
RBF algorithm for fault classification, with and without 
feature selection with ReliefF. All programs in this 
study were run in MATLAB version R2017b.

4.1. BPNN for fault diagnosis system

Tables 2 and 3 show the classification of each fold 
when using the BPNN approach. There are 140 input 

neurons and 75 hidden neurons. There are five output 
neurons, which is the same as the number of classes. 
Based on previous trial-and-error results, the learning 
rate and the momentum are set into 0.1. The result of 
each fold was averaged over 10 iterations. While the 
training and test recognition rate (RR) is mostly the 
same, the computation time for each iteration varies.

The results in Table 2 are highly accurate for both the 
training and testing data. The 100% training recognition 
reveals that no errors occurred during the training, and 
the 99.77% test recognition shows that the model per
forms very well with the testing data. The average com
putation time is 161.12 s, which is attributed to several 
sources: First, the data for training and testing may not 
significantly differ for each class. Second, BPNN is pop
ular in NN applications because of the backpropagation 
steps in which the minimum error is found by revising 
the weights. However, this procedure seems to require 
significant computation time to achieve high accuracy.

Table 3 shows the results of fault diagnosis system 
using BPNN when applying the ReliefF algorithm prior to 
the BPNN algorithm for selecting features. The accuracy 
increases to 100% for all folds in testing data. 
Unfortunately, computation time increased almost five- 
fold with respect to the previous procedure. This increase 
may be due to the incomplete information that uses only 
13 selected attributes to achieve high accuracy. More 
attributes should be included in the feature selection.

4.2. Results of ELM-RBF for fault diagnosis system

The RBF networks used in this study were modified by 
using the ELM for learning rather than the gradient 

Figure 6. Distribution of predictor-weight importance (k = 15).

Table 1. Weights for ReliefF results.
Feature k = 3 k = 10 k = 15

Condensate Pump 5B motor current 0.000755 0.000767 0.000590
SH Spray Flow 0.000341 0.000302 0.000223
No8 Circulating water pump 8 motor 

current
0.000329 0.000305 0.000222

Turbine HP-IP Horiz joint flange/bolt 
temp

0.000349 0.000221 0.000134

Condensate Flow 0.000183 0.000194 0.000103
CP-A/HC 0.000178 0.000183 0.000128
Deaerator 5D level (small) 0.000135 0.000182 0.000138
No 6 bearing vibration 0.000201 0.000175 0.000132
Condensate pump 5A motor current 0.000172 0.000168 0.000104
Aux cool water heat exc 5(7) cw inlet 

temp
0.000230 0.000158 0.000098

CP 5A coupling lube oil temp 0.000204 0.000149 0.000101
Feed water flow 0.000178 0.000141 0.000137
MT gov demand 0.000176 0.000131 0.000098

Table 2. RR (%) of BPNN.
Fold Training RR (%) Test RR (%) Time (s)

1 100 99.03 155.24
2 100 100 157.68
3 100 100 159.38
4 100 98.7 156.15
5 100 100 155.40
6 100 100 162.23
7 100 100 158.15
8 100 100 155.76
9 100 100 158.69
10 100 100 192.55
Average 100 99.77 161.12

Table 3. RR (%) of BPNN with ReliefF.
Fold Training RR (%) Test RR (%) Time (s)

1 100 100 810.19
2 100 100 800.76
3 100 100 801.09
4 100 100 750.73
5 100 100 730.46
6 100 100 771.23
7 100 100 800.50
8 100 100 784.53
9 100 100 774.46
10 100 100 785.76
Average 100 100 780.97
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descent algorithm. It was expected that the results would 
better lend themselves to generalization and that the 
computation time would decrease, all without sacrificing 
accuracy.

Table 4 shows the results of the first scenario using 
ELM-RBF (without feature selection). Overall, only 
a slight decrease appears in the test-recognition rate 
(3.2%) compared with BPNN. Moreover, ELM-RBF offers 
much faster computation time, i.e. 2.74 times faster 
than the BPNN. A small decrease in testing accuracy 
occurs for two folds only, except for fold 1, which has 
the lowest test-recognition rate of 68.8%. Figure 7 plots 
the errors in the testing data, which were mostly fault 
types 2 and 3. The testing data of fold 1 for fault types 2 
and 3 seem to differ significantly from the training data.

Table 5 summarizes the results of ELM-RBF when 
using 13 attributes selected by using the ReliefF algo
rithm. The results show no significant difference exists 
in terms of testing accuracy compared with the results 
given in Table 4. The average testing accuracy 
decreases by about 2.51%, and the computation time 
decreases. The computation time is 5.78 times faster 
than without feature selection.

This study shows that BPNN consistently has higher 
test-recognition rates both with and without feature 
selection. However, the high recognition rates are 
counter-balanced by longer computation times. 

Therefore, ELM-RBF seems more promising for obtain
ing high recognition rates and high generalization as 
stated in [14].

Application of these data-driven approaches for real- 
time fault diagnosis system significantly improves the 
fault diagnosis process in terms of accuracy and time. It 
replaces the manual interpretation of operators. Hence, 
it supports the reliability of CBM implementation.

5. Conclusion

The study uses two NN-based methods, BPNN and 
ELM-RBF. BPNN has been popular due to its accu
racy, while ELM-RBF is known for its facile general
ization and fast computation. The results prove that, 
although BPNN outperforms ELM-RBF in terms of 
accuracy, the former comes with long computation 
time for decision-making, which usually translates 
into high cost. The computation time for ELM-RBF 
is extremely better than that for BPNN.

This study also identifies attributes that contribute 
significantly to the relevant class. More analysis should 
be conducted to identify which attributes indicate certain 
fault.

The results of the study are consistent with the 
theory and results of previous studies. The modified 
learning method that uses ELM significantly 
improves the results when using NN learning algo
rithms for fault diagnosis. ELM-RBF is promising 
data-driven method to be applied for the next pro
cess of CBM, i.e. prognosis.

Time lag should be considered for the next research. 
The trend of certain attributes may create different fault 
types. It may create more complex model, but advanced 
machine learning methods or ensemble technique 
should be able to overcome the problems. More data 
sources should be added from various steam turbines. 
They will enrich the analysis and create more intelligent 
system.
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Table 4. RR (%) of ELM-RBF.
Fold Training RR (%) Test RR (%) Time (s)

1 97.62 68.80 54.46
2 97.84 99.40 52.78
3 96.73 100 51.27
4 96.55 98.70 53.83
5 96.64 98.85 55.05
6 96.53 100 53.96
7 96.69 100 58.73
8 89.73 100 57.47
9 96.30 100 57.83
10 95.13 100 52.70
Average 95.98 96.58 54.81

Figure 7. Error in diagnosis of faults 2 and 3.

Table 5. RR (%) of ELM-RBF with ReliefF.
Fold Training RR (%) Test RR (%) Time (s)

1 98.34 74.30 9.05
2 96.94 94.50 9.01
3 98.68 96.50 9.95
4 96.38 100 10.03
5 95.75 100 9.15
6 94.32 100 9.80
7 96.39 100 9.82
8 96.17 97.7 8.84
9 89.58 81.2 9.04
10 94.22 97.4 10.14
Average 95.68 94.16 9.48
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